
Interpolating d-r. e. and REA degrees
between r. e. degrees

Marat Arslanov∗

Kazan University, Kazan, Russia

Steffen Lempp†

University of Wisconsin, Madison WI 53706-1388 USA

Richard A. Shore §

Cornell University, Ithaca NY 14853 USA

May 3, 1995

1. Introduction

This paper is a contribution to the investigation of the relationship between the
r. e. degrees (the complexity classes under Turing reducibility of sets which can
be effectively enumerated) and those of two important generalizations of recursive
(effective) enumerability. The first generalization starts with the characterization
of the r. e. sets as those sets A that can be effectively approximated with at most
one change in the approximation: We begin by guessing that x is not in A and we
may change our mind at most once to put x into A (when it is enumerated in A
in the usual definition of an r. e. set). The natural generalization of this property
(introduced by Putnam [1965] and Gold [1965]) is to allow the approximation to
change more often.

∗Partially supported by Russia Foundation of Fundamental Investigations Grant 93-011-
16004 and a Fulbright Fellowship held at Cornell University and the University of Wisconisn.
†Partially supported by NSF Grant DMS-9100114.
§Partially supported by NSF Grant DMS-9204308 and ARO through MSI, Cornell University,

DAAL-03-C-0027.

Definition 1.1. A set A is n-r. e. if there is a recursive function f(x, s) such that
for every x

1. f(x, 0) = 0

2. lims f(x, s) = A(x)

3. |{s : f(x, s) 6= f(x, s+ 1)}| ≤ n.

So, in particular, the 1-r. e. sets are precisely the r. e. sets. The 2-r. e. sets are
also known as the d-r. e. sets as they are the differences of r. e. sets, i. e. the ones
of the form B−C with both B and C r. e. Similarly the n-r. e. sets are those given
by starting with r. e. sets and alternating the Boolean operations of difference and
union. These sets form a true hierarchy even in terms of degree: There are, for
each n > 0, (n+ 1)-r. e. sets which are not of n-r. e. degree, i. e. not of the same
degree as any n-r. e. set (Cooper [1971]). This hierarchy can be carried into the
transfinite (Ershov [1968 a,b], [1970]) to define α-r. e. sets for recursive ordinals α
by associating the changes allowed in the recursive approximation with elements
of a recursive system of notations for α. Two remarkable facts here are first that
the ω-r. e. sets are precisely those truth table reducible to the complete r. e. set
K and also those A for which there are recursive functions f, g with f as in the
above definition except that (3) becomes |{s : f(x, s) 6= f(x, s + 1)}| ≤ g(n).
Second, if we fix any path through Kleene’s O (i. e. any system of notations for
all the recursive ordinals) then the union of the classes of α-r. e. sets for all α in
this system is precisely the class of sets recursive in K, i. e. the ∆0

2 sets (Ershov
[1970]). The appropriate definitions for the α-r. e. sets and proofs of all of these
results and more can be found in Epstein, Haas and Kramer [1981] which is a fine
introduction to the α-r. e. degrees.

The second generalization of recursive enumerability that we want to consider
is the hierarchy of REA sets and operators introduced in Jockusch and Shore
[1984]. Here the motivating ideas were the jump operator and relative recursive
enumerability.

Definition 1.2. We define the sets REA in X by induction.

1. X is 0-REA in X.

2. If Y is n-REA in X and e ∈ ω, then Y ⊕W Y
e is (n + 1)-REA in X.

The n-REA sets are those which are n-REA in the empty set.

2

Once again, the 1-REA degrees are precisely the r. e. degrees; the hierarchy is
nondegenerate even in terms of degrees and it can be extended into the transfinite
along notations for recursive ordinals. The ω-REA in X sets, for example, are the
ones of the form

⊕
Ai where A0 = X and Ai = Ai−1 ⊕W

Ai−1

f(i) for some recursive
function f . This generalization is strictly stronger than the first: every n-r. e.
degree is n-REA for each n but there is a 2-REA set recursive in K which is not
of n-r. e. degree for any n. (Indeed, given a fixed notation system for any recursive
ordinal α, there is a 2-REA set recursive in K which is not of α-r. e. degree.) (All
these results are in Jockusch and Shore [1984].)

There are a number of applications of REA operators to other questions in
degree theory in Jockusch and Shore [1984] but clearly the most striking is the
natural definition in the structure D (the Turing degrees of all sets with just the
relation of Turing reducibility) of the binary relation “c is arithmetic in a”. For
example, c is arithmetic (i. e. c < 0(n) for some n < ω) if and only if ∃y > c∀z(z∨y
is not a minimal cover of z). (x is a minimal cover of z < x iff there is no w strictly
between them. The relativization of this definition to the degrees above a defines
when a degree c ≥ a is arithmetic in a. As an arbitrary c is arithmetic in a iff
c ∨ a is, we have the desired definition of “c is arithmetic in a”.) Combining this
result with general definability arguments from Nerode and Shore [1979], [1980]
and Shore [1982] gives many corollaries on definability and automorphisms of D.
For example, every relation on degrees above 0(ω) which is definable in second
order arithmetic is definable in D and every automorphisms of D is the identity
on every degree above 0(ω).

An even more remarkable application of these hierarchies is Cooper’s natural
definitions of the binary relations “c is recursively enumerable in a” (Cooper
[1994]) and “c is the Turing jump of a” (Cooper [1990],[1993],[1995]). For example,
0′ is the largest degree x such that ¬∃a, b(x ∨ a is unsplittable over a avoiding
b). (We say that c is unsplittable over a avoiding b if c > a,b but there do not
exist c0, c1 such that a < c0, c1 < c, c = c0 ∨ c1 and b 6≤ c0, c1.) Once again
applying the results of Nerode and Shore [1980] and Shore [1982], these results
have immediate corollaries for definability and automorphisms strengthening the
ones above. For example, every relation on degrees above 0′′′ definable in second
order arithmetic is definable in D and every automorphism of D is the identity on
degrees above 0′′′. (With some additional care (or by work of Slaman and Woodin
[1996]) one can replace 0′′′ by 0′′ in these results.)

Both of these basic definability results are proved in the same style. First some
local structural property Pα of α-r. e. sets is isolated which distinguishes them from

3

β-REA sets for β < α in the sense that every β-REA set has property Pα (even
relative to any degree below it) for β < α but there is an α-r. e. set which does
not have Pα. Then a generalization of both the Friedberg completeness theorem
and the Posner-Robinson cupping theorem for α-REA operators derived from α-r.
e. ones proved in Jockusch and Shore [1984] is applied to see that every X 6≤ 0(β)

for any β < α joins 0(α) up to a degree which has the property Pα relative to some
degree below it. For defining “arithmetic in”, α = ω and Pω is the property of
not being a minimal degree. For the definition of 0′, α = 2 and P2 is the property
of having a splitting which avoids any given smaller degree b.

That, for any β < α, every β-REA set A has property Pα (even relative to
C ≤T A) follows in each case from one of the basic structural properties of the r.
e. degrees:

Theorem 1.3. Density Theorem (Sacks [1964]): If a < c are r. e. degrees then
there is an r. e. degree c such that a < b < c.

Theorem 1.4. Splitting Theorem with cone avoiding (Sacks [1963]): If
c 6≥ b and c is r. e. then there are r. e. degrees c0, c1 such that neither is above
b and their join is equal to c.

The structural results on the α-r. e. side are the following:

Theorem 1.5. Minimal Degrees (Sacks [1961]): There is an ω-r. e. set M of
minimal degree.

Theorem 1.6. Unsplittable degrees (Cooper [1990], [1995]): There is a 2-r.
e. degree c and a degree b < c such that c is unsplittable (over 0) avoiding b.

Now even without the striking applications to definability, these basic prop-
erties of the r. e. degrees, particularly density, have been the center of structural
investigations of the generalizations to n-r. e. and n-REA degrees. An early un-
published result of Lachlan showed that no 2-r. e. degree could be minimal. (See
also Epstein, Haas and Kramer [1981] for a direct proof of the nonminimality of
n-r. e. degrees.) Of course, from our current vantage point, this follows directly
from the facts that the 2-r. e. degrees are 2-REA and that the n-REA degrees are
dense (for each n separately and for the union over all n). This density result in
turn is an easy corollary of the density theorem for the r. e. degrees. Much work
was devoted to the questions of density and splitting in the 2-r. e. degrees them-
selves. Partial positive results can be found in Arslanov [1985],[1988],[1990] and

4

Ishmukhametov [1985]. Important related results on branching and nonbranching
degrees in the 2-r. e. degrees can be found in Kaddah [1992] and [1993]. We also
mention the following specific theorems:

Theorem 1.7. Weak Density Theorem (Cooper, Lempp and Watson [1989]):
Given any r. e. degrees a < c there is a properly 2-r. e. degree b between them.
(b is properly 2-r. e. if it is 2-r. e. but not r.e.)

Theorem 1.8. Splitting Theorem (Cooper [1992]): If c is a 2-r. e. degree
then there are incomparable 2-r. e. degrees c0, c1 such that c0 ∨ c1 = c.

Theorem 1.9. Low2 Density and Splitting (Cooper [1991]): The low2 2-r. e.
degrees are dense and each is splittable above any

As described above, the failure of density in the REA hierarchy occurs at level
ω (Theorem 1.5) and of splitting with cone avoiding at level 2 of the r. e. hierarchy
(Theorem 1.6). A long awaited and difficult result was the failure of density for
the 2-r. e. degrees.

Theorem 1.10. Nondensity (Cooper, Harrington, Lachlan, Lempp, Soare [1991]):
There is a 2-r. e. degree d < 0′ such that there is no 2-r. e. (or even ω-r. e.) degree
e with d < e < 0′.

On the other hand, there is an older important result dealing with a version
of the density problem combining both the n-REA and n-r. e. hierarchies.

Theorem 1.11. (Soare and Stob [1982]): If c > 0 is r. e. then there is an a REA
in c which is not of r. e. degree. Of course, if c is low then a < 0′.

Soare and Stob [1982] also claimed that a modification of their strategy for
low c would make a 2-r. e. They have since withdrawn this claim (personal com-
munication) but it and other results mentioned above suggest a general question
about density and the r.e., 2-r. e. and 2-REA degrees which we address in this
paper:

Question 1.12. When, given two r. e. degrees a < c, can we find a 2-r. e. degree
b which is both REA in a and below c?

5

Now several of the previously cited results give partial answers to this ques-
tion. In particular Theorem 1.7 says that we can always do it if we give up the
requirement that b be REA in a. Indeed, by Cooper and Yi [1995], there is always
a 2-r. e. degree b between a and c as long as a is r. e. and c is 2-r. e. Theorem
1.11 says that the answer is yes if we give up the requirement that b be 2-r. e.
but assume that it a is low and c is 0′. We do not know if it is possible to also
make b 2-r. e. We can instead describe an argument that will produce b REA in
a and below c if a is low and c is high:

Proposition 1.13. If c < h are r. e., c is low and h is high, then there is an
a < h which is REA in c but not r. e.

Proof. We describe the modifications needed in the construction of Soare
and Stob [1982]. First note that c′′ = h′ . Thus there is a function k recursive
in h such that k dominates every function recursive in c. Let H be an r. e.
set of degree h and e be such that ΦH

e = k. Let g(x, s) = Φe(H; x)[s], if it is
convergent and 0 otherwise (with the usual convention that Φe(H; x)[s] < s). Of
course, g is recursive, lims g(x, s) = k(x), the limit is reached only after k(x) (i.
e. µs(∀t > s{g(x, s) = g(x, t)}) > k(x)) and, recursively in H, we can find a
stage s after which g(x, s) never changes. We adjust the construction as follows.
When we seem to have a situation in which we would want to put xsi−1 into A(B)
(remember, Soare and Stob construct two sets, A and B, one of which is of the
desired degree a) with some associated axiom, we preserve A(B) on the axiom use
and wait for g(xsi−1, t) to change. If it changes before C changes on the axiom,
we put xsi−1 into A(B). Otherwise, we proceed as in Soare and Stob [1982]. To
verify that the construction works, suppose each oracle question about getting C-
correct computations as needed to trigger our wanting to put each xsi−1 into A(B)
is eventually answered yes. (If not then we satisfy the requirement by some finite
action or a divergence attested to by this answer.) In this case, we argue that C
is recursive for a contradiction. The function of i giving the stages at which we
get C-correct computations for wanting to put xsi−1 into A(B) is recursive in C.
Thus for almost every i, we actually do put xsi−1 into A(B) after the associated
axiom is C-correct. Thus we can argue as in the original paper that C is recursive
except that we begin at the point after which every xsi−1 gets into A(B) after
the previous use is correct. (The inductive argument proceeds by showing that,
once C is correct on the interval determined by xi−1, xi, the next stage at which
W (V) changes on the interval determined by xi, xi+1 gives a stage after which C
itself cannot change on the interval determined by xi, xi+1.) Of course, the sets

6

A,B constructed are recursive in H by the permitting restriction on enumerating
numbers into them as (uniformly in x) H can compute a stage after which g(x, s)
never changes.2

In the two remaining sections of the paper, we provide two other pieces of
information about this question. The first says that the answer is yes if a is high.
The second says in a very strong way that, in general, the answer is no. Indeed,
it is no even if we drop the requirement that b be 2-r. e. and even if we fix c to
be 0′.

Theorem 2.1. For all high r. e. degrees h < g there is a properly d-r. e. degree
a such that h < a < g and a is r. e. in h.

Theorem 3.1. There is an incomplete nonrecursive r. e. A such that every set
REA in A and recursive in 0′ is of r. e. degree.

The proof of the first of these results combines highness with a modified version
of the proof strategy of Cooper, Lempp and Watson [1989]. A description of
the needed modifications is given in Section 2. The second theorem is a rather
surprising result with a somewhat unusual proof strategy. It is a 0′′′ argument
that at times moves left in the tree so that the accessible nodes are not linearly
ordered at each stage. Thus the construction lacks a true path in the usual
sense. Two substitute notions fill this role: The true nodes are the leftmost ones
accessible infinitely often; the semitrue nodes are the leftmost ones such that there
are infinitely many stages at which some extension is accessible. Another unusual
feature of the construction is that it involves using distinct priority orderings
to control the interactions of different parts of the construction. An intuitive
description of the construction and a description of these orderings along with a
formal definition of the construction and full proof is in given in Section 3. We
just note here that by Proposition 1.13 and Theorem 2.1 the set A constructed
in Theorem 3.1 cannot be either low2 or high, so in particular ∅′ <T A′ <T ∅′′.
(The Theorem immediately rules out the possibility that A could be high. On the
other hand, if A′′ ≡T 0′′, choose a D <T A with D′ ≡T A′. Then 0′ is high over
D and A is low over it. By the Proposition relativized to D, there would be a set
B REA in A and below 0′ but not of degree REA in D and so certainly not of r.
e. degree.)

It is tempting to suggest that Theorem 1.11 might be improved by changing
the top degree 0′ to any r. e. degree b > a (as long as a is low) in analogy with

7

Theorem 2.1 where we only require that the bottom degree h be high. Proposition
1.13 does this for b high but it does not seem possible to make b an arbitrary
r. e. degree above a. More precisely, we can use Theorem 3.1 to prove that this
proposal fails relative to some degree: Let a be the degree of the r. e. set A of
Theorem 3.1 and let c < a be such that c′ = a′. Thus a is low with respect to c
and a < 0′ but there is no degree d which is REA in a and below 0′ which is not
of r. e. degree and so, of course, r. e. in c.

Another interesting notion related to density connecting the r. e. and 2-r. e.
degrees has been introduced by Cooper and Yi [1995]:

Definition 1.14. A 2-r. e. degree d is isolated by the r. e. degree a if a < d and
every r. e. b < d is also less than or equal to a.

Cooper and Yi [1995] prove that there are such degrees and that there are
2-r. e. degrees d which are not isolated by any r. e. degree a. They also raise
a number of interesting questions about the isolated and isolating degrees which
are answered in forthcoming papers by LaForte [1995], Ding and Qian [1995] and
Arslanov, Lempp and Shore [1995].

Our notation is generally standard and follows Soare [1987]. We note, however,
that we append [s] to various functionals such as Φe(A; x)[s] to indicate the state
of affairs at stage s. In particular if A is r. e. (or otherwise being approximated)
we mean by this notation the result of running the eth Turing machine for s
steps on input x with oracle A[s], the subset of A enumerated by stage s (the
approximation to A at stage s). We take the use of this computation to be the
greatest number about which it queries the oracle and denote it by φe(A; x)[s]; so
changing the oracle at φe(A; x)[s] destroys the computation. In particular, if A is
r. e. we may assume that φe(A; x)[s] is not in A[s] and so putting it in destroys
the computation. We also use a modified version of the restriction notation for
functions to mesh with this definition of the use: fdx means the restriction of
the function f to numbers y ≤ x. Thus if Φe(A; x) is convergent, then the use is
Adφe(A; x) and changing A at φe(A; x) destroys this computation (and similarly
for computations and approximations at stage s of a construction).

2. Interpolation between high degrees

Theorem 2.1. For all high r. e. degrees h < g there is a properly d-r. e. degree
a such that h < a < g and a is r. e. in h.

8

Proof. Let H ∈ h and G ∈ g be fixed r. e. sets. We will construct a d-r. e. set
D so that A = H ⊕D has the desired properties, namely, A is r. e. in H, A ≤T G
and A does not have r. e. degree.

To satisfy the last property we meet the following requirements for all e,

Re : D 6= ΦWe
e ∨We 6= ΨH⊕D

e ,

where {(We,Φe,Ψe)}e∈ω is some enumeration of all possible triples consisting of
an r. e. set W and partial recursive functionals Φ and Ψ. In addition, we will
ensure that A ≤T G by a permitting argument.

To meet these requirements we use the strategy for the Weak Density Theorem
from Cooper, Lempp and Watson [1989] with some modifications.

The basic strategy for Re without the requirement A ≤T G and in the absence
of any H-changes is the one developed by Cooper [1971] to prove the existence of
a properly d-r. e. degree. To attack Re we choose an unused witness x and wait
for a stage s such that

Ds(x) = ΦWe
e dϕe(x)[s] ∧Wedϕe(x)[s] = Ψ(H⊕D)dψeϕe(x)

e dϕe(x)[s];

preserve Ddψe,sϕe,s(x) from injury by other strategies; put x into D and wait for
a stage s′ at which

Ds′(x) = ΦWe
e dϕe(x)[s

′] ∧Wedϕe(x)[s
′] = Ψ(H⊕D)dψeϕe(x)

e dϕe(x)[s
′].

We then remove x from D and preserve Ddψe,s′ϕe,s′(x).
If Hdψe,sϕe,s(x) does not change after stage s then x is a witness to the suc-

cess of Re. As in Cooper, Lempp and Watson [1989], we now impose “indirect”
restraint on H by threatening to show that G ≤T H via a functional Γe. We make
infinitely many such attacks on Re by an ω-sequence of “cycles”, where each cycle
k proceeds as follows:

1. Choose an unused candidate xk greater than any number mentioned thus
far in the construction.

2. Wait for a stage s at which

D(xk) = ΦWe
e dϕe(xk) ∧Wedϕe(xk) = Ψ(H⊕D)dψeϕe(xk)

e dϕe(xk).

(If this never happens then xk is a witness to the success of Re.)

9

3. Preserve Ddψe,sϕe,s(xk).

4. Set ΓHe (k) = Gs(k) with use γe(k) = ψe,sϕe,s(xk), and start cycle k + 1 to
run simultaneously with cycle k.

5. Wait for G(k) to change (at a stage s′, say).

6. Stop cycles k′ > k, put xk into D.

7. Wait for a stage s′′ at which

D(xk) = ΦWe
e dϕe(xk) ∧Wedϕe(xk) = Ψ(H⊕D)dψeϕe(xk)

e dϕe(xk).

8. Remove xk from D and preserve Ddψe,s′′ϕe,s′′(xk).

Whenever some cycle sees an Hdψe,sϕe,s(xk)-change after stage s, it will kill
the cycles k′ > k, make their functionals undefined, and go back to step 2.

The module has the following possible outcomes:
(A) Eventually each cycle k gets stuck at step 5 waiting for a G(k)-change,

or gets an Hdψe,sϕe,s(xk)-change after step 6. In this case, ΓHe = G, contrary to
hypothesis.

(B) Some (least) cycle k0 gets stuck at step 2, 7, or 8. Then we were successful
in restraining H and satisfy Re through cycle k0.

(C) Some (least) cycle k0 gets infinitely many H-changes after step 2. Then
ΦWe
e or ΨH⊕D

e is partial, and Re is again satisfied by cycle k0.
Therefore, either we were successful in satisfying Re through outcomes (B) or

(C), or there are infinitely many cycles with a G-change such that Hdψe,sϕe,s(xk)
does not change after step 6. Keeping this in mind let us now turn to the require-
ment that A is r. e. in H.

To ensure this result we use a common method which works as follows. When
a witness xk is enumerated into D at stage s we appoint a certain marker α(xk).
Then we allow xk to be removed from A at a later stage t only if Hdα(xk) 6=
Htdα(xk).

Obviously, this ensures that A is r. e. in H. But now the difficulty is that the
Hdα(xk)-change may entail an Hdψe,sϕe,s(xk)-change after stage s′ and so after
step 6 (if α(xk) ≤ ψe,sϕe,s(xk)) which ruins our attack of Re by the witness xk.

As we saw before, if we are not successful via outcome (B) or (C), then we
must have infinitely many cycles k such that G(k) changes after stage s but
Hdψe,sϕe,s(xk) does not change after step 6. We define a partial recursive function

10

α such that in this case, by a characterization of high degrees, beginning with some
k0, any cycle k > k0 gets an Hdα(xk)-change after the stage m = s′′ of step 7.

Therefore, for some cycle k > k0 we will have a G(k)-change at step 5, no
Hdψe,sϕe,s(xk)-change after step 6, and an Hdα(xk)-change after step 7. This will
be sufficient to win Re through cycle k.

By a theorem of Robinson [1968], we may choose a r. e. set H ∈ h and an
effective enumeration {Hs}s∈ω of H so that the computation function

cH(x) = (µs > x)[Hsdx = Hdx]

dominates all recursive functions.
Now we define functions α and m in the following way: Each cycle k proceeds

as above but with the following step inserted after step 6:

61
2
. a) Let α(xk) be a number greater than any mentioned thus far in the con-

struction, in particular greater than the maximum of all current Ψe-uses.

b) Suppose p is the least integer such that m(p) is undefined. We will define
m(p) to be the first stage t > s (if there is one) such that either

Htdψe,sϕe,s(xk) 6= Ht−1dψe,sϕe,s(xk),

or

Dt(x) = ΦWedϕe(x)
e (x)[t] ∧Wedϕe(x)[t] = Ψ(H⊕D)dψeϕe(x)

e dϕe(x)[t].

(which is step 7 of the k-cycle).

Clearly, α(xk) ≥ p. Notice also that if m(p) is not defined for some (least) p,
then the requirement Re is satisfied by the cycle k at which the search for m(p)
was begun.

If m is total then cH(p) > m(p) for all p ≥ some p0. For any such p we have
Hm(p)dp 6= Hdp. If m(p) was defined by cycle k then α(xk) ≥ p. It follows that
Hm(p)dα(xk) 6= Hdα(xk) for all k ≥ some k0. We have already mentioned that
Hdψe,sϕe,s(xk) does not change after step 6 for infinitely many k. For any such k
we have m(p) = s′′ (the stage of step 7). This means that all these cycles receive
the desired Hdα(xk)-change after step 7.

Now each cycle k proceeds as above but with step 61
2

inserted after step 6 and
the following step inserted after step 7:

11

71
2
. Wait for Hdα(xk) to change and then proceed.

This ensures that A is r. e. in H.
Now we have to ensure that A ≤T G through a permitting argument. The

strategy again is essentially the same as in Cooper, Lempp and Watson [1989].
We need G to permit x to enter D at step 6 as well as to leave D at step

8. The former permission is already given by the G(k)-change at step (6). As in
Cooper, Lempp and Watson [1989], the latter has to be built into the strategy
(by asking for permission j many times for larger and larger j).

The basic module for the Re-strategy consists of an (ω×ω)-sequence of cycles
(j, k) for j, k ∈ ω. Cycle (0, 0) starts first, and each cycle (j, k) can start cycles
(j, k + 1) or (j + 1, 0) and stop, or cancel, cycles (j′, k′) for (j, k) < (j′, k′) (in the
lexicographical ordering). Each cycle (j, k) can define ΓHj (k) and ∆H(j). (Γj and
∆ are functionals that are threatening to compute G from H.) We also define
functions m and α. Each cycle (j, k) may define values α(x) and m(p) for the
current witness x and the least p such that m(p) is undefined, respectively. The
cycle proceeds as follows:

1. Choose an unused candidate x greater than any number mentioned thus far
in the construction.

2. Wait for a stage s at which

D(x) = ΦWedϕe(x)
e (x)∧We,sdϕe(x) = Ψ(H⊕D)dψeϕe(x)

e dϕe(x).

(If this never happens then x is a witness to the success of Re.)

3. Preserve Ddψe,sϕe,s(x) from injury by other strategies from now on.

4. Set ΓHj (k) = Gs(k) with use γj(k) = ψe,sϕe,s(x), and start cycle (j, k+1) to
run simultaneously with cycle (j, k).

5. Wait for Hdψe,sϕe,s(x) or G(k) to change (at a stage s′, say). If H changes
first then cancel cycles (j′, k′) > (j, k), drop the D-restraint of cycle (j, k) to
0, and go back to step 2. If G changes first then stop cycles (j′, k′) > (j, k)
and proceed to step 6.

6. Put x into D.

12

7. Let αs(x) be a number greater than all mentioned thus far in the construc-
tion, in particular greater than the maximum of all current Ψe-uses. Suppose
p is the least integer such that m(p) is undefined. Define m(p) to be the first
stage t > s (if one exists) such that either Htdψe,sϕe,s(x) 6= Ht−1dψe,sϕe,s(x),
or

Dt(x) = ΦWedϕe(x)
e (x)[t]∧Wedϕe(x) = Ψ(H⊕D)dψeϕe(x)

e dϕe(x)[t].

8. Wait for a stage s′′ at which

D(x) = ΦWedϕe(x)
e (x) ∧We,s′′dϕe(x) = Ψ(H⊕D)dψeϕe(x)

e dϕe(x).

9. Preserve Ddψe,s′′ϕe,s′′(x) from injury by other strategies from now on.

10. Set ∆H(j) = Gs′′(j) with use δ(j) = ψeϕe(x) and start cycle (j + 1, 0) to
run simultaneously with the (j, k) cycles now running.

11. Wait for Hdψe,s′′ϕe,s′′(x) or G(j) to change. If H changes first then cancel
cycles (j′, k′) ≥ (j + 1, 0), drop the D-restraint of cycle (j, k) to ψe,sϕe,s(x),
and go back to step 8. If G changes first then stop cycles (j′, k′) ≥ (j+1, 0)
and proceed to step 12.

12. Wait for Hdαs(x) to change.

13. Remove x from D.

14. Wait for

Hdψe,sϕe,s(x) 6= Hdψeϕe(x)[s] or Hdψe,s′′ϕe,s′′(x) 6= Hdψeϕe(x)[s
′′].

Proceed to step 15 or 16, respectively.

15. Reset ΓHj (k) = G(k), cancel cycles (j′, k′) > (j, k), start cycle (j, k+1), and
halt cycle (j, k).

16. Reset ∆H(j) = G(j), cancel cycles (j′, k′) ≥ (j + 1, 0), start cycle (j + 1, 0),
and halt cycle (j, k).

Whenever a cycle (j, k) is started, any previous version of it has been cancelled
and its functionals have become undefined through H-changes. Therefore Γj and
∆ are defined consistently.

13

The explicit construction and the remaining parts of the proof of Theorem 2.1
are now essentially the same as in Cooper, Lempp and Watson with only obvious
changes. So we will not give them here except for the proof of the claim that
A ≤T G which now is a little more delicate.

Lemma 2.2. D ≤T G.

Proof. To G-recursively compute whether x ∈ D, first find a stage s such that
Gsdx = Gdx. If αs(x) is not defined then x 6∈ D. Otherwise, find a stage t such
that Htdαs(x) = Hdαs(x). (Remember, H ≤T G.) Now x ∈ D if and only if
x ∈ Dt. 2

3. A noninterpolation result

Theorem 3.1. There is an incomplete nonrecursive r. e. A such that every set
REA in A and recursive in 0′ is of r. e. degree.

We will build the desired r. e. set A along with an auxiliary r. e. set C and
various r. e. sets Be. There are three types of requirements for our construction.

• Pe: Φe 6= A (for each partial recursive functional Φe).

• Ne: ΦA
e 6= C (for each partial recursive functional Φe).

• Re: If WA
e = ΨK

e then WA
e ≤T Be ⊕ A & Be ≤T WA

e ⊕ A (for each partial
recursive functional Ψe and each r. e. in A set WA

e = dom(ΦA
e) we build an

associated r. e. set Be).

The first two types of requirements are handled in the usual way. For Pe
we will choose a follower x from the column associated with the requirement
which is larger than all higher priority restraints. When the follower is realized
(Φe(x) ↓= 0), we will put x into A. For Ne we will choose a follower x from the
column associated with the requirement, wait for Φe(A; x) to converge and then
put x into C and attempt to preserve A on φe(x), the use of the computation.
(This preservation will be interconnected with the actions for requirements related
to various Ri.)

The basic plan for Re is that, when the length of agreement between WA
e and

ΨK
e becomes larger than y, we will appoint markers be,y and ae,y targeted for Be

14

and A, respectively. If, at a later stage s, it appears that y ∈ WA
e and ΨK

e dy =
WA
e dy, we would expect to put be,y into Be and protect the use φe(A; y)[s] of the

computation putting y intoWA
e . With an eye towards showing that WA

e ≤T A⊕B,
we would then promise to put ae,y into A if y leaves WA

e because of a change in
Adφe(y)[s] to record, in A ⊕ B, the fact that y does not seem to be in WA

e . Of
course, this would immediately impose infinitary restraint on the construction and
prevent us from satisfying the positive requirements. The natural procedure now
is to break Re up into subrequirements. We phrase them so as to also make our
intended reductions between WA

e ⊕ A and Be ⊕ A explicit:

• Re,y: If WA
e (y) = Ψe(K; y) = 1 then [there is eventually a pair of markers

such that] be,y ∈ Be and ae,y /∈ A. If WA
e (y) = Ψe(K; y) = 0 then [there is

eventually a marker] be,y 6∈ Be.

Thus our procedure for Re will measure the length of agreement between WA
e

and ΨK
e and appoint markers ae,y, be,y, but it will be Re,y that starts our action

by putting be,y into Be when appropriate. Re,y will then impose restraint on
Adφe(y)[s] . It is the interaction of these restraints, and that of the overtly negative
requirements Ni, with our overarching commitment to put other ae′,y′ into A if
be′,y′ is put into Be′ at s′ and A later changes, say at s′′, on φe′(y′)[s′] that is the
source of the real difficulty in satisfying the requirements. For example, suppose
ae′,y′ < φe(y)[s] but s′ > s. At s′′ we would have to put ae′,y′ into A and so injure
Re,y . If we attempt to simply increase the restraint imposed by Re,y to prevent the
A change on φe′(y′)[s′], we will eventually impose larger and larger restraint in this
effort: When we put be′,y′ into Be′ at s′, Re,y will impose restraint on φe′(y′)[s′],
but then some new ae′′,y′′ may be smaller than φe′(y′)[s′]. If we then must put
be′′,y′′ into Be′′ at s′′ > s′ we will have to impose restraint φe′′(y′′)[s′′]. For, if not,
when some lower priority Pi puts some x < φe′′(y′′)[s′′] into A we will have to put
ae′′,y′′ into A. This will force us to put ae′,y′ into A and injure Re,y’s restraint.
(We will call this sequence of numbers that we are successively forced to put into
A because of x’s entry the cascade (of elements into A) initiated by x’s entry into
A.) Of course, the positive requirements cannot live with the infinitary restraint
that would be imposed in this way by even a single subrequirement Re,y.

The solution to this conflict has two components. On the one hand, we allow
the restraint to grow as described above but only for ae′,y′ of “higher priority”
than Re,y. On the other hand, before putting be,y into Be at s and imposing our
restraint, we act to preempt the possible actions of “lower priority” ae′,y′ that
might later injure φe(y)[s]. We do this by immediately putting these markers into

15

A ourselves. In this case, we ourselves may destroy the computation of Φe(A; y)
and so obviate the need to put be,y into Be and impose restraint. The price we
pay for this security is that we may be forced to do this infinitely often (y may
enter and leave WA

e infinitely often) and so Re,y or Ni may become an infinitary
positive requirement.

Initially, we deal with this in the usual way by employing a tree argument
with nodes α assigned to the various requirements Pe, Ne, Re, Re,y. On each path
of our priority tree T we will have a node ε assigned to Re before any assigned to
an Re,y. It is at such nodes ε that we assign markers bε,y and aε,y. If α is assigned
to some Re,y then it works on the associated set Bε being built at the last (i. e.
longest) node ε ⊂ α assigned to Re by dealing with the markers aε,y, bε,y. In this
situation, we will say that α is associated with ε, y. We begin the construction by
associating with ∅, the root of T , any ω-type ordering of these requirements, <∅,
such that Re precedes everyRe,y and the requirements Pi occupy every other place
in this ordering. [The second condition is a technical convenience that prevents
two similar types of requirements from being assigned to successive nodes on the
tree.]

The crucial point about our action for Re,y is that if we do actually act
positively for it infinitely often, then the hypotheses of Re fail: y /∈ WA

e but
Ψe(K; y)[t] = 1 for infinitely many t and so WA

e (y) 6= Ψe(K; y). Thus we satisfy
the overall requirement Re. We will then restart all requirements Re′ of lower
priority than Re below this outcome in the usual 0′′′ fashion. We phrase this in
terms of defining a priority ordering <αˆz associated with outcome z of node α
and assigning the first element of this ordering to αˆz. One somewhat unusual
point to keep in mind is that the preemptive positive action for Re,y may well be
directed by some higher priority requirement wishing to keep aε,y out of A. In
this case, we assign the outcome corresponding to the infinitary positive action
that shows that Re is satisfied to the node of highest priority restraining aε,y. It
is this procedure that at times forces us to jump to the left in the priority tree
when determining the next accessible node.

The final issue to be considered is the appropriate priority ordering to be
used to decide if action for a node α assigned to Re,y and associated with some
incarnation of Re at some earlier node ε can preempt another requirement assigned
to some Re′,y′ by putting aε′,y′ into A. The ordering that correctly takes into
account the idea that actions for α assigned to Re,y cannot ruin the intended
reductions for Re′ of higher priority (for example, by sending the markers aε,y and
bε,y to infinity) and still manages to spread the restraint out in such a way as to

16

keep it finite is the lexicographic ordering of pairs 〈ε, y〉 with which α is associated.
Here the first coordinates are themselves nodes on the tree and are given the usual
priority ordering of a tree construction. The second coordinates are just numbers
with the usual ordering on ω. We can now describe the formal construction.

3.1. Construction:

We will define a tree construction priority argument that is somewhat different
from the standard arguments like those in Soare [1987], Ch. XIV. We use <
to denote the usual priority ordering on the sequences (of outcomes) which are
the nodes of our priority tree T . We use <L to denote the usual left-to-right
ordering on the priority tree that corresponds to the lexicographic ordering on
nodes incomparable in the subsequence relation. At each stage s we will proceed
through a sequence of substages u at each of which we will define an accessible
node α. (When it is necessary to distinguish the substage u of stage s at which we
are acting, as for example, to indicate the current value of the restraint function
for α, we write r(α, u) in place of r(α, s). In such cases, the stage s of which
u is a substage will be determined by the context.) If α is accessible at some
substage u of s, we call s an α-stage as usual. However, the accessible nodes will
not necessarily be nested in the subsequence ordering ⊆; there may be jumps to
the left. We terminate stage s when we reach a node of length s. Until such a
substage, we act for each node α when it becomes accessible in some way which
may include adding to the possible outcomes of a node of higher priority. We will
also declare some node β to be the next accessible node and define an ordering
<β of (a subset of the) initial requirements and assign the first requirement in <β

to this node. The other specific actions for an accessible node α at substage u of
stage s are determined by the type of requirement assigned to α and are specified
below. [Remarks in square brackets [] are to help explain the construction. They
are not part of the formal procedure.] Before defining the specific actions for each
type of requirement we give some general rules for our construction.

We will put a marker bε,y into Bε only at a stage s when some γ assigned to Re,y

and associated with ε, y is accessible and Φe(A; y) ↓ [s]. We will then put aε,y into
A whenever A later changes on φe(A; y)[s]. Thus, when any number z is put into
A, we immediately check to see if this action necessitates putting any markers aε,y
into A and then continue this process until it stops (as it must as there are only
finitely many markers defined at any stage). We call this the cascade (of elements
into A) initiated by z’s enteringA. The markers bε,y and aε,y, once defined, become
undefined if and only if aε,y enters A or ε is initialized. Initialization of a node

17

ε assigned to a requirement Re consists of canceling all markers aε,y, bε,y. Such
a node ε is initialized whenever a node γ <L ε becomes accessible and at certain
other times described in the construction. Initialization for a node α assigned to
a requirement Ne or Re,y at substage u of stage s consists of canceling the current
follower (for Ne), setting the associated restraint r(α, u) = 0, and so the auxiliary
set S(α, u) = ∅ (but not cancelling the markers aε,y, bε,y for the 〈ε, y〉 associated
with α). The auxiliary set S(α, u) is introduced for notational convenience and
is defined as {〈ε, y〉| aε,y ↓ [u] < r(α, u)}. These nodes are initialized whenever
a γ <L α becomes accessible and only then. We now describe the actions at the
node α which becomes accessible at substage u of stage s according to the type
of requirement assigned to α.

Re: For notational convenience, we denote by ε the node assigned to Re that
has just been declared accessible. At this node we measure the length of agreement
` between WA

e and ΨK
e . To do this appropriately for the ε-stages, we incorporate

the idea of the “hat trick” into the definition of the versions ΦA
ε ,W

A
ε and ΨK

ε of
ΦA
e ,W

A
e and ΨK

e , respectively, that we use at ε. Let t be the last ε-stage before s
(0 if s is the first ε-stage). We define ΦA

ε ,W
A
ε and ΨK

ε as follows:

If Ksdψe,s(x) = Ktdψe,s(x) then Ψε(K; x)[s] = Ψe(K; x)[s];
otherwise Ψε(K; x)[s] is divergent.

If Asdφe,s(x) = Atdφe,s(x), then Φε(A; x)[s] = Φe(A; x)[s];
otherwise Φε(A; x)[s] is divergent.

x ∈WA
ε [s]⇔ Φε(A; x)[s] ↓ .

We define the length of agreement function as usual:

`(ε, s) = µx¬(WA
ε (x)[s] = Ψε(K; x)[s]).

The possible outcomes for ε are ∞ and 0 (in left to right order). If `(ε, s) has
reached a new maximum, i. e. `(ε, s) > `(ε, t) for every previous ε-stage t, then the
outcome of ε is∞ and we declare εˆ∞ accessible. Its associated priority ordering
<εˆ∞ is the same as that for ε with Re removed from the beginning of the ordering.
If any of the markers bε,y, aε,y are undefined for y < `(ε, s), we define them to be
new distinct large numbers in ω[ε] . [This happens only when `(ε, s) > y for the
first time or we have put aε,y into A or initialized ε since the last ε-stage. The
actions enumerating elements bε,y into Bε take place after we reach a node below

18

εˆ∞ associated with the subrequirements Re,y.] Otherwise, ε’s outcome is 0; its
associated priority ordering <εˆ0 is the same as that for ε except that Re and all
its subrequirements Re,y are removed from the list.

Re,y: Suppose ε is the longest node ⊂ α assigned to Re. We say that α is
associated with 〈ε, y〉. [We shall see that for α to be accessible at u, εˆ∞ must
have already have been accessible at some previous substage of s.] The initial
possible outcomes of α are 1, 0 (in left to right order). At any later point t of
the construction the set of possible outcomes will be S(α, t)∪ {1, 0}. (Remember
that S(α, t) = {〈ε, y〉| aε,y ↓ [t] < r(α, t)}.) The elements of S(α, t) are ordered
from left to right by the lexicographic ordering on pairs 〈ε′, y′〉 (where the first
coordinates are ordered by the tree priority ordering and the second by the natural
ordering on ω). The outcomes 1, 0 are then added in order to the (right hand)
end of this ordering. Our action depends on the status of the markers bε,y and aε,y
and whether y ∈WA

ε .

1) If aε,y is undefined then the outcome of α is 0; αˆ0 is accessible and <αˆ0 is
the final segment of <α with Re,y removed. [This situation cannot “really” occur
infinitely often if the hypotheses of Re are satisfied and so the outcome is not
essential except for the completeness of our description of the construction.]

2) If y /∈WA
ε at s (i. e. Φε(A; y) ↑ [s]) [and so Ψε(K; y) = Ψe(K; y) = 0] then the

outcome of α is 0 [the expected value of Ψe(K; y)], αˆ0 is accessible and <αˆ0 is
<α with Re,y removed. [Note that if aε,y is defined then y < `(ε, s) as we are at
an ε-expansionary stage and aε,y′ gets defined only for y′ < `(ε, s).]

3) y ∈WA
ε at s (i. e. Φε(A; y) ↓ [s] = Φe(A; y) ↓ [s]) [and so Ψε(K; y) = Ψe(K; y) =

1] but bε,y /∈ Bε (at u).
We first see if, for the sake of some requirement of higher priority, we need

to try to force y out of WA
e and preempt future actions that might make us put

aε,y into A. If not, i. e. there is no β < α such that aε,y ∈ S(β, u), we put bε,y
into Bε and let r(α, u) be a new large number. [The purpose of this restraint
will be to keep y in WA

e and so the computation associated with β convergent.]
The outcome of α is 1 [for convergent], αˆ1 is accessible and <αˆ1 is just <α with
its first element, Re,y, removed. On the other hand, if there is a β < α such
that aε,y ∈ S(β, u), we let β < α be the highest priority requirement such that
aε,y ∈ S(β, u) [and so 〈ε, y〉 is a possible outcome of β]. We put into A every aε′,y′

such that 〈ε, y〉 < 〈ε′, y′〉 unless

19

i) there is a γ ≤ β such that r(γ, u) > aε′,y′ or
ii) ε′ ⊇ βˆ〈η, z〉 for some 〈η, z〉 ≤ 〈ε, y〉.

If the cascade initiated by putting all of these elements into A includes a number
less than φe(A; y)[s] [and so kills the computation], we jump to βˆ〈ε, y〉 and declare
it to be accessible. We restart all requirements Ri >ε Re by defining <βˆ〈ε,y〉 to be
the final segment of <ε beginning immediately after Re with all requirementsRe,y′

removed. If not, the outcome of α is again 1 [for convergent], αˆ1 is accessible and
<αˆ1 is just <α with its first element, Re,y, removed. In this case, we initialize all
ε′ with ε′ ⊇ βˆ〈η, z〉 for any 〈η, z〉. Next, we redefine the restraint function r(β, u)
to be a number larger than any used so far in the construction. [The purpose of
this restraint will be to preserve the computation associated with β by keeping
y in WA

e .] If the original computation associated with 〈ε, y〉 is ever injured, i. e.
a number z ≤ φe(A; y)[s] enters A at some later point t, we put aε,y into A and
declare the markers bε,y and aε,y to be undefined, as described by the general rules
of our construction.

4) y ∈WA
ε at s (i. e. Φε(A; y) ↓ [s] = Φe(A; y) ↓ [s]) [so Ψε(K; y) = Ψe(K; y) = 1]

and bε,y is defined and in Bε.
We maintain the situation initiated when we put bε,y into Bε: The outcome

of α is 1; αˆ1 is accessible and <αˆ1 is <α with Re,y removed. If r(α, u) is not
already defined, we let r(α, u) be a new large number and so let S(α, u) consist
of all 〈ε′, y′〉 such that aε′,y′ is defined.

Ne: If α has no current follower [this is the first α-stage or its follower has
been canceled by initialization or injury since the last α-stage], we appoint a
large number from ω[α] as the current follower of α and let 1, 0, in left to right
order, be the possible outcomes of α. Now suppose x is the current follower of
α. If Φe(A; x) ↓= 0 and x /∈ C, then we put x into C. In this case, we impose
restraint r(α, u) on A equal to a new large number. The possible outcomes for α
are S(α, u) ∪ {1, 0} ordered as for Re,y in case (3). The outcome of α is 1, αˆ1
is accessible and <αˆ1 is just <α with the first element, Ne, removed. If r(α, t)
is injured at some later point t, i. e. some z < r(α, t) enters A, we cancel α’s
current follower. If, at s, ¬(Φe(A; x) ↓= 0), then the outcome of α is 0, αˆ0 is
accessible and <αˆ0 is also just <α with the first element, Ne, removed. [S(α, t)
may have new pairs added in and the outcomes in S(α, t) may become accessible
when we consider jumping to them from a node γ associated with some 〈ε, y〉 with
〈ε, y〉 ∈ S(α, t).]

20

Pe: The possible outcomes of α in left to right order are 1, 0. Let x be the
least element of ω[α] larger than all restraints r(β, u) for β ≤ α. We say that α
is satisfied if there is a z such that Φe(z) = 0 and z ∈ A. If α is not satisfied
and Φe(x) = 0, we put x into A. Now, if α is satisfied then its outcome is 1;
otherwise, it is 0. In either case, α concatenated with its outcome is accessible
and the associated ordering is <α with its first element, Pe, removed.

3.2. Verifications

We must now verify that the construction satisfies the requirements. As the
construction is somewhat unusual, there are a number of auxiliary lemmas that
must be proven to show that it behaves at all the way we might expect.

Lemma 3.2. If some β ⊇ αˆ〈ε, y〉 is accessible at t, then there is an s ≤ t at
which αˆ〈ε, y〉 becomes accessible by jumping to it from a node γ to its right.

Proof. The only way to get below αˆ〈ε, y〉 without first going through it is to
jump to some node of the form δˆ〈ν, z〉 ⊃ αˆ〈ε, y〉. However, no δ can have an
outcome of the form 〈ν, z〉 before it is accessible. Thus there is a stage at which
αˆ〈ε, y〉 first becomes accessible. It can do so only by our jumping to it from its
right. 2

Lemma 3.3. i) If 〈ε, y〉 ∈ S(α, s), then ε < α.
ii) Moreover, if any β ⊇ αˆ〈ε, y〉 is ever accessible, then ε ⊂ α.

Proof. i) We prove the first assertion of the Lemma for all α, ε simultaneously
by induction on the (sub)stages of the construction. Suppose s is the first time
we produce a counterexample. If r(α, s) is now defined for the first time since α
was last initialized, say at t, then if any successor of α has been accessible since
t, it must be an extension of αˆ0. Thus when r(α, s) is defined, αˆ1 becomes
accessible and all nodes to its right are initialized. In particular, no marker aε′,y′

remains defined for α < ε′. (Markers with ε′ to the right of αˆ1 are initialized
now; markers with ε′ ⊇ αˆ1 were initialized at t and have not been accessible since
then; and α 6= ε′ as they are assigned different requirements.) Thus no such pair
is put into S(α, s) contrary to the assumption that α becomes a counterexample
at s. If r(α, s) increases at s, then we considered jumping to αˆ〈ε′, y′〉 from some
γ associated with a 〈ε′, y′〉 already in S(α, s). By the minimality of s, ε′ < α. The

21

construction now directs us to put every aε,y with 〈ε, y〉 > 〈ε′, y′〉 into A (and so
make these markers undefined) unless aε,y < r(γ, s) for some γ ≤ α or ε ⊇ αˆ〈η, z〉
for some 〈η, z〉 ≤ 〈ε′, y′〉. If aε,y satisfies the first restriction, ε < γ by induction
and so ε < α as required. If aε,y satisfies the second restriction, then ε is initialized
before we redefine r(α, s) and so again 〈ε, y〉 is not eligible to be put into S(α, s)
and we have no counterexample to the Lemma for α at s.

ii) By Lemma 3.2, there is a stage s at which αˆ〈ε, y〉 becomes accessible by
jumping to it from a node γ associated with 〈ε, y〉 which is to the right of αˆ〈ε, y〉.
As γ is associated with 〈ε, y〉, ε ⊂ γ by definition, but, by (i) of our Lemma, ε < α
and so ε ⊂ α as required. 2

Lemma 3.4. i) If α ⊇ βˆ〈ε, y〉, 〈ν, z〉 ∈ S(α, s) and 〈ν, z〉 6∈ S(γ, s) for any
γ ≤ β, then 〈ν, z〉 ≤ 〈ε, y〉 or ν ⊇ βˆ〈ε, y〉. ii) Moreover, if any δ ⊇ αˆ〈ν, z〉 is
ever accessible then ν ⊆ ε or ν ⊇ βˆ〈ε, y〉.

Proof. i) Let βˆ〈ε, y〉 be fixed. We prove part (i) of the Lemma for all α ⊇
βˆ〈ε, y〉 by induction on the (sub)stages of the construction. Suppose for the
sake of a contradiction that substage u of stage s is the first point at which a
counterexample occurs and it does so by 〈ν, z〉 entering S(α, u) for α ⊇ βˆ〈ε, y〉
with 〈ν, z〉 6≤ 〈ε, y〉 and ν 6⊇ βˆ〈ε, y〉. By our convention on the priority ordering
<∅, α ⊃ βˆ〈ε, y〉 since βˆ〈ε, y〉 is assigned a requirement of the form Pi. In order
for any pair to enter S(α, u) at u, α must be accessible or we must be considering
a jump to an immediate extension αˆ〈ε′, y′〉 of α from some accessible node γ > α
associated with 〈ε′, y′〉 ∈ S(α, u). Thus there must be a substage v < u of stage s
at which we actually jump to a node δˆ〈ε′, y′〉 ⊇ βˆ〈ε, y〉 from a γ associated with
〈ε, y〉 which is to the right of βˆ〈ε, y〉 or we consider jumping to some αˆ〈ε′, y′〉
from a γ associated with some 〈ε′, y′〉 which is to the right of βˆ〈ε, y〉 at u itself.

We first deal with the case that we jump to βˆ〈ε, y〉 at v < u. If aν,z is undefined
when we jump to βˆ〈ε, y〉, it cannot be (re)defined as long as we remain below
βˆ〈ε, y〉, as ν 6⊇ βˆ〈ε, y〉 and so we cannot produce the assumed counterexample
at u. If we do not remain below βˆ〈ε, y〉 for the rest of stage s, we must move to
its left. Once we have moved to the left of βˆ〈ε, y〉 and so of α, α can never again
become accessible or have S (α,w) increase at any later substage of stage s for a
contradiction. If aν,z is still defined when we jump to βˆ〈ε, y〉, 〈ν, z〉 is put into
S(β, v). It can only leave S(β, w) by β or ν being initialized. If ν is initialized
the marker aν,z becomes undefined and we are in the situation just analyzed. On
the other hand, β can be initialized only by our moving to its left which again
prevents S(α,w) from increasing at any later substage of stage s.

22

We next deal with the case that, at v < u, we jump to some δˆ〈ε′, y′〉 ⊃ βˆ〈ε, y〉
from a γ associated with 〈ε′, y′〉 which is to the right of βˆ〈ε, y〉. As γ is to the
right of βˆ〈ε, y〉 and γ ⊇ ε′, ε′ 6⊇ βˆ〈ε, y〉. Moreover, 〈ε′, y′〉 cannot be in S(γ′, v)
for any γ′ ≤ β or we would have considered jumping to γ′ˆ〈ε′, y′〉 6= δˆ〈ε′, y′〉
instead. Thus, by our inductive hypothesis at v (with α = δ and 〈ν, z〉 = 〈ε′, y′〉),
〈ε′, y′〉 ≤ 〈ε, y〉.

Now we show that, in this case, if aν,z is defined at v, and not restrained
with priority at least β, it enters A and so the marker becomes undefined. By
our assumption that 〈ν, z〉 supplies the assumed counterexample, 〈ε, y〉 < 〈ν, z〉
and ν 6⊇ βˆ〈ε, y〉. The first inequality, together with the established fact that
〈ε′, y′〉 ≤ 〈ε, y〉, implies that 〈ε′, y′〉 < 〈ν, z〉. The second together with the fact that
δˆ〈ε′, y′〉 ⊃ βˆ〈ε, y〉, implies that ν 6⊇ δˆ〈η, w〉 for any 〈η, w〉 ≤ 〈ε′, y′〉. (Indeed,
they guarantee that ν 6⊇ δ at all.) Thus the instructions for the construction at
substage v direct us to put aν,z into A and so make the marker undefined unless
it is restrained with priority at least that of δ. Of course, if aν,z is restrained with
priority at least that of δ, 〈ν, z〉 ∈ S(η, v) for some η ≤ δ where we may assume
that η is the highest priority node such that 〈ν, z〉 ∈ S(η, v). If η 6≤ β then, as
δˆ〈ε′, y′〉 ⊃ βˆ〈ε, y〉, η ⊇ βˆ〈ε, y〉 which would contradict the induction hypothesis
with η for α. Thus if aν,z is defined at v and not restrained with priority at least
β, it is put into A and so the marker becomes undefined.

We are now in the same situation as when we jumped to βˆ〈ε, y〉: a node
extending βˆ〈ε, y〉 is accessible and either aν,z is undefined or restrained with
priority at least β. As before, this produces a contradiction to the assumption
that a counterexample is produced at substage u.

Finally, we deal with the case that, at u, we consider jumping to some αˆ〈ε′, y′〉
from a γ associated with some 〈ε′, y′〉 which is to the right of βˆ〈ε, y〉. The
argument proceeds as in the previous case (with α for δ and u for v) until we
reach the conclusion that (at u) aν,z is undefined when we are about to redefine
α’s restraint and so its S set or it is restrained with priority at least β for the
required contradiction.

ii) By Lemma 3.2, there is a point t at which αˆ〈ν, z〉 becomes accessible by
jumping to it from a node γ associated with 〈ν, z〉 which is to the right of αˆ〈ν, z〉.
As γ is associated with 〈ν, z〉, ν ⊂ γ by definition, and so if 〈ν, z〉 ≤ 〈ε, y〉, ν ⊆ ε
as required. Of course, 〈ν, z〉 /∈ S(γ, t) for any γ < α (and so, a fortiori, for
any γ < βˆ〈ε, y〉 ≤ α) or we could not have jumped to αˆ〈ν, z〉. Thus ν ⊆ ε or
ν ⊇ βˆ〈ε, y〉 as required. 2

23

Lemma 3.5. If α ⊇ βˆ〈ε, y〉 and α is assigned to requirement Re′,y′ and is asso-
ciated with 〈ε′, y′〉 then either ε′ ⊂ ε or ε′ ⊇ βˆ〈ε, y〉.

Proof. Suppose ε and ε′ are assigned to Re and Re′, respectively. By the defi-
nition of the pair associated with α, ε′ ⊆ α. By Lemma 3.3(ii), ε ⊂ β (there is a
stage at which βˆ〈ε, y〉 is accessible since α ⊇ βˆ〈ε, y〉 is assigned a requirement.)
Thus the only concern is that ε ⊆ ε′ ⊂ β. Suppose first that e′ ≤ e. By construc-
tion, a node ε′ ⊃ ε can be assigned to Re′ with e′ ≤ e only if there is some δˆ 〈ν, z〉
with ε ⊂ δˆ 〈ν, z〉 ⊂ ε′ such that ν is assigned to a requirement Rn with n < e.
Let δˆ 〈ν, z〉 be the first such node. Let t be a stage at which βˆ〈ε, y〉 is accessible.
Now by Lemma 3.4, ε ⊆ ν or ε ⊇ δˆ〈ν, z〉. The latter possibility contradicts
our assumption that ε ⊂ δˆ 〈ν, z〉. The former contradicts our assumption that
δˆ 〈ν, z〉 is the first instance of the phenomenon that would allow us to have a
node between ε and β assigned to an Ri with i < e (since ν ⊂ δ by Lemma 3.3
applied to 〈ν, z〉 ∈ S(δ, s)).

Now consider the possibility that e < e′ and let βˆ〈ε, y〉 be the longest node
contained in α which provides a counterexample to the Lemma. By definition,
≤βˆ〈ε,y〉 is the final segment of ≤ε starting after Re with all Re,y′ removed. Of
course, Re′ precedes any Re′,y′ by our conventions on the original priority ordering.
(Changes in the ordering always produce a final segment of a previous ordering
with perhaps some Ri and all its subrequirements removed.) Thus as long as we
stay inside this ordering, we must have a node δ assigned to Re′ before α and
so α would be associated with 〈δ, y′〉 and not 〈ε′, y′〉. The only way we can get
outside this ordering is for us to restart at a higher point, i. e. to get a δˆ〈ν, z〉
with βˆ〈ε, y〉 ⊂ δˆ 〈ν, z〉 ⊂ α with ν ⊂ βˆ〈ε, y〉. In this case, Lemma 3.4 would
tell us that ν ⊆ ε. This would then contradict the choice of βˆ〈ε, y〉 as the last
node contained in α providing a counterexample with α. 2

Lemma 3.6. If we jump from a node α to a node βˆ〈ε′, y′〉 at stage s, then
βˆ〈ε′, y′〉 <L α. Thus if δ is accessible after γ at stage s, then δ <L γ or δ ⊃ γ.

Proof. Of course, we can only jump to βˆ〈ε′, y′〉 from α if α is associated with
〈ε′, y′〉. Now, the second claim is immediate from the first which we now prove.
If β <L α, the first assertion is clear. Otherwise, β ⊂ α as we only jump to
successors of nodes of higher priority. If βˆ1 ⊆ α or βˆ0 ⊆ α, then the claim
is again obvious as βˆ〈ε′, y′〉 <L βˆ1 <L βˆ0. The only other possibility is that
βˆ〈ε, y〉 ⊆ α for some 〈ε, y〉. By Lemma 3.5, ε′ ⊂ ε or ε′ ⊇ βˆ〈ε, y〉. Lemma

24

3.3, however, tells us that ε′ < β and so ε′ ⊂ ε. Thus 〈ε′, y′〉 < 〈ε, y〉 and so by
definition of the ordering βˆ〈ε′, y′〉 <L βˆ〈ε, y〉 ⊆ α as required.2

Lemma 3.7. Each stage s of the construction eventually terminates.

Proof. We proceed by induction on s. Assume we have finished every stage
less than s and the current priority tree is T which is necessarily finite. As all
new nodes added to the priority tree during stage s must be below nodes in T by
construction, there is a leftmost node α0 in T which is ever accessible at stage s.
Suppose it is accessible at substage v0. By our choice of α0 and Lemma 3.6, all
nodes accessible at substages v > v0 must extend α0. Let T0 be the finite priority
tree constructed by substage v0. Again all nodes added after v0 must extend nodes
in T0 and so there is a leftmost node α1 in T0 that is ever accessible during stage s.
If we did not terminate the construction upon reaching α0, α1 ⊃ α0. Continuing
on by induction we must either terminate stage s or build a strictly increasing
sequence of accessible nodes. Of course, we must then terminate stage s as well
as the nodes must eventually become longer than s. 2

Lemma 3.8. A node α associated with 〈ε, y〉 can be accessible at some substage
u of stage s only if εˆ∞ (and so also ε) was previously accessible at s.

Proof. First, we note that it is clear from the construction that εˆ∞ can
become accessible only immediately after ε becomes accessible. We now prove
the Lemma by induction on the (sub)stages of the construction. Suppose for
the sake of a contradiction that substage u of stage s is the first point at which
a counterexample occurs. By definition, α ⊃ ε. If α ⊇ εˆ0, then α could be
assigned to requirement Re,y only if we first restart the priority ordering at some
point before Re. In this case, some node δ would be assigned to Re before any
to Re,y and so α would be associated with 〈δ, y〉. Thus α ⊇ εˆ∞. Consider the
first substage v ≤ u of stage s at which some β ⊃ εˆ∞ becomes accessible before
εˆ∞ has become accessible. We must have jumped to β ⊃ εˆ∞ from a node γ
to the right of εˆ∞. γ is associated with some 〈ε′, y′〉 ∈ S(δ, v) and β = δˆ〈ε′, y′〉
for some δ ⊇ εˆ∞. So by Lemma 3.3, ε′ ⊂ δ. As no node extending εˆ∞ has
been previously accessible at s by our choice of β ⊃ ε, and ε′ has been accessible
by our inductive hypothesis (after all γ which is associated with 〈ε′, y′〉 is already
accessible), ε′ ⊂ ε. Now, by Lemma 3.5, no node extending β is associated with
〈ε, y〉. Thus, as long as the accessible nodes continue to be extensions of β, we

25

cannot produce the assumed counterexample. If any node β ′ = δ′ˆ〈ε′′, y′′〉 not
extending β ever later becomes accessible at a substage t of stage s, it does so
because we jumped to it from some γ′ ⊇ β with γ′ associated with 〈ε′′, y′′〉 and
〈ε′′, y′′〉 ∈ S(δ′, t). Now, by Lemma 3.3 again, ε′′ ⊂ ε′ and we are in the same
situation as with β and ε′. The Lemma now follows by induction (on the number
of such jumps). 2

Lemma 3.9. Suppose ρ is assigned to a requirement of the form Ne or Re,y and
there is a stage s0 of the construction after which no node to the left of ρ is ever
accessible. Then there is a stage s1 ≥ s0 after which ρ is never initialized or
injured and a stage s2 ≥ s1 after which both r(ρ, t) and S(ρ, t) are constant.

Proof. We begin by noting that no node γ < ρ assigned to any requirement Pi
can act to put a number into A after s0 as that would make γˆ1 accessible when
it had not been so before (we act at most once for any Pi by construction).

Next, we note that there are only finitely many nodes α <L ρ on T by s0.
Although we may add immediate successors to these nodes α after s0 none of these
successors are ever accessible and so none of them define restraints or auxiliary
sets or get successors of their own. Of course, there are also only finitely many
nodes α ⊆ ρ. Thus we may prove the Lemma for the nodes α < ρ by induction on
the priority ordering. Suppose therefore that we have established the Lemma for
all γ < α ≤ ρ with the point t′ (after s0) of the construction as the least witness
to the fact that never again is such a γ initialized or its restraint r(γ, v) injured
or increased (and so its auxiliary set S(γ, v) also never changes again). We now
we wish to prove the Lemma for α which is assigned a requirement Ne or Re,y.

First of all, α can be initialized only when some node to the left of α is
accessible and so never after s0. We next prove that r(α, v) is never injured after
t′.

If there is no point in the construction after t′ at which r(α, v) is defined,
there is nothing to prove. So suppose substage v0 of stage t0 is the first point
after t′ at which r(α, v) is defined. As no node of higher priority than α which is
assigned to a requirement of the form Pi ever acts again and all of lower priority
ones are prohibited from putting a number less than r(α, v) into A, no action for
any requirement Pi can be the first to directly injure r(α, v) (i. e. by putting in
a follower less than this restraint). The only other nodes γ that initiate putting
elements into A are nodes associated with some 〈ε′, y′〉. Suppose such a node γ is
accessible at a substage v1 (of stage t1 ≥ t0) after v0. Let β be the highest priority

26

node such that 〈ε′, y′〉 ∈ S(β, v1). If α ≤ β then the dumping action for γ cannot
directly put any number less than r(α, v1) into A by construction. Suppose β < α.
In this case, we either increase r(β, v) or declare βˆ〈ε′, y′〉 accessible. The former
is not possible by our inductive assumption that the β restraint has settled down
for all β < α. In the latter case, βˆ〈ε′′, y′′〉 ⊆ α for some 〈ε′′, y′′〉 ≤ 〈ε′, y′〉 since
no node to the left of α can be accessible. Remember that we are concerned that
some aε,y ≤ r(α, v1) is about to be put into A by our immediate action for γ.
Thus by definition, 〈ε, y〉 ∈ S(α, v1). So, by Lemma 3.4, aε,y is restrained with
priority at least β or 〈ε, y〉 ≤ 〈ε′′, y′′〉 (and so 〈ε, y〉 ≤ 〈ε′, y′〉) or ε ⊃ βˆ〈ε′′, y′′〉. In
each of these cases our dumping action for γ cannot directly put such a number
aε,y into A by the definition of this action (case (3) of Re,y).

Thus to show that r(α, v) is never injured after t′ it suffices to prove that if
only numbers greater than r(α, v) are put into A directly by any requirement at
points v after v0 then the cascade they initiate also puts only numbers greater
than r(α, v) into A.

The crucial claim here is that if any aε′,y′ is less than r(α, v) and bε′,y′ was
put into Bε′ by γ (assigned to Re′,y′) at substage v′ of stage s′ before v then
φe′(A; y)[s′] ≤ r(α, t) for every point t of the construction that is after v. This
claim clearly suffices for our purposes by the definition of the cascade procedure.
It is certainly true at v0 when we define r(α, v) as it is set to be a new large
number. The only worry is that for some aε′,y′ ≤ r(α, v), some γ may put a
bε′,y′ into Bε′ at some substage v′ of a stage t after v with φe′(A; y′)[t] larger than
r(α, v′). As 〈ε′, y′〉 ∈ S(α, v) ⊆ S(α, v′) (it has not been initialized by induction)
and no higher priority η can have its restraint increased by assumption, α must
be the highest priority node with 〈ε′, y′〉 ∈ S (α, v′) and so we set r(α, v′) to be a
new large number (and so bigger than φe′(A; y′)[t]) at v′ by construction. Thus
r(α, v) is never injured after t′.

Now r(α, v) changes only when some bε′,y′ enters Bε′ for some 〈ε′, y′〉 ∈ S(α, v).
Once bε′,y′ enters Bε′ at substage u of stage t, φε′(A; y′)[t] ≤ r(α, u). As this
restraint is never injured, aε′,y′ is never put into A and so bε′,y′ never becomes
undefined. (The only other way for bε′,y′ to become undefined is for ε′ to be
initialized. However, 〈ε′, y′〉 ∈ S(α, v) and so ε′ < α by Lemma 3.3 and, by our
assumption, no node of higher priority than α is ever initialized again.) Thus, for
each 〈ε′, y′〉 ∈ S(α, t), bε′,y′ can enter Bε′ at most once. As r(α, v) changes only
when such a bε′,y′ enters Bε′, to prove that r(α, v) eventually stabilizes, it clearly
suffices then to show that S(α, v) is eventually constant.

When first defined S(α, v) consists of a finite set. It expands at a later point

27

t by our putting in those 〈ε′′, y′′〉 for which aε′′,y′′ is defined only when some bε′,y′
is put into Bε′ by some γ where 〈ε′, y′〉 ∈ S(α, t). Remember that, by Lemma 3.3,
this implies that ε′ < α. Now, by construction, before we put bε′,y′ into Bε′ we put
into A every aε′′,y′′ with ε′′ 6⊇ αˆ〈η, z〉 for any 〈η, z〉 such that 〈ε′′, y′′〉 > 〈ε′, y′〉
and aε′′,y′′ is not restrained by requirements of priority at least α and so make
such aε′′,y′′ undefined. The markers with ε′′ ⊇ αˆ〈η, z〉 for some 〈η, z〉 are then
initialized by the construction and so do not make any contribution to S(α, v).
Of course, the restraints of strictly higher priority than α have already stabilized
by our choice of v0 and so 〈ε′′, y′′〉 is already in S(α, t) for all aε′′,y′′ ever restrained
by any requirement with strictly higher priority than α. Thus every new 〈ε′′, y′′〉
put into S(α, v) is strictly smaller than 〈ε′, y′〉 in the lexicographic ordering of
such pairs. As there are only finitely many ε′ < α, there are only finitely many
such pairs that can ever be put into S(α, v). Thus this process of putting a new
bε′′,y′′ into Bε′′ and new pairs into S(α, v) must eventually stop and so S(α, v) is
eventually constant as required.2

We would now like to argue that the requirements are satisfied along the true
path. However, because of the possibility of jumping to the left there may be
gaps in the set of leftmost nodes visited infinitely often. We consider instead the
classes TN of true nodes and STN of semitrue nodes rather than the true path.
We must prove that such exist and that every requirement is assigned to some
true node.

Definition 3.10. The set of true nodes, TN, is defined as follows:

TN = {α|α is accessible infinitely often
but no β <L α has this property}.

The set of semitrue nodes, STN, is defined as follows:

STN = {α| infinitely often some γ ⊇ α is accessible
but no β <L α has this property}.

Lemma 3.11. TN ⊆ STN which is an infinite path in T .

Proof. It is clear from the definitions that TN ⊆ STN which is linearly ordered
by ⊆. Suppose α ∈ STN . We must show that some immediate successor of α
is in STN . If α has only finitely many immediate successors, this is immediate

28

from the definition of STN . If α is assigned to a requirement of the form Pi or
Ri then it has only two possible immediate successors. If it is assigned to some
Ni or Ri,y then it has only finitely many immediate successors by Lemma 3.9. 2

Lemma 3.12. If δˆ〈ν, z〉 ∈ STN , then there is an ε ⊆ ν ⊂ δ and a βˆ〈ε, y〉 ⊇
δˆ〈ν, z〉 such that ε, βˆ〈ε, y〉 ∈ TN .

Proof. First, note that, by Lemma 3.3, ν ⊂ δ. At the first substage u of any
stage s at which some node ρ ⊇ δˆ〈ν, z〉 in STN becomes accessible, we must
jump to ρ from a node γ to the right of δˆ〈ν, z〉. Thus ρ must be of the form
βˆ〈ε, y〉 and γ must be associated with 〈ε, y〉. By Lemma 3.4, ε ⊆ ν. (We cannot
have ε ⊇ δˆ〈ν, z〉 because γ is associated with 〈ε, y〉 (which implies that ε ⊂ γ)
and is to the right of δˆ〈ν, z〉.) If there is a single such node ρ that is accessible
infinitely often, it supplies the desired witness for the Lemma. Otherwise, there
must be an infinite sequence of distinct such βiˆ〈εi, yi〉 ∈ STN and we must jump
to each of them from some γi to the right of δˆ〈ν, z〉. As STN is linearly ordered
by extension, we may assume that βiˆ〈εi, yi〉 ⊂ βi+1ˆ〈εi+1, yi+1〉. As above, each
εi ⊂ ν. As there are only finitely many nodes contained in ν, there is a node ε
which is the value of εi for infinitely many i. By Lemma 3.4, we would then have
an infinite nonascending sequence 〈ε, yj〉 in the lexicographic ordering. This can
only happen if the yj are eventually constant. This would mean that there are
βi ⊂ βj such that 〈εi, yi〉 = 〈εj, yj〉 = 〈ε, y〉. This cannot happen for we can never
jump to βjˆ〈ε, y〉 as the instructions of the construction would always send us to
βiˆ〈ε, y〉 instead. 2

Lemma 3.13. Every requirement of the form Pi, Ni or Ri is assigned to some
node α ∈ TN . Every requirement of the form Re,y is assigned to a node α ∈ TN ;
or some node of the form βˆ〈ε, y〉 is in TN ; or εˆ0 with ε assigned to Re is in
TN . Moreover, for each requirement Q assigned to a node α ∈ TN there is a last
node α ∈ TN which is assigned to Q.

Proof. We define two sequences of nodes εi, βiˆ〈εi, yi〉 in TN as follows: ε0 = ∅;
if εi is defined and in TN , we let εi+1 be the first node in TN extending βiˆ〈εi, yi〉
such that some βi+1ˆ〈εi+1, y

′〉 ∈ TN and let yi+1 be the least such y′. (We consider
β0ˆ〈ε0, y0〉 to be ∅ for technical convenience.) If there is no such node, the sequence
terminates. Suppose the nodes εi are assigned to the requirements Rei .

We claim that the nodes in the interval (βi, εi+1] are all in TN and are assigned
requirements from <βiˆ〈εi,yi〉 in order except that if a node ν is assigned to Re and

29

νˆ0 is in the interval, then all requirements Re,y are left out. Moreover, <εi+1

(if it exists) is just <βiˆ〈εi,yi〉 starting immediately after Rei+1 with all such Re,y

omitted. (Of course, <βiˆ〈εi,yi〉 itself was just <εi starting after Rei with all Rei,y

omitted.) If εi+1 does not exist, we simply claim that, after βi, STN = TN and
we just keep assigning requirements from <βiˆ〈ε,iyi〉 in this way.

We proceed by induction through the nodes in the interval (which are all in
STN by definition if εi+1 exists). We start with βiˆ〈εi, yi〉. It is in TN and
assigned the first element of <βiˆ〈εi,yi〉 by definition. Suppose we have reached
γ ∈ TN but not yet εi+1. If γ is assigned some requirement of the form Pi or
Ri then the immediate successor γˆw in STN is accessible infinitely often and
so in TN . Unless γ is assigned to Ri and w = 0, the priority ordering <γˆw

is just that <γ with the first element removed and we continue the induction.
Otherwise, <γˆw is <γ with Ri and all Ri,y removed and we also continue the
induction. Suppose then that γ is assigned to a requirement of the form Ni or
Ri,z. Let w be such that γˆw ∈ STN . If w = 0, 1, γˆw ∈ TN and we are in the
same situation as for Pi. If w is of the form 〈ν, z〉 then, by Lemma 3.12, there
are ε ⊂ γ and βˆ〈ε, y〉 ⊇ γˆw such that ε, βˆ〈ε, y〉 ∈ TN . If ε ⊇ βiˆ〈εi, yi〉, then
εi+1 exists by definition and ε ⊇ εi+1 by minimality of εi+1. In this case, we have
finished the induction argument by arriving at εi+1. Otherwise, we argue for a
contradiction. By Lemma 3.4, ε ⊆ εi and 〈ε, y〉 ≤ 〈εi, yi〉. Let j < i be least
such that εj ⊂ ε ⊆ εj+1. By minimality of εj+1, ε = εj+1. By Lemma 3.4 again,
〈ε, y〉 ≤ 〈εj+1, yj+1〉 but as ε = εj+1 and yj+1 was chosen least, y = yj+1. In this
case βˆ〈ε, y〉 could never be accessible (we would always jump to βj+1ˆ〈εj+1, yj+1〉)
for the desired contradiction.

Thus, as we proceed through the nodes in the intervals (βi, εi+1] in TN (if
there is a last node εi we understand the interval (βi, εi+1] to be all of STN = TN
after εi), we assign all requirements in order except those Re,y such that e = ei
for some i or such that one of these nodes γ is assigned to Re and γˆ0 is also one
of these nodes and so in TN . Moreover, it is clear that, once we have assigned a
requirement Q to a node α in some interval (βi, εi+1], we never again assign Q to
any other node β ∈ TN . 2

We are now ready to prove that the requirements are satisfied and the con-
struction succeeds.

Lemma 3.14. Each requirement Pe and Ne is satisfied, i. e. A 6= Φe and ΦA
e 6= C.

30

Proof. Consider a node α ∈ TN assigned to Pe. By Lemma 3.9, the restraints
r(γ, s) for γ < α are eventually constant. Thus it is immediate from the instruc-
tions for α that there is some x such that Φe(x) 6= A(x) by α’s actions if not by
some other means. Next, consider an α ∈ TN assigned to Ne. Suppose x is a
follower of α after all action for higher priority nodes has ceased and so appointed
after α is initialized in that way for the last time. If Φe(A; x)[s] = 0 at any later
stage, we put x into C and preserve the computation. It is never injured by
Lemma 3.9 and so Φe(A; x) = 0 6= C(x). If Φe(A; x)[s] 6= 0 for any later stage s,
Φe(A; x) 6= 0 = C(x). Thus in either case, ΦA

e 6= C. 2

Lemma 3.15. If the hypotheses of Re hold, i. e. WA
e = ΨK

e , and ε ∈ TN is
assigned to Re then neither εˆ0 nor any node βˆ〈ε, y〉 is in TN .

Proof. Suppose WA
e = ΨA

e and ε ∈ TN is assigned to Re. We first show that
for any x there is an ε-stage s such that `(ε, s) > x. By our assumptions, there is
an ε-stage r such that, for every t ≥ r and y ≤ x, Ψe(K; y)[t] = Ψe(K; y) with use
ψe(y) and, if y ∈WA

e (i. e. Φe(A; y) ↓), then Φe(A; y)[t] = Φe(A; y) with use φe(y).
Thus for y < x, y ∈ WA

e , Ψε(K; y)[t] = Ψe(K; y) = Φε(A; y)[t] = Φe(A; y) = 1
for every ε-stage t > r. Let u be the first A-true stage after r. (Recall that
u is an A-true stage if no number less than that enumerated in A at u is ever
enumerated in A after u.) Let s be the first ε-stage greater than or equal to u.
It is now immediate from the definitions that WA

ε (y)[s] = Ψε(K; y)[s] for every
y ≤ x and so `(α, s) > x as required. (The only possible concern is for y /∈ WA

e .
Of course, Ψε(K; y)[s] = Ψe(K; y) = 0 by assumption. If, however, Φε(A; y)[s] ↓,
then the use of this computation at s is the same as at the previous ε-stage t. As
r ≤ t ≤ u ≤ s and u is an A-true stage, this could happen only if the computation
at s is actually A-correct, contradicting our assumption that y /∈WA

e . Thus εˆ∞
is accessible infinitely often as required.)

Next suppose that some βˆ〈ε, y〉 ∈ TN for the sake of a contradiction. βˆ〈ε, y〉
can be accessible only when there is a node γ ⊇ εˆ∞ associated with 〈ε, y〉which is
accessible at a stage s such that Φe(A; y) ↓ and aε,y is defined and so Ψe(K; y) = 1
(as aε,y is defined and so `(ε, s) > y). In order for βˆ〈ε, y〉 to become accessible our
action at γ must kill the computation Φe(A; x). As βˆ〈ε, y〉 ∈ TN , this happens
infinitely often and so x /∈ WA

e but there are infinitely many stages at which
Ψe(K; x) = 1 for the desired contradiction. 2

We can now conclude the proof of the Theorem with the following Lemma.

31

Lemma 3.16. If WA
e = ΨK

e and ε is the last node on TN assigned to Re then
WA
e ≤T Bε ⊕ A and Bε ≤T WA

e ⊕ A.

Proof. First, by Lemma 3.13, there is a last node ε ∈ TN assigned to Re.
By Lemmas 3.13 and 3.15 there is, for each y, a node α ∈ TN associated with
〈ε, y〉. Moreover, for each y we eventually define markers bε,y, aε,y and, if they ever
become undefined, we redefine them at the next εˆ∞-stage. Let α be the node on
TN below ε assigned to Re,y and sα the stage s2 proved to exist Lemma 3.9. Now
if bε,y is ever in Bε at an α-stage s after sα, Lemma 3.9 states that the restraint
now imposed (by α if not by some requirement of higher priority) that protects
the computation associated with Φe(A; y) because of which we put bε,y into Bε is
never injured and so aε,y /∈ A and y ∈WA

e . On the other hand, it is obvious from
the construction that if y ∈ WA

e then we must eventually have bε,y ∈ Bε at an
α-stage s > sα.

Now, in general, bε,y may enter Bε at some stage s > sα which is not an α-stage
[it can be put in by some γ assigned to Re,y which is to the right of the true path].
However, this can only happen if Φe(A; y)[s] is convergent and Ψe(K; y) = 1[s]. If
A is not correct on the use φe(A; y)[s] then, when A changes, we put aε,y into A
by construction. If this happens infinitely often then y /∈WA

e but Ψe(K; y) = 1[t]
for infinitely many t and so WA

e 6= ΨK
e for a contradiction. Thus y ∈ WA

e if and
only if we eventually have a pair of markers such that bε,y ∈ Bε and aε,y /∈ A while
y /∈ WA

e if and only if there is eventually a marker bε,y /∈ Bε. This shows that
WA
e ≤T Bε ⊕ A.
Finally, we prove that Bε ≤T WA

e ⊕ A. To decide if some b is in Bε we wait
until stage b to see if b has been appointed as a marker bε,y for some y. If not then
b 6∈ Bε. If so then we see if y ∈ WA

e . If so then the construction guarantees that
bε,y ∈ Bε. If not then bε,y can enter Bε at t > b only if aε,y is later put into A (at
a stage when the computation Φe(A; y)[t] is seen to be incorrect). Thus we ask if
aε,y ∈ A. If so then b = bε,y is in Bε if and only if it has entered by the stage at
which aε,y is put into A. If aε,y 6∈ A then b = bε,y /∈ Bε. 2

4. Bibliography

Arslanov, M. M. [1985], Structural properties of the degrees below 0′, Sov. Math.
Dokl. N.S. 283 no. 2, 270-273.

Arslanov, M. M. [1988], On the upper semilattice of Turing degrees below 0′,
Sov. Math. 7, 27-33.

32

Arslanov, M. M. [1990], On the structure of degrees below 0′, in Recursion
Theory Week, K. Ambos-Spies, G. H. Müller and G. E. Sacks eds., LNMS 1432,
Springer-Verlag, Berlin, 1990, 23-32.

Arslanov, M. M., Lempp, L. and Shore, R. A. [1995], On isolating r. e. and
isolated d-r. e. degrees, to appear.

Cooper, S. B. [1971], Degrees of Unsolvability , Ph. D. Thesis, Leicester Uni-
versity, Leicester, England.

Cooper, S. B. [1990], The jump is definable in the structure of the degrees of
unsolvability, Bull. Am. Math. Soc. (NS) 23, 151-158.

Cooper, S. B. [1991], The density of the low2 n-r. e. degrees, Arch. Math.
Logic 31, 19-24.

Cooper, S. B. [1992], A splitting theorem for the n-r. e. degrees, Proc. Am.
Math. Soc. 115, 461-471.

Cooper, S. B. [1993], Definability and global degree theory, in Logic Colloquium
’90, J. Oikkonen and J. Väänänen eds., Lecture Notes in Logic 2, Springer-Verlag,
Berlin, 25–45.

Cooper, S. B. [1994], Rigidity and definability in the noncomputable universe,
in Proceedings of the 9th International Congress of Logic, Methodology and Philos-
ophy of Science, D. Prawitz, B. Skyrms and D. Westerstahl eds., North-Holland,
Amsterdam, 1994, 209–236.

Cooper, S. B. [1995], On a conjecture of Kleene and Post, to appear.
Cooper, S. B., Harrington, L., Lachlan, A. H., Lempp, S. and Soare, R. I.

[1991], The d-r. e. degrees are not dense, Ann. Pure and Applied Logic 55, 125-
151.

Cooper, S. B., Lempp, S. and Watson, P. [1989], Weak density and cupping in
the d-r. e. degrees, Israel J. Math. 67, 137-152.

Cooper, S. B. and Yi, X. [1995], Isolated d-r. e. degrees, to appear.
Ding, D. and Qian, L. [1995], An r. e. degree not isolating any d-r. e. degree,

to appear.
Epstein, R. L., Haas, R. and Kramer, R. L. [1981], Hierarchies of sets and

degrees below 0′, in Logic Year 1979-80, M. Lerman, J. H. Schmerl and R. I.
Soare eds., Springer-Verlag, LNMS 859, Berlin, 32-48.

Ershov, Y. [1968a] On a hierarchy of sets I, Algebra i Logika 7 no. 1, 47-73.
Ershov, Y. [1968b] On a hierarchy of sets II, Algebra i Logika 7 no. 4, 15–47.
Ershov, Y. [1970] On a hierarchy of sets III, Algebra i Logika 9 no. 1, 34-51.
Gold, E. M. [1965], Limiting recursion, J. Symb. Logic 30, 28-48.

33

Ishmukhametov, Sh. T. [1985], On differences of recursively enumerable sets,
Izv. Vyssh. Uchebn. Zaved. Mat. 279, 3-12.

Jockusch, C. G. Jr. and Shore, R. A., [1984], Pseudo-jump operators II: Trans-
finite iterations, hierarchies and minimal covers, J. Symb. Logic 49, 1205-1236.

Kaddah, D. [1992], Ph. D. Thesis, University of Wisconsin, Madison.
Kaddah, D. [1993], Infima in the d-r. e. degrees, Ann. Pure and Applied Logic

62, 207-263.
LaForte, G. [1995], Phenomena in the n-r. e. and n-REA degrees, Ph. D.

Thesis, University of Michigan.
Nerode, A. and Shore, R. A. [1979],Second Order Logic and First Order Theo-

ries of Reducibility Orderings in The Kleene Symposium, J. Barwise, H. J. Keisler
and K. Kunen, eds., North-Holland, 181-200.

Nerode, A. and Shore, R. A. [1980], Reducibility Orderings: Theories, Defin-
ability and Automorphisms, Ann. Math. Logic, 18, 61-89.

Putnam, H. [1965], Trial and error predicates and the solution to a problem
of Mostowski, J. Symb. Logic 30, 49-57.

Robinson, R. W. [1968], A dichotomy of the recursively enumerable sets, Z.
Math. Logik Grundl. Math. 14, 339-356.

Sacks, G. E. [1961], A minimal degree less than 0′, Bull. Am. Math. Soc. 67,
416-419..

Sacks, G. E. [1963], On the degrees less than 0′, Ann. Math. (2) 77, 211-231.
Sacks, G. E. [1964], The recursively enumerable degrees are dense, Ann. Math.

(2) 80, 300-312.
Shore, R. A. [1982], On Homogeneity and Definability in the First Order The-

ory of the Turing Degrees, J. Symb. Logic, 47, 8-16.
Slaman, T. A. and Woodin, W. H. [1996], Definability in Degree Structures, in

preparation.
Soare, R. I., [1987], Recursively Enumerable Sets and Degrees, Springer-Verlag,

Berlin.
Soare, R. I. and Stob, M. [1982], Relative recursive enumerability, in Proc.

Herbrand Symposium, Logic Colloquium 1981, J. Stern, ed., North-Holland, Am-
sterdam, 299-324.

34

