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1 Introduction

The properties of a structure studied by classical model theory are preserved under

isomorphism. Thus, in that context, it makes sense to consider isomorphic structures

to be identical. This is not the case, however, in computable model theory, since two

isomorphic computable structures might have quite different computability-theoretic

properties. (See [10] for examples of this phenomenon, as well as background relevant

to this paper.) This leads us to study computable structures up to computable isomor-

phism, a point of view reflected in the following definition.

1.1 Definition. A structure A in a computable language is computable if both its

domain |A| and its atomic diagram are computable. If, in addition, its existential

diagram is computable, then A is 1-decidable.

An isomorphism from a structureM to a computable structure is called a computable

presentation ofM. (We often abuse terminology and refer to the image of a computable

presentation as a computable presentation.)

The computable dimension of a structureM is the number of computable presenta-

tions of M up to computable isomorphism.

A structure of computable dimension 1 is said to be computably categorical.

The study of the relationships between different computable presentations of a struc-

ture is an important theme in computable model theory. It is roughly analogous to the

classical study of the relationships between different models of a theory, but the issues

and results in these two settings are often quite different. For example, it follows from

the Ryll-Nardzweski Theorem that a countably categorical structure remains countably

categorical when expanded by finitely many constants. It is natural to ask whether

the same is true in the analogous situation in computable model theory. That is, does

every computably categorical structure remain computably categorical when expanded

by finitely many constants?

Millar [11] showed that, with a relatively small additional amount of decidability,

computable categoricity is preserved under expansion by finitely many constants.

1.2 Theorem (Millar). If A is computably categorical and 1-decidable then any ex-

pansion of A by finitely many constants remains computably categorical.

However, preservation of categoricity does not hold in general, as was shown by

Cholak, Goncharov, Khoussainov, and Shore [1].
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1.3 Theorem (Cholak, Goncharov, Khoussainov, and Shore). For each k > 0,

there exists a computably categorical structure A and an a ∈ |A| such that (A, a) has

computable dimension k.

This result raises the following question, left open in [1], as well as in [9], where an

easier proof of Theorem 1.3 was given: Does there exist a computably categorical struc-

ture whose expansion by some set of finitely many constants has computable dimension

ω? In this paper we give the following positive answer to this question.

1.4 Theorem. There exists a computably categorical structure A and an a ∈ |A| such

that (A, a) has computable dimension ω.

The proof of this theorem, which will be given in Section 3, uses techniques from [7],

which in turn builds on [1, 6, 9]. The original source for the method common to all

these papers is the work of Goncharov [3, 4]. In Section 2, we will introduce some of the

fundamental ideas of the proof in a less complicated setting. We assume basic familiarity

with computable model theory and the tree method of organizing priority constructions.

References include [2] (especially the paper [5]) and [12], respectively.

The structure built in Section 3 will be a directed graph. Thus, by the results of [8],

for each of the following theories, Theorem 1.4 remains true if we also require that the

structure mentioned in it be a model of the given theory: symmetric, irreflexive graphs;

partial orderings; lattices; rings (with zero-divisors); integral domains of arbitrary char-

acteristic; commutative semigroups; and 2-step nilpotent groups.

Our result is still not quite the final word on what can happen to the computable

dimension of a structure under expansion by constants. The computable dimension of a

computable structure A is said to be effectively infinite if there is an effective procedure

that, given a uniformly computable set P of computable presentations of A, produces a

computable presentation of A that is not computably isomorphic to any of the structures

in P. It will be easy to see that no expansion of the structure built in Section 3 by

finitely many constants has effectively infinite computable dimension.

1.5 Question. Is there a computably categorical structure A whose expansion by some

set of finitely many constants has effectively infinite computable dimension?

1.1 Notation

We denote the eth partial computable function by Φe, and the result of running the

machine computing this function for s steps on input x by Φe(x)[s]. We use ↑ and ↓ for
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convergence and divergence, respectively.

For a set X, let X � m = X ∩ {0, . . . ,m − 1}. For a function f , let f � m be the

restriction of f to dom f � m. For a structure A in a relational language and a subset

S of |A|, let A � S be the structure obtained by restricting A to S.

For sequences σ and τ , let σaτ be their concatenation. We write σax instead of

σa(x), where (x) is the sequence consisting of the single element x. If σ = (x0, . . . , xn)

then σ(i) = xi and σ � i = (x0, . . . , xi−1). We denote the length of σ by |σ|.
Fix a one-to-one function from ω × ω onto ω and let 〈a, b〉 denote the image under

this function of the ordered pair consisting of a and b. We write 〈a, b, c〉 instead of

〈a, 〈b, c〉〉. For x ∈ ω and i = 0, 1, we write πi(x) for the ith coordinate of the ordered

pair coded by x. That is, if x = 〈a, b〉 then π0(x) = a and π1(x) = b.

2 The Method of Left and Right Operations

In this section, we sketch a proof of the existence of a structure of computable dimension

two. The first example of such a structure is due to Goncharov [4], as is the general

method we will employ. Our purpose here is to introduce some of the basic ideas behind

the proof of our main result in a less complicated setting. Thus we will be informal and

leave details for the next section.

2.1 The Basic Diagonalization Strategy

First suppose we just want to build computable structuresA0 andA1 that are isomorphic

but not computably isomorphic. We think of this task as building A0 and A1 to be

isomorphic while satisfying the following requirements:

Re : Φe total⇒ Φe is not an isomorphism from A0 to A1.

One strategy for satisfying these requirements is to dedicate some portion of A0 to the

satisfaction of Re and wait until Φe converges on that part of A0 and looks like a partial

isomorphism. We can then change A0 and A1 in a way that kills that specific potential

isomorphism, while still keeping the structures isomorphic.

To give this “bait and switch” idea a concrete form, let us introduce the basic building

blocks of the constructions in this paper.

2.1 Definition. Let n ∈ ω. The directed graph [n] consists of n + 3 many nodes

x0, x1, . . . , xn+2 with an edge from x0 to itself, an edge from xn+2 to x1, and an edge
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from xi to xi+1 for each i 6 n+ 1. We call x0 the top of [n] and xn+2 the coding location

of [n]. (We keep the terminology “coding location” used in [6, 7, 9], although in this

paper we will be diagonalizing rather than coding.)

A cycle is a copy of [k] for some k ∈ ω.

Let S ⊂ ω. The directed graph [S] consists of one copy of [s] for each s ∈ S, with

all the tops identified.

Figure 2.1 shows [2] and [{2, 3}] as examples.

•�� ��top // //• // //• // //• coding location// //•hhhh

•�� ��top // //

�� ��@@@@@@@@@@@ • // //• // //• coding location// //•hhhh

• // //• // //• // //• coding location// //•jjjj

Figure 2.1: [2] and [{2, 3}]

We build A0 and A1 in stages. We begin by letting A0
0 and A1

0 be computable

structures with co-infinite domains, each consisting of one copy of [k] for each k ∈ ω.

The following definitions will help us describe the kind of changes we make to our

structures to satisfy the requirements.

2.2 Definition. Let G be a computable structure in the language of directed graphs

whose domain is co-infinite. G consists of the disjoint union of a number of connected

components, which from now on we will just call the components of G.

Suppose that G has components K and L isomorphic to [B] and [C], respectively,

where B,C ⊂ ω are finite. We define the operation K · L, which takes G to a new

computable structure extending G, as follows. Extend K to be a copy of [B ∪ C] using

numbers not in the domain of G. Leave every other component of G (including L)

unchanged.

We will also use the notation K · L to denote the graph [B ∪ C]. It should always

be clear which meaning of K · L is being used.

Given a finite sequence of operations, each of which can be performed on G, so that

no two operations in the sequence affect the same component of G, we can perform all
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the operations in the sequence simultaneously on G to get a structure extending G. In

this case we will say that we have performed the sequence of operations on G.

2.3 Definition. Let G be a computable structure in the language of directed graphs

whose domain is co-infinite and let X0, . . . , Xn be components of G such that, for each

i 6 n, Xi is isomorphic to [Si] for some finite Si ⊂ ω. We define two operations, each of

which takes G to a new computable structure extending G.

• The L-operation L(X0, . . . , Xn) consists of performing the sequence of operations

X0 ·X1, X1 ·X2, . . . , Xn ·X0 on G.

• The R-operation R(X0, . . . , Xn) consists of performing the sequence of operations

X0 ·Xn, X1 ·X0, . . . , Xn ·Xn−1 on G.

Note that if H is the structure obtained by performing L(X0, . . . , Xn) on G and H′

is the structure obtained by performing R(X0, . . . , Xn) on G then H ∼= H′.

We can now proceed as follows. For each e, we choose components X0
e , Y 0

e , and Z0
e

of A0
0 and let X1

e , Y 1
e , and Z1

e be the corresponding components of A1
0. (This choice

should be made so that no component is chosen for more than one e.) Let xie be the

coding location of X i
e.

At stage s, let e be the least number such that we have not yet satisfied Re and

Φe(x
0
e)[s] ↓= x1

e. (If there is no such e, we do nothing at this stage.) We perform

L(Y 0
e , X

0
e , Z

0
e ) on A0

s to get A0
s+1, perform R(Y 1

e , X
1
e , Z

1
e ) on A1

s to get A1
s+1, and declare

Re to be satisfied.

Now let A0 =
⋃
s∈ωA0

s and A1 =
⋃
s∈ωA1

s. It is easy to show, by induction using

the definition of the L- and R-operations, that A0
s
∼= A1

s for each s. It is also true that

whenever a component of Ais participates in an operation at stage s + 1, so does the

isomorphic component of A1−i
s . Since A0 and A1 have no infinite components, it follows

that A0 ∼= A1.

It is also easy to argue that each requirement is eventually satisfied. If Φe(x
0
e)↑ then

Re is vacuously satisfied. If Φe(x
0
e)↓6= x1

e then X0
e and X1

e are never involved in opera-

tions, and hence any isomorphism from A0 to A1 must take x0
e to xe1. If Φe(x

0
e) ↓= x1

e

then, by induction, we eventually act to satisfy Re by making sure that the components

containing x0
e and x1

e are not isomorphic, so that no isomorphism from A0 to A1 can

take x0
e to xe1. In any case, Φe is not an isomorphism from A0 to A1.
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2.2 Special Components

The above construction ensures that the computable dimension of A0 is at least two.

To have it be exactly two, we have to modify the construction to guarantee that

(2.1) if G ∼= A0 is a computable structure then G is computably isomorphic to either A0

or A1.

Let us first discuss one way to satisfy this property for a single fixed G.

Let G[s] denote the stage s approximation to G. Since we only care about G if it

is isomorphic to A0, we can assume that G[s] is embeddable in A0
s for all s ∈ ω. We

will also ensure throughout this construction that, for all s ∈ ω, no component of Ais is

embeddable in another component of Ais.
The following is a naive procedure for trying to build a computable isomorphism

from Ai to G. Given a node x in Ai, wait for a stage s such that the component X i of

Ais containing x has an isomorphic copy X in G, then map X i to X. The problem is that

X i may later participate in an operation, at which point there will be two copies of X i

in Ai and two in G, and the component of Ai containing X i may not be isomorphic to

the component of G containing X. (For example, X i and X may both be of the form [1].

After an operation involving components of the form [1], [2], and [3], X i may become

part of a component of the form [1] · [2] while X may become part of a component of

the form [1] · [3].) If this happens, our original map will no longer be extendable to an

isomorphism.

Our strategy for solving this problem is based on the following observation.

Suppose that, at some stage s, A0
s has components X0, Y 0, Z0, and S0; A1

s has

isomorphic components X1, Y 1, Z1, and S1, respectively; and G[s] has isomorphic com-

ponents X, Y , Z, and S, respectively. Now suppose we perform L(Y 0, X0, Z0, S0) on

A0
s to get A0

s+1 and perform R(Y 1, X1, Z1, S1) on A1
s to get A1

s+1. Then A0
s+1 has com-

ponents isomorphic to S0 · Y 0, Y 0 · X0, X0 · Z0, and Z0 · S0, and these are the only

components of A0
s+1 that contain copies of X0, Y 0, Z0, or S0. So if X, Y , Z, and S

do not grow into isomorphic copies of the aforementioned components of A0
s+1 then we

can win immediately by not involving these components in any further operations, thus

guaranteeing that G � A0.

So if G ∼= A0 then there are only two possibilities. The first is that S grows into

a copy of S · Y , Y grows into a copy of Y · X, X grows into a copy of X · Z, and Z

grows into a copy of Z · S. In this case we will say that G “goes to the left”. The other
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possibility is that Y grows into a copy of S · Y , S grows into a copy of Z · S, Z grows

into a copy of X · Z, and X grows into a copy of Y ·X. In this case we will say that G
“goes to the right”.

If G always goes to the left then isomorphic components of A0
s and Gs always grow

into isomorphic components of A0 and G, and hence the naive procedure described above

succeeds in producing an isomorphism from A0 to G. Indeed, it is enough that G almost

always go to the left (that is, cofinitely often), since we can always wait a finite amount

of time before beginning to build our isomorphism. Similarly, if G almost always goes

to the right then we can build a computable isomorphism between A1 and G.

To ensure that G either almost always goes to the left or almost always goes to the

right, we adopt the strategy of always including copies of a certain fixed component of

G, which we will call the special component of G, in our operations.

That is, we first pick some component of G to be its special component. More

precisely, we fix some n not otherwise used in the construction and wait until a copy K

of [n] appears in G. We declare the component of G that extends K to be the special

component of G. Similarly, we call the component of G[s] that extends K the special

component of G[s].

At stage 0, we define Ai0 as before. We also define r0 to be 0. The value of rs will

code whether G goes to the left or to the right at stage s.

At stage s+ 1, we choose e as before and let X i
e, Y

i
e , and Zi

e be as above. Let Sis be

the isomorphic copy in Ais of the special component Ss of G[s]. We wait until copies Xe,

Ye, and Ze of X i
e, Y

i
e , and Zi

e, respectively, are enumerated into G[s] and then perform

the same operations as before. We wait until copies of Ss · Ye, Ye · Xe, Xe · Ze, and

Ze · Ss are enumerated into G. Either the copy of Ss · Ye or that of Ze · Ss will extend

Ss. Whichever one it is now becomes Ss+1. If Ss+1
∼= Ss · Ye then rs+1 = 0; otherwise

rs+1 = 1.

The above construction ensures that if G ∼= A0 then the special component of G is

infinite. On the other hand, it also guarantees that if G changes direction infinitely often

(that is, if rs does not have a limit) then no component of A0 is infinite, so that G � A0.

This latter assertion follows from the fact that, for each s ∈ ω, the copy of the special

component of G[s + 1] in A1−rs+1

s+1 is a component that participates in an operation for

the first time at stage s+ 1. Figure 2.2 illustrates the case rs+1 = 0. In this figure, the

special components of G[s] and G[s+ 1] and their images are shown in boxes.
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Ye

��

Xe

��

Ze

��

Ss

��

In G :

Ye ·Xe Xe · Ze Ze · Ss Ss · Ye

Y 0
e

��

X0
e

��

Z0
e

��

S0
s

��
In A0 :

Y 0
e ·X0

e X0
e · Z0

e Z0
e · S0

s S0
s · Y 0

e

Y 1
e

��

X1
e

��

Z1
e

��

S1
s

��

In A1 :

Y 1
e · S1

s X1
e · Y 1

e Z1
e ·X1

e S1
s · Z1

e

Figure 2.2: The images of the special component

2.3 Catch-up and Recovery

However, there are two problems with the above construction. First, by the same

reasoning as in the last paragraph, if G almost always goes to the left then no component

of A1 is infinite, while if G almost always goes to the right then no component of A0

is infinite. In either case, A0 and A1 are no longer isomorphic. Second, in general

we cannot know in advance whether a given computable structure G is isomorphic to

A0, nor can we effectively list the computable structures isomorphic to A0, so in the

full construction it will not be possible to wait at each stage until the appropriate

components are enumerated into G.

The first problem can be fixed by performing a catch-up operation following each

standard operation.

Remark. For readers familiar with papers such as [6, 7, 9], we note that these catch-

up operations will take the place of the isomorphism recovery procedure used in those

papers. This change will be needed in the proof of our main result, because there each
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special component will have infinitely many images. The disadvantage of using catch-up

operations is that it creates nontrivial automorphisms, but this is not an issue in our

main result, since the structure required in that result cannot be rigid anyhow.

We first make a small modification to the definition of Ai0. Instead of starting with

a copy of [n] for each n ∈ ω, we reserve an infinite and co-infinite set R ⊂ ω and let

each Ai0 consist of one copy of [n] for each n ∈ ω −R.

At each stage s + 1, we define a subgraph Ts+1 of the special component of G as

follows. If rs+1 6= rs then let Ts be the entire special component of G[s], and otherwise

let Ts+1 = Ts.

After each stage s operation as described above, let Li0, . . . , L
i
n be the components of

Ais+1 containing copies of Ts+1 (listed so that L0
j
∼= L1

j). Let Pj be such that Lij = [Pj]

and let P =
⋃
j6n Pj. Let k0, . . . , kn ∈ R be distinct numbers such that Ais+1 does not

contain a kj-cycle for any j 6 n. We extend each Lij to a copy of [P ∪ {kj}].
This catch-up procedure ensures that if rs comes to a limit by stage t then the

components of A0 and A1 that contain a copy of Tt are all infinite and isomorphic. At

the same time, it maintains the essential property that, for each s, no component of Ais
is embeddable in another component of Ais. (This property was needed in the argument

given above that G has only two options following each operation.)

We deal with the problem of not knowing whether G ∼= A0 by using the idea of

recovery. Instead of having a single strategy for each diagonalization requirement Re,

we have two, R0,e and R1,e, each working with its own set of components Y i
0,e, X

i
0,e, Z

i
0,e

and Y i
1,e, X

i
1,e, Z

i
1,e, respectively. Roughly speaking (we will be more precise below),

the strategy R0,e works under the assumption that G ∼= A0 and R1,e works under the

assumption that G � A0.

The strategy R1,e is free to perform an operation involving its set of components

whenever it wants to, without caring about G and without involving copies of the special

component of G in the operation. The strategy R0,e, on the other hand, must wait for

G to recover sufficiently often, as we now explain.

Suppose that we perform an operation at stage s+ 1 involving copies of the special

component of G[s]. To be more specific, suppose the components of G[s] whose copies

participate in this operation are Y0,k, X0,k, Z0,k, and Ss. Where we would have waited

for Y0,k, X0,k, Z0,k, and Ss to grow into copies of Y0,k · X0,k, X0,k · Z0,k, Z0,k · Ss, and

Ss · Y0,k, we now just declare that we are waiting for these copies to appear in G, and

proceed with the construction.
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A recovery stage is then a stage t+ 1 such that

1. G[t] contains copies of all the components for which we are currently waiting and

2. for each e less than or equal to the number of recovery stages before stage t + 1,

if Re has not yet been satisfied then G[t] contains components isomorphic to Y0,e,

X0,e, and Z0,e.

Whenever G recovers, all strategies R1,e are initialized, in the sense that they have

to pick new components Y1,e, X1,e, and Z1,e. (This is done in such a way that the old

components are never again picked by any strategy, and for each component we can find

a stage after which it can never again be picked by any strategy.) If a strategy R1,e ever

gets a chance to act to satisfy Re with its currently selected components, it does so. A

strategy R0,e, on the other hand, can only act at a recovery stage and after there have

been at least e many recovery stages, and must involve copies of the special component

of G in the operation it performs.

By following the above strategy, we ensure two crucial things. One is that each

Re is eventually satisfied, whether or not G recovers infinitely often. The other is that

if G ∼= A0 (in which case G must recover infinitely often) then we can still build a

computable isomorphism between one of the Ai and G. As we now show, the argument

that this second fact holds is only slightly more complicated than before.

We still have that G must almost always go to the left or almost always go to

the right. Let us assume the first case (the other being symmetric). Then we can

split the components of A0 into those that participate in operations for the sake of 0-

strategies (i.e., strategies R0,e which assume that G recovers infinitely often), and those

that participate in operations for the sake of 1-strategies. We can build our isomorphism

on the former class of components as before, using the fact that G almost always behaves

like A0. For each component K in the latter class of components, we can find a stage

after which K is guaranteed not to participate in an operation. At this stage, we

can simply wait until an isomorphic component L appears in G and map K to L in

the obvious way. This isomorphism will be correct, since we are now guaranteed that

neither K nor L will ever grow. (To see that L will never grow, suppose otherwise.

Then, since we are assuming that G ∼= A0, there is some s such that A0
s contains both

K and another component strictly containing a copy of K. But we have ensured that

this will never be the case.)

11



2.4 The tree of strategies

We have been discussing satisfying property (2.1) for a single G, but in the full con-

struction we need to consider all computable graphs. Let G0,G1, . . . be a standard

enumeration of all partial computable directed graphs.

Remark. We need to consider partial computable graphs because there is no effective

listing of all computable directed graphs. For the sake of definiteness, we make the

following definition, although we will make no explicit use of it. A partial computable

directed graph G consists of two 0, 1-valued partial computable functions Φ and Ψ, the

former unary and the latter binary, such that if Φ(x)[s]↓= Φ(y)[s]↓= 1 then Ψ(x, y)[s]↓.
The graph G (resp. G[s]) is the graph whose domain has characteristic function Φ (Φ[s])

and whose edge relation has characteristic function Ψ (Ψ[s]).

The above discussion of recovery suggests how to organize our construction using

a tree of strategies. For each finite binary string σ, we have a strategy for satisfying

(2.1) for G|σ|. The string σ represents a guess as to which Gm, m < |σ|, recover infinitely

often, with σ(m) = 0 representing a guess that Gm recovers infinitely often and σ(m) = 1

representing a guess that it does not.

More precisely, if τ = σ � m then σ(m) = 0 represents a guess that Gm τ -recovers

infinitely often. We wait until the next section to give a more detailed discussion of

τ -recovery. The basic idea is the following. When an operation performed for the sake

of a strategy corresponding to a superstring of τ extends certain components of the Ai

(as in the simpler example above), we then have to wait for G|τ | to provide copies of

these extended components before we can allow strategies corresponding to superstrings

of τ to act again. Roughly speaking, we have τ -recovery when these components are

provided.

We choose a σ-special component of G|σ| for each σ ∈ 2<ω. There are also 2e many

strategies for satisfying Re, one strategy Rσ,e for each σ of length e. Each Rσ,e acts

according to the information encoded in σ. That is, when Rσ,e wants to act, it has

to wait for each G|τ | with τa0 ⊆ σ to τ -recover, and must then involve the τ -special

component of each such G|τ | in the diagonalization operation it performs.

We run the construction in the usual way. At each stage, we choose which path to

follow based on which σ are currently recovered. The strategies on this path then get

to act, and the strategies to the right of this path are initialized. This initialization

process includes choosing a new σ-special component of G|σ| for each σ to the right of

the current path. The true path of the construction is the leftmost path visited infinitely
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often. If σ is on the true path then Rσ,|σ| succeeds in satisfying R|σ|.
Furthermore, if σ is on the true path and G|σ| ∼= A0 then the σ-special component

of G|σ| is involved in every operation performed for the sake of strategies corresponding

to superstrings of σ. Arguing as above, for some i = 0, 1 we can effectively build an

isomorphism between the components of Ai that participate in such operations and the

corresponding components of G|σ|. This isomorphism can be extended to all of Ai much

as before. More specifically, let K be a component of Ai that does not belong to a

strategy corresponding to a superstring of σ. If K belongs to a strategy to the right of

the true path then it is eventually guaranteed never again to participate in an operation,

and hence we can extend our isomorphism to K as above. Otherwise, K belongs to a

strategy above or to the left of σ. Since there are only finitely many substrings of σ,

and strategies to the left of σ are active only finitely often, we need only finitely much

information to extend our isomorphism to all components belonging to strategies above

or to the left of σ.

There are several other details that would need to be added to the above sketch to

complete the proof. In particular, we have not discussed exactly how operations involv-

ing multiple special components are performed. These compound operations complicate

the analysis of the recovery process and the proof that any computable graph isomorphic

to A0 must either almost always go to the left or almost always go to the right. Since

such aspects of the method of operations depend on the particular result being proved,

we leave them to the following section, where we will discuss them in the setting of our

main result.

3 Proof of Theorem 1.4

We will build a computable structure A and a computable set {ai}i∈Z of elements of |A|
so that the following properties hold.

(3.1) For every i ∈ Z, (A, ai) ∼= (A, a0).

(3.2) For every i, j ∈ Z, if i 6= j then (A, ai) is not computably isomorphic to (A, aj).

(3.3) If G is a computable structure, g ∈ |G|, and (G, g) ∼= (A, a0), then (G, g) is com-

putably isomorphic to (A, ai) for some i ∈ Z.

The structure A will include infinitely many isomorphic subgraphs, built using a

version of the method of left and right operations described above. These subgraphs will
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be arranged in levels attached to a “backbone”, as indicated in the following definition.

3.1 Definition. The backbone graph is the directed graph, shown in Figure 3.1, con-

sisting of the following nodes and edges.

1. A root node x.

2. For each i ∈ Z, an i-master node xi, with an edge from x to xi.

3. For each i ∈ Z, an edge from xi to xi+1.

We will say that a directed graph G is leveled if |G| can be split into two disjoint sets

H and I so that the following conditions are satisfied.

1. G � H is isomorphic to the backbone graph.

2. G � I consists of cycles and edges between the tops of some of these cycles.

3. The only edges in G between elements of H and elements of I are edges from

i-master nodes, i ∈ Z, to tops of cycles.

4. Let i, j ∈ Z, i 6= j. If there is an edge from the i-master node of G � H to an

element y of I then there is no edge from the j-master node of G � H to y.

We call the connected components of G � I the components of G. A component

isomorphic to [n] for some n is called a singleton component. Let C be a cycle in G � I
and let i ∈ Z. If there is a node from the i-master node to the top of C then we say

that C has level i. Let K be a component of G, in the above sense. If all the cycles in

K have the same level i then we say that K has level i, and define level(K) = i. If none

of the cycles in K have levels then we say that K has no level. If there are two cycles

in K with different levels then we say that K has multiple levels.

For i ∈ Z, we denote by Gi the subgraph of G consisting of all level-i components of

G. We denote by G∗ the subgraph of G consisting of those components of G that either

have no level or have multiple levels.

Let n, r ∈ ω. Suppose that G is such that every component M of G∗ that has multiple

levels consists of a cycle K with no level whose top is connected to the tops of infinitely

many cycles L0, L1, . . . such that Li has a level g(i) for each i ∈ ω. For each component

M of G∗ as above, let M̂n,r be the graph obtained by restricting the domain of M to

the union of |K| and |Li| for every i ∈ ω such that |g(i)− r| 6 n. We denote by (G∗)n,r

the union of all M̂n,r such that M is a component of G∗. In case r = 0, we write simply

(G∗)n.

14
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Figure 3.1: The backbone graph

The structure A will be a leveled graph. The components of A∗ that have multiple

levels will be of the form given in the previous paragraph, so it will make sense to talk

about (A∗)n,r and (A∗)n. The ai mentioned in (3.1)–(3.3) will be the i-master nodes of

A.

Before describing the construction of A, we note that we can restrict the class of

graphs that must be considered in satisfying property (3.3). Fix a computable presenta-

tion B of the backbone graph with co-infinite domain. Every computable leveled graph

is computably isomorphic to a computable graph containing B as a subgraph, so it is

enough to consider such graphs. It will also be the case that every cycle in A will have

a level except for cycles of the form [10k], k ∈ ω, which will not have levels, so it is

enough to consider graphs satisfying this property.

Thus, in this section, we will only consider partial computable graphs G satisfying

the following conditions for each s ∈ ω.

1. G[s] � (|G[s]| ∩ |B|) ∼= B � (|G[s]| ∩ |B|).

2. If x ∈ |G[s]| then x is contained in a cycle in G[s].

3. Let K be a cycle not of the form [10k], k ∈ ω, in G[s]. There is a unique node

x ∈ |G[s]| ∩ |B| with an edge in G[s] from x to the top of K. This node x is an

i-master node for some i ∈ Z.

4. Let K be a cycle of the form [10k], k ∈ ω, in G[s]. For every x ∈ |B|, there is no
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edge in G[s] from x to the top of K.

Clearly, there exists a computable list G0,G1, . . . of all partial computable graphs

that satisfy the above conditions, and this list contains all the computable graphs that

must be considered in satisfying property (3.3). We will assume that, for each n, s ∈ ω,

there is an embedding of Gn[s] into As.
The fact that Gn contains B means that it makes sense to speak of level i of Gn. It

also makes sense to speak of level i of Gn[s], with the understanding that if the i-master

node of B is not in |Gn[s]| then level i of Gn[s] is empty. The reason for conditions 3

and 4 above is that they ensure that the following is true. Let K be a cycle in Gn[s]. If

K has level i in Gn[s] then it has level i in Gn, while if K has no level in Gn[s] then it

has no level in Gn. While this fact will not be needed in our formal construction and

verification, it is nevertheless useful in clarifying what we mean when we speak of the

level of a component of Gn or Gn[s] in our informal discussion below.

To satisfy (3.2), we will satisfy the following requirement for each e ∈ ω and i ∈ Z,

i 6= 0:

R〈e,i〉 : Φe is not an isomorphism from (A, a0) to (A, ai).

This will be enough, since for any j, k ∈ Z such that j 6= k, any automorphism of A
taking aj to ak takes a0 to ai for some i 6= 0.

The basic idea for satisfying R〈e,i〉 is simple, and makes use of the concept of left

and right operations described above.

We will build A by beginning with a computable leveled graph A0 and successively

applying operations. Suppose for now that A0 is such that all levels are isomorphic and

consist of cycles, and no two components of the same level are isomorphic. (This will

change later, when we consider the satisfaction of (3.3).)

We choose a singleton component E0 ofA0
0, let Ei be the component ofAi0 isomorphic

to E0, and let x and y be the coding locations of E0 and Ei, respectively. We then wait

until Φe(x) converges. If this never happens then we win by default. If Φe(x)↓6= y then

we win by doing nothing, thus guaranteeing that any automorphism of A that takes a0

to ai must take x to y, which implies that Φe cannot be such an automorphism.

If Φe(x) ↓= y then we act to ensure that no automorphism of A can take x to y.

We do this by performing operations on E0 and Ei that guarantee that the components

of A that extend each of these components are not isomorphic. Specifically, we first

choose components D0, F 0, Di, and F i such that D0 and F 0 have level 0, Di and F i

have level i, D0 ∼= Di, and F 0 ∼= F i. Then we perform an operation that guarantees
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that E0 is extended by a component containing a copy of E0 · F 0, while Ei is extended

by a component containing a copy of Di · Ei.

Of course, to keep all the levels of A isomorphic, we also need to perform similar

operations on the components of Aj0 isomorphic to D0, E0, and F 0 for each j ∈ Z.

Without any other features to the construction, we could do this simply by performing

the operations L(D0, E0, F 0) and R(Dj, Ej, F j) for j ∈ Z, j 6= 0. Proceeding in this

fashion simultaneously for each R〈e,i〉, we could satisfy both (3.1) and (3.2).

However, as we will see, the satisfaction of (3.3) will require us to involve more

components than just the Dj, Ej, and F j in our operations, and will make it necessary

for the sequence of operations performed to satisfy a given requirement to be periodic,

in the sense that there is an n > 0 such that, if a row of level-i components participates

in a left operation then so does the isomorphic row of level-(i+nj) components for each

j ∈ Z, and similarly for right operations.

As an illustration, Figure 3.2, which will be explained below, shows the basic diago-

nalization strategy in the case in which we are satisfying R〈e,i〉 for some e ∈ ω and i = 3.

An arrow from K to L means that the component K is involved in the operation and

becomes a copy of L. Since we want the level-0 and level-3 components involved in the

operation to go in opposite directions, the period of this operation is 4. As above, we

have components D0 and E0, but we now need multiple components F 0
0 , F 0

1 , and F 0
2 in

place of F 0, for reasons that should become clear after examining the figure. For each

i ∈ Z, Di, Ei, F i
0, F i

1, and F i
2 are the level-i components isomorphic to D0, E0, F 0

0 ,

F 0
1 , and F 0

2 , respectively. There is also a component X which acts as the link between

different rows of components participating in the operation.

To understand Figure 3.2, we need to define two new kinds of basic operations.

3.2 Definition. Let G be a computable leveled graph whose domain is co-infinite. Let

L,K0, K1, . . . be components of G isomorphic to [x], [y0], [y1], . . . , respectively, where

x, y0, y1, . . . ∈ ω, such that K0, K1, . . . have levels and L has no level. Let S = {Ki | i ∈
ω}. We define two operations, each of which takes G to a new co-infinite computable

structure extending G.

• The operation S·L consists of performing the following steps, and otherwise leaving

G unchanged. Create a new copy of [x] using numbers not in the domain of G.

For each i ∈ ω, add an edge from the top of this new copy of [x] to the top of Ki.

• The operation L·S consists of performing the following steps, and otherwise leaving

G unchanged. For each i ∈ ω, create a new copy of [yi] using numbers not in the
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Figure 3.2: The basic diagonalization strategy

18



Figure 3.2 (Continued)
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domain of G. For each i ∈ ω, add an edge from the top of L to the top of the new

copy of [yi] and add an edge from the level(Ki)-master node to the top of the new

copy of [yi].

3.3 Definition. Let G be a computable leveled graph whose domain is co-infinite.

Let L and K0, K1, . . . , Kn be components of G isomorphic to [x] and [y0], [y1], . . . , [yn],

respectively, where x, y0, y1, . . . , yn ∈ ω, such that K0, K1, . . . , Kn have levels. (It does

not matter for this definition whether L has a level, although this will always be the

case when we apply it.)

The operation L�(K0, K1, . . . , Kn), taking G to a new computable structure extend-

ing G, consists of performing the following steps, and otherwise leaving G unchanged.

For each i 6 n, create a new copy of [yi] using numbers not in the domain of G. For each

i 6 n, add an edge from the top of L to the top of the new copy of [yi], an edge from

the top of the new copy of [yi] to the top of L, and an edge from the level(Ki)-master

node to the top of the new copy of [yi]. For each i, j 6 n, i 6= j, add an edge from the

top of the new copy of [yi] to the top of the new copy of [yj].

As an example of the operation in Definition 3.3, suppose that K0, K1, and K2

are copies of [2], [3], and [4], respectively. Let i, j, k be such that {i, j, k} = {0, 1, 2}.
The operation Ki � (Kj, Kk) consists of extending Ki to a copy of the graph shown in

Figure 3.3, adding an edge from the level(Kj)-master node to the new copy of Kj, and

adding an edge from the level(Kk)-master node to the new copy of Kk.

•�� ��top // //

�� ��@@@@@@@@@@@

�������������������� • // //• // //• coding location// //•hhhh

•____top // //

____@@@@@@@@@@@

wwwwooooooooooooooooo • // //• // //• // //• coding location// //•jjjj

•?? ??
top

// //

GG GG����������������

77 77ooooooooooooooooo • // //• // //• // //• // //• coding location// //•kkkk

Figure 3.3: The result of any of [2]� ([3], [4]), [3]� ([2], [4]), or [4]� ([2], [3])

In Figure 3.2, the result of either of the operations L · S or S ·L is represented by L

with a line to each element of S, while the result of the operation L� (K0, K1, . . . , Kn)

is represented simply by L� (K0, K1, . . . , Kn).
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As we have just seen, we will be performing infinite operations in our construction.

Thus, at a stage s + 1, we might add infinitely many new nodes and edges to As to

obtain As+1. We will do this in such a way that the only edges in A =
⋃
t∈ωAt between

nodes of As+1 are those already present in As+1.

As in Section 2, we will use special components to satisfy (3.3). The idea is similar

to what we outlined above. For each finite binary string σ, there will be a strategy for

satisfying (3.3) for G|σ|. As before, the string σ will represent a guess as to which Gm,

with m < |σ|, (σ � m)-recover infinitely often, with σ(m) = 0 representing a guess that

Gm (σ � m)-recovers infinitely often and σ(m) = 1 representing a guess that it does not.

The concept of σ-recovery will be similar to what was discussed above, although we will

of course eventually give a formal definition in this case. We will not allow σ-recovery

unless there is τ -recovery for all τ such that τa0 ⊆ σ.

For each σ ∈ 2<ω, G|σ| will have a σ-special component, which will change each time

σ is initialized. At each stage s in the construction, we will have a guess rσ,s as to which

level of A behaves like level 0 of G|σ|, in the same sense that, in Section 2, rs was a guess

as to which copy of the structure constructed in that section behaved like G.

Suppose that copies of the σ-special component of G|σ| participate in an operation at

a stage s+1 (we say that σ is active at stage s+1) and t+1 is the next σ-recovery stage

after stage s + 1. If the component of At that is isomorphic to the special component

of G|σ|[t] extends the component of As that is isomorphic to the special component of

G|σ|[s] then rσ,t+1 = rσ,s+1; otherwise, rσ,t+1 6= rσ,s+1.

By performing operations involving the images in A of the σ-special component of

G|σ| (one image for each level of A), we will ensure that, for σ on the true path of the

construction, if G|σ| ∼= A then the σ-special component of G|σ| is infinite. We will also

ensure that either for some i ∈ Z there is a level-i component that, from some point

in the construction on, always goes in the same direction as the special component of

G|σ|, or there is no component in A isomorphic to the special component of G|σ|. As we

will see, this will mean that if G|σ| ∼= A then, for each j ∈ Z, from some stage sj in the

construction on, the jth level of G|σ| will go in the same direction as (j + i)th level of A
at all stages at which σ is active.

The reason that sj will depend on j is that the operations in this construction will

involve infinitely many components at a time. Thus, we cannot make it a requirement

for σ-recovery that G|σ| provide all components that will be used in the next operation

to be performed at a stage at which σ is active. Instead, we will only require that G|σ|
provide the necessary components for a finite number of levels; each time σ recovers,
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the number of levels that must be provided for the next recovery will increase.

To illustrate the recovery process, consider Figure 3.4, which presents an operation

that might be performed at some stage s + 1 of our construction, ignoring for now all

components indexed by τ , whose role will be explained later.

Our construction will be such that As will have the following properties. For each

i, j ∈ Z, Ais ∼= Ajs. For each i ∈ Z, no component K of Ais is embeddable in another

component L ofAs unless, for some j ∈ Z, L is the (unique) component ofAjs isomorphic

to K. No singleton component of A∗s is embeddable in another component of As.
In Figure 3.4, we are assuming that each of Z0

σ, B0
σ, C0

σ, Y 0
σ,0, Y

0
σ,1, Y

0
σ,2, D

0, E0, F 0
0 ,

F 0
1 , and F 0

2 are singleton components of A0
s, X is a singleton component of As that

has no level, and S0
σ is the copy of the σ-special component of G|σ|[s] in A0

s. For each

i ∈ Z, Zi
σ, Bi

σ, Siσ, Ci
σ, Y i

σ,0, Y
i
σ,1, Y

i
σ,2, D

i, Ei, F i
0, F i

1, and F i
2 are the components of Ais

isomorphic to Z0
σ, B0

σ, S0
σ, C0

σ, Y 0
σ,0, Y

0
σ,1, Y

0
σ,2, D

0, E0, F 0
0 , F 0

1 , and F 0
2 , respectively.

Suppose that s + 1 is a σ-recovery stage such that rσ,s+1 = 0 and we perform the

operation pictured in Figure 3.4 on As to obtain As+1, and then wait for G|σ| to σ-

recover at some stage t + 1 > s + 1. Notice that this operation preserves the relevant

automorphisms of A. That is, if (As, a0) ∼= (As, ai) then (As+1, a0) ∼= (As+1, ai).

The definition of σ-recovery will be such that G|σ|[s] contains a component X̂ iso-

morphic to X and, for some k ∈ ω and all i ∈ Z with |i| 6 k, G|σ|[s] contains level-i

components Ẑi, B̂i, Ŝi, Ĉi, Ŷ i
0 , Ŷ i

1 , Ŷ i
2 , D̂i, Êi, F̂ i

0, F̂ i
1, and F̂ i

2 isomorphic to Zi
σ, Bi

σ,

Siσ, C i
σ, Y i

σ,0, Y
i
σ,1, Y

i
σ,2, D

i, Ei, F i
0, F i

1, and F i
2, respectively.

Let At be the union of (A∗t )k and Ait for each i ∈ Z such that |i| 6 k. Let G|σ|[t] be

the union of (G∗|σ|[t])k and Gi|σ|[t] for each i ∈ Z such that |i| 6 k.

For i ∈ Z, |i| 6 k, let X̃, Z̃i, B̃i, S̃i, C̃i, Ỹ i
0 , Ỹ i

1 , Ỹ i
2 , D̃i, Ẽi, F̃ i

0, F̃ i
1, and F̃ i

2 be the

intersection of the components of G|σ|[t] that extend X̂, Ẑi, B̂i, Ŝi, Ĉi, Ŷ i
0 , Ŷ i

1 , Ŷ i
2 , D̂i,

Êi, F̂ i
0, F̂ i

1, and F̂ i
2, respectively, with G|σ|[t].

The fact that G|σ| σ-recovers at stage t+ 1 will mean that X̃, Z̃i, B̃i, S̃i, C̃i, Ỹ i
0 , Ỹ i

1 ,

Ỹ i
2 , D̃i, Ẽi, F̃ i

0, F̃ i
1, and F̃ i

2 for |i| 6 k must all be isomorphic to components of At.
Thus, since σ is not active in the interval (s + 1, t + 1), there are two possibilities.

Either the σ-special component S̃0 of G|σ|[t] is isomorphic to S0
σ ·B0

σ or it is isomorphic

to S0
σ · C0

σ.

In the first case, rσ,t+1 6= 0, and the copy of the σ-special component of G|σ|[t] in

At extends a singleton component of As. In fact, every time we have an action at

stage u + 1 involving copies of the σ-special component of G|σ|[u] and, for the next σ-

recovery stage v + 1, we have rσ,v+1 6= rσ,u+1, then the copy of the σ-special component
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1
2 )

similarly for all levels ≡ 0 mod 4

E1
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0

��

E1 ·D1 F 1
0 � (E1, F 1

1 , F
1
2 )

similarly for all levels ≡ 1 mod 4

E2

��

F 2
1

��

E2 ·D2 F 2
1 � (E2, F 2

0 , F
2
2 )

similarly for all levels ≡ 2 mod 4

E3

��

F 3
2

��

E3 ·D3 F 3
2 � (E3, F 3

0 , F
3
1 )

similarly for all levels ≡ 3 mod 4

Figure 3.4: A 3, (0, 1)-operation
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Figure 3.4 (Continued)
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similarly for all levels ≡ 0 mod 4
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σ S1
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σ Y 1
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similarly for all levels ≡ 1 mod 4
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S2
σ

��

C2
σ

��

Y 2
σ,1

��
B2
σ · Z2

σ S2
σ ·B2

σ C2
σ · S2

σ Y 2
σ,1 � (C2

σ, Y
2
σ,0, Y

2
σ,2)

similarly for all levels ≡ 2 mod 4

B3
σ

��

S3
σ

��

C3
σ

��

Y 3
σ,2

��
B3
σ · Z3
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Figure 3.4 (Continued)
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Figure 3.4 (Continued)

X

��...
...

F 7
2

Y 7
τ,1 Y 7

σ,2

F 6
1

Y 6
τ,0 Y 6

σ,1

F 5
0

Z5
τ Y 5

σ,0

D4

Y 4
τ,2 Z4

σ

X

�������������������������������������������

����������������������������������

zzzzzzzzzzzzzzzzzzzzzzzzzzz

llllllllllllllllllllll

QQQQQQQQQQQQQQQQQQQQQQ

DDDDDDDDDDDDDDDDDDDDDDDDDDD

88888888888888888888888888888888888

2222222222222222222222222222222222222222222

�����������������������������������������������

																																							

������������������������������

sssssssssssssssssssssss

fffffffffffffffffff

XXXXXXXXXXXXXXXXXX

KKKKKKKKKKKKKKKKKKKKKKK

==============================

555555555555555555555555555555555555555

((((((((((((((((((((((((((((((((((((((((((((

**********************************

////////////////////////

:::::::::::::::
RRRRRRRRR

lllllllll

����������������

�������������������������

����������������������������������

��������������������������������������������
F 3

2

Y 3
τ,1 Y 3

σ,2

F 2
1

Y 2
τ,0 Y 2

σ,1

F 1
0

Z1
τ Y 1

σ,0

D0

Y 0
τ,2 Z0

σ

...

...

26



Figure 3.4 (Continued)
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Figure 3.4 (Continued)
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Figure 3.4 (Continued)
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of G|σ|[v] in Av will extend a singleton component of Au. We will make sure that if rσ,u

has no limit then, for each i ∈ Z, there are infinitely many stages u such that rσ,u = i.

This will guarantee that if σ is on the true path of the construction, G|σ| ∼= A, and rσ,u

has no limit then there is no component of A isomorphic to the σ-special component of

G|σ|[t].
In the second case, we can check that, for each i ∈ Z such that |i| 6 k, level i of G|σ|

must have gone in the same direction as level i of A with respect to those components

involved in the operation under consideration.

That is, let X̌, Ži, B̌i, Ši, Č i, Y̌ i
0 , Y̌ i

1 , Y̌ i
2 , Ďi, Ěi, F̌ i

0, F̌ i
1, and F̌ i

2 be the intersection

of the components of At that extend X, Zi
σ, Bi

σ, Siσ, Ci
σ, Y i

σ,0, Y
i
σ,1, Y

i
σ,2, D

i, Ei, F i
0, F i

1,

and F i
2, respectively, with At. All the components of At that contain copies of C0

σ are

isomorphic to either Š0 or Č0. Since S̃0 and C̃0 have the same level, it cannot be the

case that S̃0 ∼= C̃0. Thus, since we are assuming that S̃0 ∼= Š0, it follows that C̃0 ∼= Č0.

Continuing to argue in this way, we see that Ỹ 0
l
∼= Y̌ 0

l for each l < 3, which implies

that X̃ ∼= X̌, which implies that Z̃0 ∼= Ž0, which implies that B̃0 ∼= B̌0.

Now, using the fact that X̃ ∼= X̌, we can check that, for i ≡ 0 mod 4 such that

|i| 6 k, we have Z̃i ∼= Ži, which implies that B̃i ∼= B̌i, which implies that S̃i ∼= Ši,

which implies that C̃i ∼= Č i, which implies that Ỹ i
l
∼= Y̌ i

l for each l < 3.

If i ≡ l + 1 mod 4 with l < 3 and |i| 6 k then, again using the fact that X̃ ∼= X̌,

we can check that Ỹ i
l
∼= Y̌ i

l , which implies that Ỹ i
m
∼= Y̌ i

m for each m < 3, and also that

C̃i ∼= Či. This in turn implies that S̃i ∼= Ši, which implies that B̃i ∼= B̌i, which implies

that Z̃i ∼= Ži.

Similar arguments show that, for all i ∈ Z such that |i| 6 k, we have D̃i ∼= Ďi,

Ẽi ∼= Ěi, and F̃ i
l
∼= F̌ i

l for each l < 3.

Thus we see that, for each i ∈ Z such that |i| 6 k, level i of G|σ| goes in the same

direction as level i of A with respect to those components involved in the operation

under consideration. (Since k increases with each σ-recovery, the fact that the above

argument only works for the level-i components such that |i| 6 k will not be a problem.)

In the previous argument, the fact that rσ,s+1 = 0 was crucial. Indeed, suppose that

rσ,s+1 = 1, we perform the operation described above at stage s+ 1, σ then recovers at

stage t+1, and rσ,t+1 = 1. We could not then argue as above, because from the fact that

S̃1 ∼= Š1 it does not follow that X̃ ∼= X̌. Thus, to argue that, for each i ∈ Z, there is a

stage after which level i of G|σ| always goes in the same direction as level i+ lims rσ,s of

A at stages at which σ is active, we need to make sure that, whenever we involve copies

of the σ-special component of G|σ| in an operation at stage s+1, the row of level-(rσ,s+1)
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components of A that contains a copy of the σ-special component of G|σ| goes to the

left.

This is illustrated in Figure 3.4. Here we are assuming that the operation pictured

is happening at a stage s + 1 such that rσ,s+1 = 0 and rτ,s+1 = 1 (that is why we call

this a 3, (0, 1)-operation). Now if σ recovers at a stage t + 1 > s + 1 and rσ,t+1 = 0

then we can argue as above that if |i| is sufficiently small then level i of G|σ| goes in the

same direction as level i of A as far as the components involved in this operation are

concerned. But also, if τ recovers at a stage t + 1 > s + 1 and rτ,t+1 = 1 then we can

argue in much the same way that if |i| is sufficiently small then level i of G|τ | goes in the

same direction as level i + 1 of A as far as the components involved in this operation

are concerned.

In general, whenever we perform an operation at a stage s + 1 at which the strings

σ0, . . . , σk−1 are active, that operation will be an n, (rσ0,s+1, . . . , rσk−1,s+1)-operation for

some n > 0, as defined below.

3.4 Definition. Let G be a computable leveled graph whose domain is co-infinite.

Let n > 0, k > 0, and d0, . . . , dk−1 ∈ Z. Suppose that, for each i ∈ Z, j < k, and

m < n, we have defined components Y i
j,m, X, Zi

j, B
i
j, S

i
j, C

i
j, D

i, Ei, and F i
m, of which

all but Sij are singleton components, all but X have levels, and X has no level.

The n, (d0, . . . , dk−1)-operation

On,(d0,...,dk−1)

({
Y i
j,m

}
, X,

{
Zi
j

}
,
{
Bi
j

}
,
{
Sij
}
,
{
Ci
j

}
,
{
Di
}
,
{
Ei
}
,
{
F i
m

})
consists of applying the following sequences of operations to G.

• X · S0,S1 ·X,S2 ·X, . . . ,Sn ·X, where

Sm =
{
Z
dj+m+p(n+1)
j | j < k, p ∈ Z

}
∪
{
Dm+p(n+1) | p ∈ Z

}
∪{

Y
dj+m+q+1+p(n+1)
j,q | j < k, p ∈ Z, q < n

}
∪{

Fm+q+1+p(n+1)
q | p ∈ Z, q < n

}
.

• For each i ≡ 0 mod n+ 1 in Z:

Di · Ei, Ei �
(
F i

0, . . . , F
i
n−1

)
.

• For each j < k and i ≡ dj mod n+ 1 in Z:

Zi
j ·Bi

j, B
i
j · Sij, Sij · Ci

j, C
i
j �

(
Y i
j,0, . . . , Y

i
j,n−1

)
.
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• For each i ∈ Z such that i ≡ l + 1 mod n+ 1 with l < n:

Ei ·Di, F i
l �

(
Ei, F i

0, . . . , F
i
l−1, F

i
l+1, . . . , F

i
n−1

)
.

• For each j < k and i ∈ Z such that i ≡ l + dj + 1 mod n+ 1 with l < n:

Bi
j · Zi

j, S
i
j ·Bi

j, C
i
j · Sij, Y i

j,l �
(
Ci
j, Y

i
j,0, . . . , Y

i
j,l−1, Y

i
j,l+1, . . . , Y

i
j,n−1

)
.

Note that this definition allows for the case k = 0, in which the only components

involved in the operation are X and the Di, Ei, and F i
m.

We now discuss the version of the catch-up procedure that will be used in our con-

struction. For each stage s, we define a subgraph Tσ,s of the σ-special component of

G|σ|. Whenever rσ,s+1 6= rσ,s, we define Tσ,s+1 to be the entire σ-special component of

G|σ|[s]. Otherwise, we define Tσ,s+1 = Tσ,s. Whenever copies of the σ-special component

of G|σ| are involved in an operation and σ later recovers at a stage t + 1, we perform a

Tσ,t+1-catch-up operation on As, as defined below. (Copies of [10m+ 9] will not be used

for any other purpose in the construction.)

3.5 Definition. Let G be a computable leveled graph with co-infinite domain that

contains copies of [10m+ 9] for only finitely many m ∈ ω.

Let T be a subgraph of G. Suppose that there are finitely many level-0 components

L0,0, . . . , L0,n of G that contain a copy of T and that each L0,m, m 6 n, is a copy of [Pm]

for some finite Pm ⊂ ω. Let P =
⋃
m6n Pm.

For i ∈ Z, let Li,0, . . . , Li,n be the components of Gi isomorphic to L0,0, . . . , L0,n,

respectively.

Let l0, . . . , ln be the n + 1 least numbers of the form 10m + 9, m ∈ ω, such that G
does not contain copies of any of [l0], . . . , [ln].

The T -catch-up operation taking G to a new computable structure extending G
consists of extending each Li,m, i ∈ Z, m 6 n, to a copy of [P ∪ {lm}], using numbers

not in the domain of G.

Performing a Tσ,t+1-catch-up operation on As will count as σ being active, which

means that we must then wait for σ-recovery before allowing σ to be active again.

If σ is on the true path of the construction and rσ,s comes to a limit then Tσ,s comes

to a limit T . It is not hard to see that, in this case, by performing catch-up operations as

described, we guarantee that every component of A that contains a copy of T is infinite,

32



and that all such components are isomorphic. This will be enough to ensure that (3.2) is

satisfied, while at the same time helping us to construct the computable isomorphisms

needed to satisfy (3.3), because it will mean that if G|σ| ∼= A then any embedding of a

copy of T in A into G|σ| can be extended to an isomorphism from A to G|σ|.
We will separate the stages at which we attempt to satisfy the R-requirements from

the stages at which we perform catch-up operations, reserving the even stages for the

former purpose and the odd ones for the latter. To guarantee that every σ on the true

path is active at infinitely many even stages and infinitely many odd stages, we will call

recovery at odd stages phase-1 recovery and recovery at even stages phase-2 recovery,

and will require that phase-1 σ-recovery stages and phase-2 σ-recovery stages alternate.

There will be multiple strategies for satisfying each requirement R〈e,i〉, one strategy

Rσ for each σ ∈ 2<ω such that |σ| = 〈e, i〉. Each of these strategies will work with a

different set of components, which will be subject to initialization. If σ is accessible at

some stage 2s + 2 in the construction and no requirements of stronger priority require

attention then Rσ will have a chance to act as described above. If it does then copies of

the τ -special components of G|τ |[2s + 1] will be involved in the operation performed at

stage 2s+ 2 if and only if τa0 ⊆ σ, that is, if and only if 2s+ 2 is a τ -recovery stage.

We now give a few more definitions and conventions which will be used below.

Fix a computable one-to-one function from 2<ω onto ω and let pσq denote the image

under this function of the string σ. Fix a computable function ξ from ω onto Z such

that, for each i ∈ Z, there are infinitely many n ∈ ω for which ξ(n) = i.

3.6 Definition. Let G be a directed graph. We denote by (G)σ the subgraph of G
consisting of those components C of G that satisfy both of the following conditions.

1. C is not isomorphic to [x] for any x ∈ ω.

2. C contains a copy of [10〈pσq, j〉 + l], j ∈ ω, l ∈ {2, 3, 4, 5, 6, 7}, or a copy of

[10〈pσq, j, k〉+ l], j, k ∈ ω, l ∈ {1, 8}.

Define (G)⊇σ =
⋃
τ⊇σ(G)τ .

In the particular case of G∗, we will wish to define (G∗)σ somewhat differently.

3.7 Definition. Let G be a leveled graph. We denote by (G∗)σ the subgraph of G
consisting of the non-singleton components of G∗ that contain a copy of [10〈pσq, j〉],
j ∈ ω. Let n, r ∈ ω. We denote by (G∗)n,rσ the subgraph of G consisting of the non-

singleton components of (G∗)n,r that contain a copy of [10〈pσq, j〉], j ∈ ω. If r = 0 then

we write simply (G∗)nσ.

33



Define (G∗)⊇σ =
⋃
τ⊇σ(G∗)τ and (G∗)n,r⊇σ =

⋃
τ⊇σ(G∗)n,rτ . If r = 0 then we write simply

(G∗)n⊇σ.

Let k be the number of times σ has been initialized before stage t. Suppose there is a

least stage s 6 t such that G|σ|[s] has a level-0 component K isomorphic to [10〈pσq, k〉+3].

We call the component of G|σ|[t] that extends K the σ-special component of G|σ|[t]. If

σ is initialized only finitely often, say k many times, and there is a least stage s such

that G|σ|[s] has a level-0 component K isomorphic to [10〈pσq, k〉 + 3] then we call the

component of G|σ| that extends K the σ-special component of G|σ|.

3.1 The Construction

We now proceed with the construction of A. We will start with a computable structure

A0 with co-infinite domain. To ensure that we can carry out the construction, we require

that, when we add elements to the domain of As at stage s+ 1 to get As+1, we do this

in such a way that As+1 remains co-infinite. To ensure that A is computable, we require

that the collection of sets (|As+1| − |As|)s∈ω be uniformly computable.

stage 0. Let A0 be a computable leveled graph with co-infinite domain consisting of the

following nodes and edges in addition to the ones required by Definition 3.1.

1. For each i ∈ Z, k ∈ ω, and 0 < l < 9, a copy of [10k + l] with an edge from the

i-master node to its top.

2. For each k ∈ ω, a copy of [10k].

For each σ ∈ 2<ω, let rσ,0 = 0 and Tσ,0 = ∅.

stage 2s + 1. For σ ∈ 2<ω, let recov(σ, 2s) be the number of σ-recovery stages before

stage 2s+ 1. Define the string σ[2s+ 1] ∈ 2[0,s] by recursion as follows, beginning with

n = 0. Let σ = σ[2s + 1] � n. Say that 2s + 1 is a phase-1 σ-recovery stage and that σ

is semi-recovered if all of the following conditions hold.

1. σ is not currently semi-recovered.

2. Every τ such that τa0 ⊆ σ has fully recovered (defined below) at least |σ| + 1

many times.

3. Gn[2s] has a σ-special component isomorphic to some component of A0
2s.
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4. For each i ∈ Z such that |i| 6 recov(σ, 2s), (Gin[2s])σ ∼= (A0
2s)σ.

5. For each i ∈ Z such that |i| 6 recov(σ, 2s), (Gin[2s])⊇σa 0
∼= (A0

2s)⊇σa 0.

6. (G∗n[2s])
recov(σ,2s)

⊇σa 0
∼= (A∗2s)

recov(σ,2s)

⊇σa 0
.

If 2s+ 1 is a σ-recovery stage then let σ[2s+ 1](n) = 0. Otherwise, let σ[2s+ 1](n) = 1.

For each σ such that 2s + 1 is a σ-recovery stage, proceed as follows. Let i = rσ,2s.

Let Sσ,2s be the component of Ai2s that is isomorphic to the σ-special component of

G|σ|[2s]. If 2s + 1 is either the first σ-recovery stage ever or the first σ-recovery stage

since the last time σ was initialized then let rσ,2s+1 = 0 and Tσ,2s+1 = Sσ,2s. Otherwise,

proceed as follows. Let 2t + 2 be the last σ-recovery stage before stage 2s + 1. If Sσ,2s

extends Sσ,2t+1 then let rσ,2s+1 = i and Tσ,2s+1 = Tσ,2s; otherwise, declare 2s + 1 to

be a σ-change stage, let n be the number of σ-change stages before stage 2s + 1, let

rσ,2s+1 = ξ(n), and let Tσ,2s+1 = Sσ,2s.

For each σ ∈ 2<ω such that 2s + 1 is not a σ-recovery stage, let rσ,2s+1 = rσ,2s and

Tσ,2s+1 = Tσ,2s.

Declare each σ to the right of σ[2s + 1] to have been initialized. This includes

declaring σ to be neither semi-recovered nor fully recovered.

Proceed as follows to obtain A2s+1 from A2s. For each σ ∈ 2<ω such that 2s + 1 is

a σ-recovery stage, perform the Tσ,2s+1-catch-up operation and say that σ is active at

stage 2s+ 1.

stage 2s+ 2. For σ ∈ 2<ω, let recov(σ, 2s+ 1) be the number of σ-recovery stages before

stage 2s + 2, let init(σ, 2s + 1) be the number of times σ has been initialized before

stage 2s+ 2, and let c(σ, 2s+ 1) = max(recov(σ, 2s+ 1), init(σ, 2s+ 1)).

Define the string σ[2s+ 2] ∈ 2[0,s] by recursion as follows, beginning with n = 0. Say

that 2s + 2 is a phase-2 σ-recovery stage and that σ is fully recovered (and hence not

semi-recovered) if all of the following conditions hold.

1. σ is currently semi-recovered.

2. The σ-special component of Gn[2s+ 1] is isomorphic to some component of A0
2s+1.

3. For each i ∈ Z such that |i| 6 recov(σ, 2s+ 1), (Gin[2s+ 1])σ ∼= (A0
2s+1)σ.

4. For each i ∈ Z such that |i| 6 recov(σ, 2s+ 1), (Gin[2s+ 1])⊇σa 0
∼= (A0

2s+1)⊇σa 0.

35



5. If τ ⊇ σa0 has not yet fully recovered since the last time it was initialized and

|τ | 6 recov(σ, 2s+1) then, for each i ∈ Z such that |i| 6 recov(σ, 2s+1), Gin[2s+1]

has a component isomorphic to [10〈pτq, init(τ, 2s+ 1)〉+ 3].

6. Let τ be such that either τ = σ or both τ ⊇ σa0 and |τ | 6 recov(σ, 2s + 1). Let

i ∈ Z be such that |i| 6 recov(σ, 2s + 1). For each m < c(σ, 2s + 1), there is a

component of Gin[2s + 1] isomorphic to [10〈pτq, c(τ, 2s + 1),m〉 + 1]. For each l ∈
{2, 4, 5}, there is a component of Gin[2s+ 1] isomorphic to [10〈pτq, c(τ, 2s+ 1)〉+ l].

7. Let τ be such that R|τ | has not yet been satisfied (defined below), τ ⊇ σa0, and

|τ | 6 recov(σ, 2s + 1). Let i ∈ Z be such that |i| 6 recov(σ, 2s + 1). There is a

component of Gn[s] isomorphic to [10〈pτq, init(τ, 2s+1)〉]. For each l ∈ {6, 7}, there

is a component of Gin[s] isomorphic to [10〈pτq, init(τ, 2s + 1)〉 + l]. For each m <

π1(pτq), there is a component of Gin[s] isomorphic to [10〈pτq, init(τ, 2s+1),m〉+8].

If 2s+ 2 is a σ-recovery stage then let σ[2s+ 2](n) = 0. Otherwise, let σ[2s+ 2](n) = 1.

For each σ such that 2s+ 2 is a σ-recovery stage, proceed as follows. Let i = rσ,2s+1.

Let Sσ,2s+1 be the component of Ai2s+1 that is isomorphic to the σ-special component of

G|σ|[2s+1]. Let 2t+1 be the last σ-recovery stage before stage 2s+2. If Sσ,2s+1 extends

Sσ,2t then let rσ,2s+2 = i and Tσ,2s+2 = Tσ,2s+1; otherwise, declare 2s+2 to be a σ-change

stage, let n be the number of σ-change stages before stage 2s+ 2, let rσ,2s+2 = ξ(n), and

let Tσ,2s+2 = Sσ,2s+1.

For each σ ∈ 2<ω such that 2s+ 2 is not a σ-recovery stage, let rσ,2s+2 = rσ,2s+1 and

Tσ,2s+2 = Tσ,2s+1.

Declare each σ to the right of σ[2s + 2] to have been initialized. This includes

declaring σ to be neither semi-recovered nor fully recovered.

Say that Rσ, σ ⊆ σ[2s + 2], requires attention if R|σ| has not yet been satisfied,

π1(|σ|) 6 c(τ, 2s+ 1) for all τ such that τa0 ⊆ σ, and, for the coding locations x and y

of the (unique) copies of [10〈pσq, init(σ, 2s+ 1)〉+ 7] in A0
2s+1 and Aπ1(|σ|)

2s+1 , respectively,

Φπ0(|σ|)(x)[s]↓= y.

Let e be the least number less than s such that Rσ[2s+2](e) requires attention. (If

no such e exists then end the stage.) If σa0 ⊆ σ[2s + 2] then say that σ is active at

stage 2s+ 2.

Let X2s+1 be the component of A2s+1 isomorphic to [10〈pσ[2s + 2](e)q, init(σ[2s +

2](e), 2s + 1)〉]. For each i ∈ Z and m < π1(e), let Di
2s+1, E

i
2s+1, and F i

m,2s+1 be

the components of Ai2s+1 isomorphic to [10〈pσ[2s+ 2](e)q, init(σ[2s+ 2](e), 2s+ 1)〉+ 6],
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[10〈pσ[2s+2](e)q, init(σ[2s+2](e), 2s+1)〉+7], and [10〈pσ[2s+2](e)q, init(σ[2s+2](e), 2s+

1),m〉+ 8], respectively.

Let σ0, . . . , σk−1 be all the strings that are active at stage 2s + 2. For each j < k,

i ∈ Z, and m < π1(e), let Y i
σj ,m,2s+1, Z

i
σj ,2s+1, B

i
σj ,2s+1, and Ci

σj ,2s+1 be the level-i

components of A2s+1 isomorphic to [10〈pσjq, c(σj, 2s + 1),m〉 + 1], [10〈pσjq, c(σj, 2s +

1)〉 + 2], [10〈pσjq, c(σj, 2s + 1)〉 + 4], and [10〈pσjq, c(σj, 2s + 1)〉 + 5], respectively. For

each j < k and i ∈ Z, let Siσj ,2s+1 be the level-i component of A2s+1 isomorphic to

Sσj ,2s+1.

For j < k, let dj = rσj ,2s+2. Perform

Oπ1(e),(d0,...,dk−1)

({
Y i
σj ,m,2s+1

}
, X2s+1,

{
Zi
σj ,2s+1

}
,
{
Bi
σj ,2s+1

}
,
{
Siσj ,2s+1

}
,{

Ci
σj ,2s+1

}
,
{
Di

2s+1

}
,
{
Ei

2s+1

}
,
{
F i
m,2s+1

})
on A2s+1 to get A2s+2. Declare Re to be satisfied.

This completes the construction. Let A =
⋃
s∈ωAs. Since the collection of sets

(|As+1| − |As|)s∈ω is uniformly computable, A is computable. We now wish to argue

that properties (3.1)–(3.3) are satisfied. Theorem 1.4 will then follow immediately.

3.2 Verification

Define the true path TP of the construction to be the leftmost path of 2ω such that

there are infinitely many stages s with σ[s] ∈ TP . For each i ∈ Z, let ai be the i-master

node of A.

We begin by showing that property (3.2) is satisfied.

3.8 Lemma. If σ ∈ TP then Rσ requires attention only finitely often.

Proof. Assume by induction that there is a stage s such that, for all τ ( σ, Rτ does

not require attention after stage s. Let 2t+ 2 > s be such that Rσ requires attention at

stage 2t+2. Then, by definition, σ ⊆ σ[2t+2], and hence R|σ| is satisfied at stage 2t+2,

which implies that Rσ will never again require attention.

3.9 Lemma. Let e = 〈j, i〉. If Re is ever satisfied then Φj is not an isomorphism from

(A, a0) to (A, ai).

Proof. Suppose that Re is satisfied at stage 2s + 2. Let σ = σ[2s + 2](e). Let K

and L be the components of A0
2s+1 and Ai2s+1, respectively, that are isomorphic to
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[10〈pσq, init(σ, 2s + 1)〉 + 7], and let x and y be the coding locations of K and L,

respectively. Since Rσ requires attention at stage 2s+ 2, Φj(x)↓= y.

Let K ′ and L′ be the components of A0 and Ai that extend K and L, respectively.

The operation performed at stage 2s + 2 guarantees that K ′ � L′, so no isomorphism

from (A, a0) to (A, ai) can take x to y.

3.10 Lemma. For every i, j ∈ Z such that i 6= j, (A, ai) is not computably isomorphic

to (A, aj).

Proof. Since, given k, l ∈ Z such that k 6= l, any automorphism of A taking ak to al

takes a0 to ai for some i 6= 0, it is enough to show that, for each j ∈ ω and i ∈ Z, i 6= 0,

Φj is not an isomorphism from (A, a0) to (A, ai).
Fix j ∈ ω and let e = 〈j, i〉. Let σ = TP(e), let s be a stage after which no Rτ ,

τ ( σ, requires attention and such that σ is not initialized after stage s, and let k be

the total number of times σ is initialized. If Re is ever satisfied then, by Lemma 3.9, we

are done. So suppose that Re is never satisfied.

This means that the components K and L of A0
0 and Ai0, respectively, isomorphic

to [10〈pσq, k〉 + 7] never participate in operations. Let x and y be the coding locations

of K and L, respectively. Since Re is never satisfied, Rσ never requires attention after

stage s. So it cannot be the case that Φj(x)↓= y. But K and L are the unique copies

of [10〈pσq, k〉+ 7] in A0 and Ai, respectively, so any isomorphism from (A, a0) to (A, ai)
must take x to y.

In showing that (3.1) and (3.3) are satisfied, we will need a few easily checked facts

about the construction. We say that a component of A participates in an operation

at stage s + 1 if it extends a component of As that participates in an operation at

stage s+ 1.

Let G and H be leveled graphs, let K and L be components of G and H, respectively,

and let i ∈ Z. We say that K is i-isomorphic to L if there is an isomorphism f : K ∼= L

such that, for all x ∈ K and j ∈ Z, if there is an edge from the j-master node of G to x

then there is an edge from the (j + i)-master node of H to f(x).

3.11 Lemma. Let K and L be distinct components of As. If K is not a copy of [10k+ l]

for any k ∈ ω and l ∈ {1, 2, 6, 8} then K and L are not extended by the same component

of A. If K and L are extended by the same component M of A then M is a component

of A∗.

38



3.12 Lemma. Every component of A has a level unless it contains a copy of [10k] for

some k ∈ ω.

3.13 Lemma. For each s ∈ ω and i, j ∈ Z, (As, ai) ∼= (As, aj) and no component K

of As is embeddable in another component L of As unless K is k-isomorphic to L for

some k ∈ Z, k 6= 0. Furthermore, if a component of Ais participates in an operation at

stage s+ 1 then so does the (unique) isomorphic component of Ajs.

3.14 Lemma. A component of A that does not contain a copy of [10k] for any k ∈ ω
is infinite if and only if it participates in operations infinitely often.

3.15 Lemma. Let k, j ∈ ω and σ ∈ 2<ω. Any component of A containing a copy of

[10k], [10〈pσq, j, k〉 + l], l ∈ {1, 8}, or [10〈pσq, j〉 + l], l ∈ {2, 6, 7}, can participate in

an operation at most once. Any component of Ai containing a copy of [10〈pσq, j〉 + l],

l ∈ {3, 4, 5}, can participate in operations only at stages at which σ is active.

Note that, since A0 contains only one copy of each [10k], k ∈ ω, Lemma 3.15 implies

that, for each k ∈ ω, there is at most one stage at which a copy of [10k] participates in

an operation.

3.16 Lemma. Let K be an infinite component of A that contains a copy of [10k] for

some K ∈ ω and let m ∈ ω. Then K ∩ (A∗)m is not embeddable in any component

L 6= K of A unless K and L are i-isomorphic for some i ∈ Z, i 6= 0.

3.17 Lemma. If σ is initialized at stage s + 1 then no components of (A)σ that par-

ticipate in operations at stages before stage s + 1 can participate in an operation after

stage s.

3.18 Lemma. Suppose that rσ,s = i 6= rσ,s+1. Of all the components of (Ai)σ that

participate in operations at stages before stage s + 1, the only one that can participate

in an operation after stage s is the one that extends Sσ,s.

3.19 Lemma. Let u be a stage after which σ is never initialized. Let s + 1 > u be a

σ-recovery stage that is not the first such stage after u. Let t+ 1 be the last σ-recovery

stage before stage s + 1. If rσ,s = i 6= rσ,s+1 then Sσ,s extends either Bi
σ,2u+1 or C i

σ,2u+1

for some 2u+ 1 ∈ [t, s).

3.20 Lemma. Let T be a subgraph of A. If components K and L of A, each containing

a copy of T , are involved in T -catch-up operations infinitely often then K and L are

infinite and K ∼= L.
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3.21 Lemma. Let σ ∈ TP and suppose that lims rσ,s exists. Then Tσ,s comes to a limit

T and every infinite component of (As)σ that does not contain a copy [10k] for any k ∈ ω
contains a copy of T .

We now turn to showing that property (3.1) is satisfied. This requires us to charac-

terize the infinite components of A.

3.22 Lemma. Let σ ∈ 2<ω. If σa0 is to the left of TP then no component of (A)σ is

infinite unless it contains a copy of [10k] for some k ∈ ω.

Proof. If σa0 is to the left of TP then σ is active only finitely often, so the lemma

follows from Lemmas 3.14 and 3.15.

3.23 Lemma. Let σ ∈ 2<ω. If σ is to the right of TP then no component of (A)σ is

infinite unless it contains a copy of [10k] for some k ∈ ω.

Proof. This follows immediately from Lemmas 3.14 and 3.17.

3.24 Lemma. Let σ ∈ 2<ω be such that σa0 ∈ TP. If rσ,s does not have a limit then

no component of (A)σ is infinite unless it contains a copy of [10k] for some k ∈ ω.

Proof. By Lemma 3.12, it is enough to show that, for each i ∈ Z, no component of (Ai)σ
is infinite.

Let i ∈ Z. If s is the (n + 1)st σ-change stage then rσ,s = ξ(n). Thus there are

infinitely many stages s such that rσ,s = i.

Suppose that rσ,s = i 6= rσ,s+1 and let t + 1 be the last σ-recovery stage before

stage s + 1. By Lemma 3.18, of all the components of (Ai)σ that have participated in

operations at stages before stage s+1, the only one that can participate in an operation

after stage s is the component L that extends Sσ,s. By Lemma 3.19, L extends either

Bi
σ,2u+1 or Ci

σ,2u+1 for some 2u+1 ∈ [t, s). But, for all 2u+1 ∈ [t, s), Bi
σ,2u+1 and C i

σ,2u+1

are singleton components, and hence did not participate in an operation at any stage

before stage t+ 1.

Thus, no component of (Ai)σ that participates in an operation before stage t+1 can

do so again after stage s. The lemma now follows from Lemma 3.14.

3.25 Lemma. Let k ∈ ω. There are finitely many components K0, . . . , Kn of A that

contain a copy of [10k], and these can be chosen so that Kj is i-isomorphic to Kk for

all j, k 6 n and i ∈ Z such that i ≡ k − j mod n+ 1.
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Proof. Let K be the copy of [10k] in A0. If K never participates in an operation then

the lemma is trivially true with n = 0 and K0 = K. Otherwise, there is a stage 2s + 2

such that K participates in an operation at stage 2s + 2 and, by Lemma 3.15, for any

t 6= 2s+ 2, no component of A that contains a copy of [10k] participates in an operation

at stage t. The lemma now follows easily from the definition of the operation performed

at stage 2s+ 2.

3.26 Lemma. Let σ be such that σa0 ∈ TP and lims rσ,s exists. There are infinitely

many infinite components of (A)σ that do not contain a copy of [10k] for any k ∈ ω.

Let K0, K1, . . . be all such components. Each Kj, j ∈ ω, has a level. For each i ∈ Z
there are infinitely many j ∈ ω such that level(Kj) = i. For all j, k ∈ ω, Kj

∼= Kk.

Proof. Let u be a stage after which σ is never initialized and such that rσ,t = lims rσ,s

for all t > u. Let 2s + 1 be the first phase-1 σ-recovery stage after stage u and let

T = Tσ,2s+1. Since the σ-special component of G|σ|[2s] contains a copy of T , for each

phase-2 σ-recovery stage 2t+ 2 after stage 2s+ 1, each level of A2t+2 has a component

that contains a copy of T and extends a singleton component of A2t+1. Thus there are

infinitely many components K0, K1, . . . that contain a copy of T . Furthermore, each

Kj, j ∈ ω, has a level, and for each i ∈ Z there are infinitely many j ∈ ω such that

level(Kj) = i.

For each phase-1 σ-recovery stage 2t+1 > 2s+1, we have Tσ,2t+1 = T , so K0, K1, . . .

are involved in T -catch-up operations infinitely often. Thus, by Lemma 3.20, K0, K1, . . .

are infinite and Kj
∼= Kk for all j, k ∈ ω.

We are left with showing that any component of (A)σ that does not contain a copy

of T or a copy of [10k] for any k ∈ ω is finite. By Lemma 3.14, it is enough to show that

any component of (A)σ that does not contain a copy of T participates in operations only

finitely often. But the only components of (A)σ that participate in an operation at an

odd stage after stage 2s+1 are ones that contain a copy of T , while for 2t+2 > 2s+1, the

only non-singleton components of (A2t+1)σ that participate in an operation at stage 2t+2

are the ones that are isomorphic to the special component of G|σ|[2t+ 1], and therefore

contain a copy of T .

3.27 Lemma. For every i ∈ Z, (A, ai) ∼= (A, a0).

Proof. By Lemma 3.13, it is enough to define a 1–1 map f from the set of infinite

components of A onto itself such that, for each infinite component K of A, f(K) is

i-isomorphic to K.

41



Let k ∈ ω be such that a copy of [10k] participates in an operation at some point in

the construction and let K0, . . . , Kn be as in Lemma 3.25. For j 6 n, let k 6 n be such

that k − j ≡ i mod n+ 1 and define f(Kj) = Kk.

Let σ be such that σa0 ∈ TP and lims rσ,s exists. For each j ∈ Z, let Kj
0 , K

j
1 , . . . be a

list of all infinite components of (Aj)σ that do not contain a copy of [10k] for any k ∈ ω.

By Lemma 3.26, each such list is infinite. For j ∈ Z and n ∈ ω, define f(Kj
n) = Kj+i

n .

By Lemmas 3.22, 3.23, and 3.24, f is defined on all infinite components of A. By

Lemmas 3.25 and 3.26, f is 1–1 and onto, and, for each infinite component K of A,

f(K) is i-isomorphic to K.

We are left with showing that property (3.3) is satisfied. We begin by showing that

if σ ∈ TP and G|σ| ∼= A then lims rσ,s is well-defined.

3.28 Lemma. If σ ∈ TP and G|σ| ∼= A then there are infinitely many σ-recovery stages,

and hence the σ-special component of G|σ| is infinite.

Proof. If σ ∈ TP and G|σ| ∼= A then G|σ| has a σ-special component. Assume for a

contradiction that there are only m many σ-recovery stages. Let s0 be the last σ-

recovery stage. (If there are no σ-recovery stages then let s0 be the first stage at which

G|σ| has a σ-special component.) Since σ is not active at any stage that is not a σ-

recovery stage, σ is not active at any stage t > s0. By the definition of TP , there is a

stage s > s0 by which every τ such that τa0 ⊆ σ has fully recovered at least |σ| + 1

many times and such that σ is not initialized at any stage greater than or equal to s.

There are two cases.

Case 1. σ is not semi-recovered at stage s. Then the first condition in the definition

of phase-1 σ-recovery stage is met at every stage greater than or equal to s.

By the choice of s, the second condition in the definition of phase-1 σ-recovery stage

is met at every stage greater than or equal to s.

Consider the components of A0 that contain a copy of the σ-special component of

G|σ|. By Lemma 3.15, each such component is finite. Thus, if the third condition in the

definition of phase-1 σ-recovery stage is not eventually satisfied after stage s then the

σ-special component of G|σ| is not isomorphic to any component of A0.

Now consider (A0)σ. Again by Lemma 3.15, (A0)σ is finite. So, since there are only

finitely many i ∈ Z such that |i| 6 recov(σ, s), if the fourth condition in the definition

of phase-1 σ-recovery stage is not eventually satisfied after stage s then (Gi|σ|)σ � (A0)σ

for some i ∈ Z.
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Since we are assuming that there are only finitely many σ-recovery stages, σa1 ∈
TP . Thus it follows from Lemmas 3.14 and 3.15 that (A0

s)⊇σa 0 is finite. So, since

there are only finitely many i ∈ Z such that |i| 6 recov(σ, s), if the fifth condition in

the definition of phase-1 σ-recovery stage is not eventually satisfied after stage s then

(Gi|σ|)⊇σa 0 � (A0)⊇σa 0 for some i ∈ Z.

Since we are assuming that σa0 is to the left of TP , (A∗s)
recov(σ,s)

⊇σa 0
is finite. So if the

last condition in the definition of phase-1 σ-recovery stage is not eventually satisfied

after stage s then (G∗|σ|)⊇σa 0 � (A∗)⊇σa 0.

Case 2. σ is semi-recovered at stage s. Then the first condition in the definition of

phase-2 σ-recovery stage is met at every stage greater than or equal to s.

By the same arguments as above we have the following facts. If the second condition

in the definition of phase-2 σ-recovery stage is not eventually satisfied after stage s then

the σ-special component of G|σ| is not isomorphic to any component of A0. If the third

condition in the definition of phase-2 σ-recovery stage is not eventually satisfied after

stage s then (Gi|σ|)σ � (A0)σ for some i ∈ Z. If the fourth condition in the definition

of phase-2 σ-recovery stage is not eventually satisfied after stage s then (Gi|σ|)⊇σa 0 �

(A0)⊇σa 0 for some i ∈ Z.

Since we are assuming that σa0 is to the left of TP , there is a stage t > s after which

no τ such that τ ⊇ σa0 is initialized. Any such τ that has not fully recovered since the

last time it was initialized never again recovers, and hence there is a component of A0

isomorphic to [10〈pτq, init(τ, t)〉+3]. Since there are only finitely many τ and i ∈ Z such

that |τ | , |i| 6 recov(σ, s), if the fifth condition in the definition of phase-2 σ-recovery

stage is not eventually satisfied after stage s then Gi|σ| � A0 for some i ∈ Z.

Now let τ be such that either τ = σ or both τ ⊇ σa0 and |τ | 6 recov(σ, s), and let

i ∈ Z be such that |i| 6 recov(σ, s). Clearly, c(τ, t) reaches a limit c(τ). It is easy to see

that, for any stage 2t+ 2 at which τ is active, c(τ, 2t+ 1) < c(τ, s) = c(τ). So, for each

l ∈ {2, 4, 5}, there is a unique component of A0 that contains a copy of [10〈pτq, c(τ)〉+ l],
and it is isomorphic to [10〈pτq, c(τ)〉+l]. Similarly, for each m < c(σ, s), there is a unique

component of A0 that contains a copy of [10〈pτq, c(τ),m〉 + 1], and it is isomorphic to

[10〈pτq, c(τ),m〉+ 1]. Thus, if the sixth condition in the definition of phase-2 σ-recovery

stage is not eventually satisfied after stage s then, for some i ∈ Z, there is a component

of A0 that is not isomorphic to any component of Gi|σ|.
Finally, let τ ⊇ σa0 and i ∈ Z be such that |τ | , |i| 6 recov(σ, s) and consider

R|τ |. If this requirement is ever satisfied then the last condition in the definition of
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phase-2 σ-recovery stage will be satisfied for these particular τ and i at all sufficiently

large stages. On the other hand, suppose that R|τ | is never satisfied. It is easy to

see that init(τ, t) reaches a limit init(τ), and there is a component of A isomorphic to

[10〈pτq, init(τ)〉]. Similarly, for each l ∈ {6, 7}, there is a component of A0 isomorphic to

[10〈pτq, init(τ)〉+ l], and, for each m < π1(pτq), there is a component of A0 isomorphic

to [10〈pτq, init(τ),m〉 + 8]. Thus, if the last condition in the definition of phase-2 σ-

recovery stage is not eventually satisfied after stage s then, for some i ∈ Z, there is a

component of A0 that is not isomorphic to any component of Gi|σ|.

In either case, G|σ| cannot be isomorphic to A, contrary to hypothesis. So there are

infinitely many σ-recovery stages.

Now let v be a stage after which σ is never initialized. Given any two stages 2u+2 >

2t+ 2 > v at which σ is active, the σ-special component of G|σ|[2u+ 1] properly extends

the σ-special component of G|σ|[2t+1]. Thus, to establish the second part of the lemma,

it is enough to show that σ is active infinitely often. But it is easy to find infinitely

many τ ⊃ σa0 such that Rτ eventually requires attention. Each time such an Rτ requires

attention, σ is active.

3.29 Lemma. If σ ∈ TP and G|σ| ∼= A then lims rσ,s is well-defined.

Proof. This follows immediately from Lemmas 3.24 and 3.28.

Now fix σ ∈ TP such that G|σ| ∼= A. Let n = |σ| and let g be the 0-master node

of Gn. By Lemma 3.29, r = lims rσ,s is well-defined. We wish to show that (Gn, g) is

computably isomorphic to (A, ar). Let b be the unique map from the backbone graph

B of A to the backbone graph B of Gn that takes ar to g. Note that b is computable.

We will define a computable isomorphism f from A to Gn extending b. Our method

will be to divide |A| into a finite collection of (not necessarily disjoint) c.e. sets and

define f independently on each of these sets. We will need to be somewhat careful here,

because A is not rigid (i.e., A has nontrivial automorphisms), but Lemma 3.32 below

justifies our approach.

Let ω− = {k ∈ ω | k 6≡ 9 mod 10}. Let N0 = {(k, i) | k ∈ ω−, k 6≡ 0 mod 10, i ∈ Z}
and N1 = {k ∈ ω | k ≡ 0 mod 10}. Let N = N0 ∪N1. For p = (k, i) ∈ N0, let π(p) = k;

for k ∈ N1, let π(k) = k.

3.30 Definition. Let p = (k, i) ∈ N0 and s ∈ ω. We denote by (p) and (p)s the

components of A and As, respectively, that extend the unique copy of [k] in Ai0.
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Let k ∈ N1 and s ∈ ω. We denote by (k) and (k)s the components of A and As,
respectively, that extend the unique copy of [k] in A0.

For H ⊆ ω−, let H̃ = {(k, i) | k ∈ H, k 6≡ 0 mod 10, i ∈ Z} ∪ {k ∈ H | k ≡
0 mod 10}. For S ⊆ N , let PS be the graph obtained by restricting the domain of A to

|B| ∪
⋃
p∈S |(p)|.

3.31 Lemma. Let S and S ′ be disjoint subsets of N and let f and f ′ be embeddings of

PS and PS′, respectively, into Gn. Then f and f ′ agree on PS ∩ PS′.

Proof. By Lemma 3.11, if p 6= q ∈ N are such that (p) = (q) then (p) is a component of

A∗. This clearly implies that f−1 ◦ (f ′ � PS ∩PS′) can be extended to an automorphism

of A∗. But it is also easy to check that A∗ is rigid. Thus f and f ′ must agree on

PS ∩ PS′ .

3.32 Lemma. Let S0, . . . , Sm be pairwise disjoint computable subsets of N such that⋃m
i=0 Si = N . Suppose that, for each i 6 m, there exists a computable embedding fi ⊃ b

from PSi into Gn such that
⋃m
i=0 rng(fi) = |Gn|. Suppose further that, for i, j 6 m such

that i 6= j, if K and L are components of PSi and PSj , respectively, and fi(K) = fj(L),

then K = L. Then there exists a computable isomorphism f ⊃ b from A to Gn.

Proof. Since S0, . . . , Sm are computable, PS0 , . . . , PSm are c.e.. Since
⋃m
i=0 Si = N ,⋃m

i=0 PSi = A. Define f as follows. Given x ∈ A, wait until x is enumerated into some

PSi , i 6 m, and then let f(x) = fi(x). It is easy to check that the conditions imposed on

S0, . . . , Sm and f0, . . . , fm, together with Lemma 3.31, imply that f is an isomorphism

from A to Gn.

We will partition ω− into the pairwise disjoint computable sets H0, . . . , H5 shown in

Table 1. This will induce a partition of N into H̃0, . . . , H̃5. We will further partition H̃3

into H̃0
3 = {p ∈ H̃3 | (p) is infinite and does not contain a copy of [10k] for any k ∈ ω}

and H̃1
3 = H̃3 − H̃0

3 .

The following two lemmas give us a useful tool for computing f .

3.33 Lemma. Let p ∈ N and suppose there is a stage s such that, for each t > s, (p)t

does not participate in an operation at stage t+ 1. Then (p) ∼= (p)s.

Proof. Clearly, if (p)t does not participate in an operation at stage t + 1 then (p)t+1
∼=

(p)t. So, by induction, (p)t ∼= (p)s+1 for all t > s. Since (p) =
⋃
t∈ω(p)t, the lemma

follows.
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Table 1: H0, . . . , H5

H0

{
10〈pτq, k, j〉+ 1, 10〈pτq, k〉+ l | τ to the left of σ or τa1 ⊆ σ;

j, k ∈ ω; l ∈ {2, 3, 4, 5}
}

H1

{
10〈pτq, k, j〉+ 8, 10〈pτq, k〉+ l | τ to the left of σ; j, k ∈ ω; l ∈ {0, 6, 7}

}
H2

{
10〈pτq, k, j〉+ d, 10〈pτq, k〉+ l | τ to the right of σa0; j, k ∈ ω;

d ∈ {1, 8}; l ∈ {0, 2, 3, 4, 5, 6, 7}
}

H3

{
10〈pτq, k, j〉+ 1, 10〈pτq, k〉+ l | τa0 ⊆ σ; j, k ∈ ω; l ∈ {2, 3, 4, 5}

}
H4

{
10〈pτq, k, j〉+ 8, 10〈pτq, k〉+ l | τ ⊆ σ; j, k ∈ ω; l ∈ {0, 6, 7}

}
H5

{
10〈pτq, k, j〉+1, 10〈pτq, k〉+ l | τ = σ or σa0 ⊆ τ ; j, k ∈ ω; l ∈ {2, 3, 4, 5}

}
∪{

10〈pτq, k, j〉+ 8, 10〈pτq, k〉+ l | σa0 ⊆ τ ; j, k ∈ ω; l ∈ {0, 6, 7}
}

3.34 Lemma. Let H ⊆ ω−, h : H → ω, and S ⊆ H̃ all be computable. Suppose that,

for each p ∈ S and t > h(π(p)), (p)t does not participate in an operation at stage t+ 1.

Then there is a unique embedding f ⊃ b of PS into Gn, and f is computable.

Proof. Let x ∈ PS and let p ∈ S be such that x ∈ (p). By Lemma 3.33, (p)h(π(p))
∼= (p),

so either (p) is finite or it contains a copy of [10k] for some k ∈ ω.

First suppose that (p) is finite. By Lemma 3.13, no finite component K of A is

embeddable in another component L of A unless K and L are i-isomorphic for some

i ∈ Z, i 6= 0, so there is a unique finite set T ⊂ Gn for which there is an isomorphism

gx : A � (|(p)| ∪ |B|) ∼= Gn � (|T | ∪ |B|) extending b, and this isomorphism is unique.

Now suppose that (p) contains a copy of [10k] for some k ∈ ω. If (p) does not

participate in an operation before stage h(π(p)) + 1 then (p) is finite, so the previous

case applies. Otherwise, let m be such that x ∈ (p)∩(A∗)m. By Lemma 3.16, (p)∩(A∗)m

is not embeddable in any component L 6= K of A unless (p) and L are i-isomorphic

for some i ∈ Z, i 6= 0, so there is a unique finite set T ⊂ Gn for which there is an

isomorphism gx : A � (|(p) ∩ (A∗)m| ∪ |B|) ∼= Gn � (|T | ∪ |B|) extending b, and this

isomorphism is unique.

In either case, define f(x) = gx(x). By the uniqueness of T and gx, f is the unique

embedding of PS into Gn extending b. Furthermore, it is easy to see that gx can be

computably determined given x ∈ PS, which implies that f is computable.

3.35 Lemma. Let H0 consist of all numbers of the form 10〈pτq, k, j〉+1 or 10〈pτq, k〉+l,
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with either τ to the left of σ or τa1 ⊆ σ; j, k ∈ ω; and l ∈ {2, 3, 4, 5}. Then there is a

unique embedding f0 ⊃ b of PH̃0
into Gn, and f0 is computable.

Proof. Let T be the set of all τ which are either to the left of σ or such that τa1 ⊆ σ.

Since σ ∈ TP , only finitely many elements of T ever recover, and the ones that do

recover, do so only finitely often. So there exists a stage s such that if τ ∈ T then τ

is not active after stage s. If we let h(m) = s for all m ∈ H0 then the hypotheses of

Lemma 3.34 are satisfied for S = H̃0.

3.36 Lemma. Let H1 consist of all numbers of the form 10〈pτq, k, j〉+8 or 10〈pτq, k〉+l,
with τ to the left of σ; j, k ∈ ω; and l ∈ {0, 6, 7}. Then there is a unique embedding

f1 ⊃ b of PH̃1
into Gn, and f1 is computable.

Proof. Since σ ∈ TP , there exists a stage s such that if τ is to the left of σ then τ is

not accessible after stage s. If we let h(m) = s for all m ∈ H1 then the hypotheses of

Lemma 3.34 are satisfied for S = H̃1.

3.37 Lemma. Let τ be to the right of σa0. Let m be of the form 10〈pτq, k, j〉 + d or

10〈pτq, k〉+ l, with j, k ∈ ω; d ∈ {1, 8}; and l ∈ {0, 2, 3, 4, 5, 6, 7}. Let s+ 1 be the stage

at which τ is initialized for the (k + 1)st time. Let i ∈ Z. If m ∈ N1 then let p = m;

otherwise, let p = (m, i). Then (p) does not participate in an operation after stage s.

Proof. If a singleton component of At of the form [10〈pτq, q〉+ l], with l ∈ {0, 3, 6, 7}, or

[10〈pτq, q, j〉 + 8] participates in an operation at a stage t + 1 > s then q = init(τ, t) >

k. If a singleton component of At of the form [10〈pτq, q〉 + l], with l ∈ {2, 4, 5}, or

[10〈pτq, q, j〉 + 1] participates in an operation at a stage t + 1 > s then q = c(τ, t) >

init(τ, t) > k. So if (p) does not participate in an operation before stage s + 1 then it

does not participate in an operation after stage s.

On the other hand, if (p) participates in an operation before stage s+1 then the fact

that it does not participate in an operation after stage s follows from Lemma 3.17.

3.38 Lemma. Let H2 consist of all numbers of the form 10〈pτq, k, j〉+d or 10〈pτq, k〉+l,
with τ to the right of σa0; j, k ∈ ω; d ∈ {1, 8}; and l ∈ {0, 2, 3, 4, 5, 6, 7}. Then there is

a unique embedding f2 ⊃ b of PH̃2
into Gn, and f2 is computable.

Proof. If m ∈ H2 is of the form 10〈pτq, k, j〉 + d or 10〈pτq, k〉 + l then define h(m) to

be the first stage by which τ has been initialized k + 1 many times (which exists, since

σa0 ∈ TP). Then, by Lemma 3.37, the hypotheses of Lemma 3.34 are satisfied for

S = H̃2.
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Let H3 be the set of all numbers of the form 10〈pτq, k, j〉 + 1 or 10〈pτq, k〉 + l, with

τa0 ⊆ σ; j, k ∈ ω; and l ∈ {2, 3, 4, 5}. Let H̃0
3 be the set of all p ∈ H̃3 such that (p) is

infinite and does not contain a copy of [10k] for any k ∈ ω. Let H̃1
3 = H̃3 − H̃0

3 .

3.39 Lemma. H̃0
3 is computable.

Proof. By Lemmas 3.15, 3.22, and 3.24, every element of H̃0
3 must be of the form

(10〈pτq, k〉 + l, i), where τa0 ⊆ σ; lims rτ,s exists; k, i ∈ ω; and l ∈ {3, 4, 5}. Let p ∈ N
be of this form. We will describe an effective procedure for deciding whether p ∈ H̃0

3 .

First suppose that l = 3. Since lims rτ,s exists, Tτ,s comes to a limit T by some

stage u. Since τ ∈ TP , init(τ, s) comes to a limit init(τ). If k 6= init(τ) then p /∈ H̃0
3 .

Otherwise, by Lemma 3.21, p ∈ H̃0
3 if and only if (p)u contains a copy of T .

Now suppose that l ∈ {4, 5}. Now let t > u be a stage by which τ has recovered

k + 1 many times, which must exist, since τa0 ∈ TP . Arguing as in the proof of

Lemma 3.37, we see that if (p) has not participated in an operation by stage t then it

will never participate in an operation, in which case p /∈ H̃0
3 . On the other hand, if (p)

has participated in an operation by stage t then, by Lemma 3.21, p ∈ H̃0
3 if and only if

(p)t contains a copy of T .

For τ ⊂ σ, let Sτ be the set of all p ∈ H̃0
3 such that (p) is a component of (A)τ . The

following lemma is easily checked.

3.40 Lemma. For each τ ⊂ σ, PSτ is c.e..

For τ ⊂ σ, let Mτ be the union of all infinite components of (Gn)τ that do not contain

a copy of [10k] for any k ∈ ω. Let M =
⋃
τ⊂σMτ .

3.41 Lemma. For each τ ⊂ σ, Mτ is c.e..

Proof. By Lemmas 3.15, 3.22, and 3.24, it is enough to show that Mτ is c.e. for each

τa0 ⊆ σ such that lims rτ,s exists.

Fix such a τ . Since lims rτ,s exists, Tτ,s comes to a limit T . By Lemma 3.21, the

components of Mτ are exactly those that contain a copy of T . Since T is finite, we can

effectively enumerate such components.

3.42 Lemma. There exists a computable isomorphism f 0
3 ⊃ b from PH̃0

3
to the graph

obtained by restricting the domain of Gn to |B| ∪ |M |.
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Proof. Let τ ⊂ σ. By Lemma 3.40, PSτ is c.e.. By Lemma 3.41, so is Mτ . Thus there

exists a computable 1–1 and onto map dτ from the tops of components of PSτ to the tops

of components of Mτ such that if x is the top of a level-i component of PSτ , i ∈ Z, then

dτ (x) is the top of a level-(i− r) component of Mτ . By Lemma 3.26, dτ can be extended

to a computable isomorphism f τ3 from PSτ to Mτ . Now define f 0
3 = b ∪

⋃
τ⊂σ f

τ
3 .

3.43 Lemma. There is a unique embedding f 1
3 ⊃ b of PH̃1

3
into Gn, and f 1

3 is computable.

Proof. First let p = (m, i) ∈ H̃1
3 , where m is of the form 10〈pτq, k〉+ 3. Note that in this

case (p) cannot contain a copy of [10k′] for any k′ ∈ ω. Let init(τ) = lims init(τ, s).

If k < init(τ) then let s be the least stage by which τ has been initialized k+1 many

times. Arguing as in the proof of Lemma 3.37, we see that (p) does not participate in

an operation after stage s. In this case, let h(m) = s.

If k > init(τ) then (p) never participates in an operation. In this case, let h(m) = 0.

If k = init(τ) then it must be the case that rτ,s has no limit, since otherwise (p)

would be infinite, which would imply that p ∈ H̃0
3 . Thus Tτ,s has no limit, which means

that we can find a stage s such that (p)s does not contain a copy of Tτ,s. It is not hard

to check that (p) does not participate in an operation after stage s. In this case, let

h(m) = s.

Now let p = (m, i) ∈ H̃1
3 , where m is of the form 10〈pτq, k, j〉+1 or 10〈pτq, k〉+l, with

l ∈ {2, 4, 5}. Let 2s+ 2 be the least phase-2 τ -recovery stage such that c(τ, 2s+ 1) > k,

(p) does not participate in an operation at stage 2s+ 2, and (p)2s+1 does not contain a

copy of Tτ,2s+1. Such a stage must exist, since otherwise (p) would be infinite but would

not contain a copy of [10k′] for any k′ ∈ ω, which would imply that p ∈ H̃0
3 . It is not

hard to check that (p) does not participate in an operation after stage s. In this case,

let h(m) = s.

Now the hypotheses of Lemma 3.34 are satisfied for S = H̃1
3 .

Let f3 = f 0
3 ∪ f 1

3 .

3.44 Lemma. Let H4 consist of all numbers of the form 10〈pτq, k, j〉+8 or 10〈pτq, k〉+l,
with τ ⊆ σ; j, k ∈ ω; and l ∈ {0, 6, 7}. Then there is a unique embedding f4 ⊃ b of PH̃4

into Gn, and f4 is computable.

Proof. Let m ∈ H4 be of the form 10〈pτq, k, j〉 + 8 or 10〈pτq, k〉 + l. Let i ∈ Z. If

m ∈ N1 then let p = m; otherwise, let p = (m, i). If R|τ | is never satisfied then (p) never

participates in an operation. In this case, let h(m) = 0. If R|τ | is satisfied at stage s
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then (p) never participates in an operation after stage s. In this case, let h(m) = s.

Since there are only finitely many τ ⊆ σ, h is computable, and hence the hypotheses of

Lemma 3.34 are satisfied for S = H̃4.

Let H ′5 consist of all numbers of the form 10〈pτq, k, j〉+1 or 10〈pτq, k〉+ l, with either

τ = σ or σa0 ⊆ τ ; j, k ∈ ω; and l ∈ {2, 3, 4, 5}. Let H ′′5 consist of all numbers of the

form 10〈pτq, k, j〉 + 8 or 10〈pτq, k〉 + l, with σa0 ⊆ τ ; j, k ∈ ω; and l ∈ {0, 6, 7}. Let

H5 = H ′5 ∪H ′′5 .

3.45 Lemma. Let τ be such that τ = σ or σa0 ⊆ τ . Let u be a stage after which σ

is never initialized and such that rσ,s = r for all s > u. Let 2s + 1 > u be a phase-1

τ -recovery stage and let 2t + 2 be the next phase-2 σ-recovery stage after stage 2s + 1.

Let i ∈ Z be such that |i− r| 6 recov(σ, 2s + 1). Let K0, . . . , Km be the components of

(Ai2s)τ that participate in an operation at stage 2s+1. Let K ′0, . . . , K
′
m be the components

of A2t+1 that extend K0, . . . , Km, respectively. Then the following hold.

1. There exist components K̂0, . . . , K̂m of Gi−rn [2s] such that K̂0
∼= K0, . . . , K̂m

∼= Km.

2. Let K̂ ′0, . . . , K̂
′
m be the components of Gn[2t + 1] that extend K̂0, . . . , K̂m, respec-

tively. Then K̂ ′0
∼= K ′0, . . . , K̂

′
m
∼= K ′m.

Proof. Since 2s+ 1 is a τ -recovery stage, it is also a σ-recovery stage, so the first part of

the lemma follows from the definition of phase-1 σ-recovery stage; we prove the second

part.

Let j 6 m. Since no component of (A)τ participates in an operation in the interval

(2s + 1, 2t + 2), the definition of the catch-up operation performed at stage 2s + 1

guarantees that K ′j is the unique component of Ai2t+1 that contains a copy of Kj. This

means that K̂ ′j is the unique component of Gi−r[2t+ 1] that contains a copy of K̂j. By

the definition of phase-2 σ-recovery stage, there must exist a component of Gi−r[2t+ 1]

isomorphic to K ′j, so it must be the case that K̂ ′j
∼= K ′j.

3.46 Lemma. Let τ be such that τ = σ or σa0 ⊆ τ . Let u be a stage after which σ

is never initialized and such that rσ,s = r for all s > u. Let 2s + 2 > u be a phase-2

τ -recovery stage and let 2t + 1 be the next phase-1 σ-recovery stage after stage 2s + 2.

Let A2t be the union of (A∗2t)recov(σ,2s+1),r (see page 14) and Ai2t for each i ∈ Z such that

|i− r| 6 recov(σ, 2s + 1). Let Gn[2t] be the union of (G∗n[2t])recov(σ,2s+1) and Gin[2t] for

each i ∈ Z such that |i| 6 recov(σ, 2s+ 1).
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Let i ∈ Z be such that |i− r| 6 recov(σ, 2s + 1). Let e be such that Re is satisfied

at stage 2s + 2 and let m = π1(e). Let Y0, . . . , Ym−1, X, Z, B, S, C, D, E, and

F0, . . . , Fm−1 be Y i
τ,0,2s+1, . . . , Y

i
τ,m,2s+1, X2s+1, Zi

τ,2s+1, Bi
τ,2s+1, Siτ,2s+1, Ci

τ,2s+1, Di
2s+1,

Ei
2s+1, and F i

0,2s+1, . . . , F
i
m,2s+1, respectively. Let Y ′0 , . . . , Y

′
m−1, X ′, Z ′, B′, S ′, C ′, D′, E ′,

and F ′0, . . . , F
′
m−1 be the intersection of the components of A2t that extend Y0, . . . , Ym−1,

X, Z, B, S, C, D, E, and F0, . . . , Fm−1, respectively, with A2t. Then the following

hold.

1. There exists a component X̂ of Gi−rn [2s+ 1] such that X̂ ∼= X. There exist compo-

nents Ŷ0, . . . , Ŷm−1, Ẑ, B̂, Ŝ, Ĉ, D̂, Ê, and F̂0, . . . , F̂m−1 of Gi−rn [2s+ 1] such that

Ŷ0
∼= Y0, . . . , Ŷm−1

∼= Ym−1, Ẑ ∼= Z, B̂ ∼= B, Ŝ ∼= S, Ĉ ∼= C, D̂ ∼= D, Ê ∼= E, and

F̂0
∼= F0, . . . , F̂m−1

∼= Fm−1.

2. Let Ŷ ′0 , . . . , Ŷ
′
m−1, X̂ ′, Ẑ ′, B̂′, Ŝ ′, Ĉ ′, D̂′, Ê ′, and F̂ ′0, . . . , F̂

′
m−1 be the intersection

of the components of Gn[2t] that extend Ŷ0, . . . , Ŷm−1, X̂, Ẑ, B̂, Ŝ, Ĉ, D̂, Ê,

and F̂0, . . . , F̂m−1, respectively, with Gn[2t]. Then Ŷ ′0
∼= Y ′0 , . . . , Ŷ

′
m−1

∼= Y ′m−1,

X̂ ′ ∼= X ′, Ẑ ′ ∼= Z ′, B̂′ ∼= B′, Ŝ ′ ∼= S ′, Ĉ ′ ∼= C ′, D̂′ ∼= D′, Ê ′ ∼= E ′, and

F̂ ′0
∼= F ′0, . . . , F̂

′
m−1
∼= F ′m−1.

Proof. Since 2s + 2 is a τ -recovery stage, if τ 6= σ then σ must have fully recovered at

least |τ |+ 1 many times by stage 2s+ 1, so the first part of the lemma follows from the

definition of phase-2 recovery stage; we prove the second part. There are several cases.

We begin with the τ = σ and i = r case. (We need to treat this case separately to

show that X̂ ′ ∼= X ′, which will be needed for the other cases.) Since i = rσ,2s+2, the

row of level-i components corresponding to σ in the operation performed at stage 2s+ 2

goes to the left. That is, Z ′ is a copy of Z · B; B′ is a copy of B · S; S ′ is a copy of

S ·C; C ′ is a copy of C � (Y0, . . . , Ym−1); each Yj, j < m, contains a copy of Yj ·X; and

X contains a copy of X · Z.

By definition, Ŝ and Ŝ ′ are the σ-special components of Gn[2s + 1] and Gn[2t], re-

spectively. Thus, since rσ,2t+1 = rσ,2t = r and 2t+ 1 is a σ-recovery stage, Ŝ ′ ∼= S ′.

All the components of A2t that contain a copy of C are isomorphic to either S ′ or

C ′. Since Ŝ ′ ∼= S ′, it must be the case that Ĉ ′ ∼= C ′.

Let j < m. All the components of A2t that contain a copy of Yj are isomorphic to

either C ′ or Y ′j . Since Ĉ ′ ∼= C ′, it must be the case that Ŷ ′j
∼= Y ′j .

The only components of A2t that contain a copy of X are Y ′0 , . . . , Y
′
m−1 and X ′. Since

Ŷ ′j
∼= Y ′j for each j < m, it must be the case that X̂ ′ ∼= X ′.
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The only components of A2t that contain a copy of Z are X ′ and components iso-

morphic to Z ′. Since X̂ ′ ∼= X ′, it must be the case that Ẑ ′ ∼= Z ′.

All the components of A2t that contain a copy of B are isomorphic to either Z ′ or

B′. Since Ẑ ′ ∼= Z ′, it must be the case that B̂′ ∼= B′.

We now deal with the i ≡ rτ,2s+2 mod m + 1 case. As in the first case, the row of

level-i components corresponding to τ in the operation performed at stage 2s + 2 goes

to the left.

The previous case shows that X̂ ′ ∼= X ′.

The only components of A2t that contain a copy of Z are X ′ and components iso-

morphic to Z ′. Since X̂ ′ ∼= X ′, it must be the case that Ẑ ′ ∼= Z ′.

All the components of A2t that contain a copy of B are isomorphic to either Z ′ or

B′. Since Ẑ ′ ∼= Z ′, it must be the case that B̂′ ∼= B′.

All the components of A2t that contain a copy of S are isomorphic to either B′ or

S ′. Since B̂′ ∼= B′, it must be the case that Ŝ ′ ∼= S ′.

All the components of A2t that contain a copy of C are isomorphic to either S ′ or

C ′. Since Ŝ ′ ∼= S ′, it must be the case that Ĉ ′ ∼= C ′.

Let j < m. All the components of A2t that contain a copy of Yj are isomorphic to

either C ′ or Y ′j . Since Ĉ ′ ∼= C ′, it must be the case that Ŷ ′j
∼= Y ′j .

We now deal with the i 6≡ rτ,2s+2 mod m + 1 case. Let l < m be such that i ≡
l+rτ,2s+2+1 mod m+1. In this case, the row of level-i components corresponding to σ in

the operation performed at stage 2s+2 goes to the right. That is, B′ is a copy of B ·Z; S ′

is a copy of S ·B; C ′ is a copy of C ·S; Y ′l is a copy of Y ′l �(C, Y0, . . . , Yl−1, Yl+1, . . . , Ym−1);

each Y ′j , with j < m and j 6= l, contains a copy of Yj ·X; X ′ contains a copy of X · Yl;
and Z ′ contains a copy of Z ·X.

As before, the first case shows that X̂ ′ ∼= X ′.

The only components of A2t that contain a copy of Yl are X ′ and components iso-

morphic to Y ′l . Since X̂ ′ ∼= X ′, it must be the case that Ŷ ′l
∼= Y ′l .

Let j < m, j 6= l. All the components of A2t that contain a copy of Yj are isomorphic

to either Y ′l or Y ′j . Since Ŷ ′l
∼= Y ′l , it must be the case that Ŷ ′j

∼= Y ′j .

All the components of A2t that contain a copy of C are isomorphic to either Y ′l or

C ′. Since Ŷ ′l
∼= Y ′l , it must be the case that Ĉ ′ ∼= C ′.

All the components of A2t that contain a copy of S are isomorphic to either C ′ or

S ′. Since Ĉ ′ ∼= C ′, it must be the case that Ŝ ′ ∼= S ′.
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All the components of A2t that contain a copy of B are isomorphic to either S ′ or

B′. Since Ŝ ′ ∼= S ′, it must be the case that B̂′ ∼= B′.

All the components of A2t that contain a copy of Z are isomorphic to either B′ or

Z ′. Since B̂′ ∼= B′, it must be the case that Ẑ ′ ∼= Z ′.

Finally, we deal with the case of D, E, and F0, . . . , Fm−1. First suppose that

i ≡ 0 mod m + 1. In this case, the row of components containing E in the opera-

tion performed at stage 2s + 2 goes to the left. That is, D′ is a copy of D · E; E ′ is a

copy of E � (F0, . . . , Fm−1); each F ′j , j < m, contains a copy of Fj ·X; and X ′ contains

a copy of X ·D.

As before, the first case shows that X̂ ′ ∼= X ′.

The only components of A2t that contain a copy of D are X ′ and components iso-

morphic to D′. Since X̂ ′ ∼= X ′, it must be the case that D̂′ ∼= D′.

All the components of A2t that contain a copy of E are isomorphic to either D′ or

E ′. Since D̂′ ∼= D′, it must be the case that Ê ′ ∼= E ′.

Let j < m. All the components of A2t that contain a copy of Fj are isomorphic to

either E ′ or F ′j . Since Ê ′ ∼= E ′, it must be the case that F̂ ′j
∼= F ′j .

Now suppose that i 6≡ 0 mod m + 1. Let l < m be such that i ≡ l + 1 mod

m + 1. In this case, the row of components containing E in the operation performed

at stage 2s + 2 goes to the right. That is, E ′ is a copy of E · D; F ′l is a copy of

F ′l � (E,F0, . . . , Fl−1, Fl+1, . . . , Ym−1); each F ′j , with j < m and j 6= l, contains a copy

of Fj ·X; X ′ contains a copy of X · Fl; and D′ contains a copy of D ·X.

As before, the first case shows that X̂ ′ ∼= X ′.

The only components of A2t that contain a copy of Fl are X ′ and components

isomorphic to F ′l . Since X̂ ′ ∼= X ′, it must be the case that F̂ ′l
∼= F ′l .

Let j < m, j 6= l. All the components of A2t that contain a copy of Fj are isomorphic

to either F ′l or F ′j . Since F̂ ′l
∼= F ′l , it must be the case that F̂ ′j

∼= F ′j .

All the components of A2t that contain a copy of E are isomorphic to either F ′l or

E ′. Since F̂ ′l
∼= F ′l , it must be the case that Ê ′ ∼= E ′.

All the components of A2t that contain a copy of D are isomorphic to either E ′ and

D′. Since Ê ′ ∼= E ′, it must be the case that D̂′ ∼= D′.

The following lemma can be easily checked.

3.47 Lemma. Let p ∈ H̃5 and suppose that (p)2s+1 participates in an operation at

stage 2s + 2. Then (p)2s+1 is one of Y i
τ,m,2s+1, X2s+1, Zi

τ,2s+1, Bi
τ,2s+1, Siτ,2s+1, Ci

τ,2s+1,
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Di
2s+1, Ei

2s+1, or F i
m,2s+1, where either τ = σ or σa0 ⊆ τ , m ∈ ω, and i ∈ Z. Further-

more, σ is active at stage 2s+ 2.

3.48 Lemma. Let u be a stage after which σ is never initialized and such that rσ,s = r

for all s > u. Let s + 1 > u be a σ-recovery stage and let t + 1 be the next σ-recovery

stage after stage s+ 1. Let p ∈ H̃5. Suppose there exists a component L of Gn[s] that is

(−r)-isomorphic to (p)s. Then the component L′ of Gn[t] that extends L is isomorphic

to (p)t.

Proof. If (p) does not participate in an operation in the interval (s, t] then (p)t ∼=
(p)s. Since L′ ⊇ L, (p)t is not properly embeddable in any component of At, and,

by convention, Gn[t] is embeddable in At, this means that L′ ∼= (p)t.

Otherwise, the lemma follows from Lemmas 3.45, 3.46, and 3.47.

3.49 Lemma. Let u be a stage after which σ is never initialized and such that rσ,s = r

for all s > u. Let x ∈ PH̃5
. There exists a σ-recovery stage s + 1 > u such that x is

contained in (p)s for some p ∈ H̃5 and there exists a (−r)-isomorphic component L of

Gn[s]. For any such s, if we let d be the unique isomorphism from (p)s to L and let L′

be the component of Gn that extends L then d can be extended to an isomorphism from

(p) to L′.

Proof. If x is contained in a finite component of A then the existence of s and L follows

from the fact that Gn ∼= A. Otherwise, there is a σ-recovery stage s + 1 > u such that

x is contained in (p)s, p ∈ H̃5, and (p)s is involved in an operation at stage s+ 1. Now

it follows from Lemmas 3.45 and 3.46 that there is a component L of Gn[s] isomorphic

to (p)s.

Let s + 1 = s0 + 1 < s1 + 1 < · · · be the σ-recovery stages greater than or equal to

s + 1. Let Li be the component of Gn[si] that extends L and let L′ be the component

of Gn that extends L. Using Lemma 3.48 and induction, we see that, for each i > 0,

there is a unique isomorphism gi : (p)si
∼= Li. Note that g0 = g. Clearly, if j > i then

gj extends gi. Thus the limit g′ of the gi is well-defined and is an isomorphism from (p)

to L′.

Let T be the graph obtained by restricting the domain of Gn to the union of |B|
with the domain of the set of all components of Gn that contain a copy of [m] for some

m ∈ H5.

3.50 Lemma. There exists a computable isomorphism f5 ⊃ b from PH̃5
to T .
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Proof. We begin by defining f5 � B ≡ b. Now let u be a stage after which σ is never

initialized and such that rσ,s = r for all s > u. Given x ∈ PH̃5
, find the least σ-recovery

stage s + 1 > u such that x is contained in a component (p)s, p ∈ H̃5, of As and there

exists a component L of Gn[s] that is (−r)-isomorphic to (p)s. Such a stage exists by

Lemma 3.49. Let dx be the unique isomorphism from (p)s to L and define f5(x) = dx(x).

We need to show that f5 is computable, that it is an embedding, and that its range

is all of T .

Since dx can be computably determined given x ∈ PH̃5
, f5 is computable.

By Lemma 3.49, all we need to do to show that f5 is an embedding is to show

that if x and y are both contained in a component (p), p ∈ H̃5, then f5(x) and f5(y)

are contained in the same component of Gn. But this follows from Lemma 3.48, which

implies, by induction, that if the least σ-recovery stage s+1 > u such that x is contained

in (p)s is greater than or equal to the least σ-recovery stage t + 1 > u such that y is

contained in (p)t then dx extends dy.

Finally, notice that, for any s ∈ ω, if K is a component of As that contains a copy

of [m] for some m ∈ H5 then K is (p)s for some p ∈ H̃5.

Let L be a component of T . If L is a singleton component then the fact that Gn ∼= A
implies that, for some σ-recovery stage s+ 1 > u, there is a component K of As that is

r-isomorphic to L. Since K is (p)s for some p ∈ H̃5, L is in the range of f5.

If L is not a singleton component then it is in (Gn)τ or (G∗n)τ for some τ such that

τ = σ or σa0 ⊆ τ . Let x ∈ L and let t > u be a stage such that x is contained in a

component of Gn[s] that contains a copy of [m] for some m ∈ H5. By the definition of

σ-recovery stage, there is some σ-recovery stage s+ 1 > t and components L′ and K of

Gn[s] and As, respectively, such that x ∈ L′ and K is r-isomorphic to L′. Since K is

(p)s for some p ∈ H̃5, x is in the range of f5. Thus L is in the range of f5.

Now H̃0, . . . , H̃5 are computable subsets of N such that
⋃5
i=0 H̃i = N . It is not hard

to check that, for i, j 6 5 such that i 6= j, if K and L are components of PH̃i and PH̃j ,

respectively, and fi(K) = fj(L), then K and L are components of A∗, from which it

follows that K = L. Furthermore, the uniqueness of f0, f1, f2, f
1
3 , and f4, together

with the surjectivity of f 0
3 and f5, imply that

⋃m
i=0 rng(fi) = |Gn|. So, combining

Lemmas 3.35, 3.36, 3.38, 3.42, 3.43, 3.44, and 3.50 with Lemma 3.32, we have the

following result.

3.51 Lemma. There exists a computable isomorphism from (A, ar) to (Gn, g).

Theorem 1.4 follows from Lemmas 3.10, 3.27, and 3.51.

55



References

[1] P. Cholak, S. S. Goncharov, B. Khoussainov, and R. A. Shore, Computably cate-

gorical structures and expansions by constants, J. Symbolic Logic 64 (1999) 13–37.

[2] Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (eds.), Handbook of

Recursive Mathematics, vol. 138–139 of Studies in Logic and the Foundations of

Mathematics (Elsevier Science, Amsterdam, 1998).

[3] S. S. Goncharov, Computable single-valued numerations, Algebra and Logic 19

(1980) 325–356.

[4] S. S. Goncharov, Problem of the number of non-self-equivalent constructivizations,

Algebra and Logic 19 (1980) 401–414.

[5] V. S. Harizanov, Pure computable model theory, in Ershov et al. [2] 3–114.

[6] D. R. Hirschfeldt, Degree spectra of intrinsically c.e. relations, J. Symbolic Logic

66 (2001) 441–469.

[7] D. R. Hirschfeldt, Degree spectra of relations on structures of finite computable

dimension, Ann. Pure Appl. Logic 115 (2002) 233–277.

[8] D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, Degree spec-

tra and computable dimension in algebraic structures, Ann. Pure Appl. Logic 115

(2002) 71–113.

[9] B. Khoussainov and R. A. Shore, Computable isomorphisms, degree spectra of

relations, and Scott families, Ann. Pure Appl. Logic 93 (1998) 153–193.

[10] B. Khoussainov and R. A. Shore, Effective model theory: the number of models and

their complexity, in S. B. Cooper and J. K. Truss (eds.), Models and Computability,

vol. 259 of London Mathematical Society Lecture Note Series (Cambridge Univer-

sity Press, Cambridge, 1999) 193–239.

[11] T. Millar, Recursive categoricity and persistence, J. Symbolic Logic 51 (1986) 430–

434.

[12] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspect. Math. Logic

(Springer–Verlag, Heidelberg, 1987).

56


