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Abstract

We study the Medvedev degrees of mass problems with distinguished topo-
logical properties, such as denseness, closedness, or discreteness. We inves-
tigate the sublattices generated by these degrees; the prime ideal generated
by the dense degrees and its complement, a prime filter; the filter generated
by the nonzero closed degrees and the filter generated by the nonzero dis-
crete degrees. We give a complete picture of the relationships of inclusion
holding between these sublattices, these filters, and this ideal. We show that
the sublattice of the closed Medvedev degrees is not a Brouwer algebra. We
investigate the dense degrees of mass problems that are closed under Turing
equivalence, and we prove that the dense degrees form an automorphism base
for the Medvedev lattice. The results hold for both the Medvedev lattice on
the Baire space and the Medvedev lattice on the Cantor space.

1 Introduction

The Medvedev lattice M was introduced by Medvedev, [7], in order to provide a
computational semantics for constructive propositional logic: see for instance [7],
[15], [18], [20]. On the other hand, Medvedev reducibility, whose degree struc-
ture gives rise to the Medvedev lattice, provides a novel computability-theoretic
reducibility paradigm which is interesting in its own right. For instance, it is not
difficult to see that classical degree structures such as the Turing degrees and the
enumeration degrees can be embedded into the Medvedev lattice. But, perhaps more
interestingly, Medvedev reducibility is a reducibility on sets of reals, not just reals,
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so its domain of discourse is a very interesting mathematical structure, namely the
Baire space (or the Cantor space, if we confine ourselves to 0-1-valued functions).
As such, Medvedev reducibility and the Medvedev lattice make it possible, from a
computability-theoretic point of view, to discuss and study properties of topological
objects such as closed, dense and discrete sets of reals. In this paper we investigate
the sublattices generated by the closed, dense and discrete Medvedev degrees; we
study the prime ideal generated by the dense degrees and its complement, a prime
filter; we also study the filter generated by the nonzero closed degrees, and the filter
generated by the nonzero discrete degrees. We describe the relationships of inclusion
holding between these sublattices, these filters, and this ideal. We show that the
sublattice of the closed Medvedev degrees is not a Brouwer algebra. Among other
things, we also investigate the dense degrees of mass problems that are closed under
Turing equivalence, and we prove that the dense degrees form an automorphism
base for the Medvedev lattice. The results hold both of the Medvedev lattice on the
Baire space and of the Medvedev lattice on the Cantor space.

In the rest of this section, we briefly introduce notions, terminology and back-
ground material that are relevant to this paper. For other unexplained notions and
terminology, the reader is referred to any standard textbook, such as [3], [6], [10], or
[16]. Let ωω denote the collection of all functions from the set ω of natural numbers
into itself. If A is any set, by A∗ we denote the set of all finite sequences, or strings,
of elements of A. We use standard notations and terminology for strings. In partic-
ular, λ denotes the empty string; if σ, τ ∈ A∗ and f is a function f : ω −→ A then:
σˆτ denotes the concatenation of σ and τ ; |σ| denotes the length of σ; σˆf denotes
the function

σˆf(x) =

{
σ(x), if x < |σ|,
f(x− |σ|), otherwise;

we use σ ⊆ τ to denote that σ is an initial segment of τ , and σ ⊂ f to denote that
the string σ is an initial segment of the function f ; we write σ|τ to mean that σ and
τ are ⊆-incomparable. We let 〈a0 · · · an−1〉 denote the string of length n formed by
the elements a0, · · · , an−1 of A.

For every string σ ∈ ω∗, let

[[σ]] = {f ∈ ωω : σ ⊂ f} .

The Baire topology on ωω is the topology generated by the basic open neighbor-
hoods {[[σ]] : σ ∈ ω∗}. With this topology, ωω is called the Baire space. In view
of this topology, finite strings will be sometimes also called basic neighborhoods,
or intervals. Notice that each [[σ]] is also closed. The Baire space is a complete
metric space. Restriction to the set 2ω of 0-1-valued functions gives the Cantor
space, which up to homeomorphisms can be characterized as the unique space that
is compact, Hausdorff, without isolated points, and with a countable base (provided
by {[[σ]] : σ ∈ 2∗}, where 2 = {0, 1}) of clopen (i.e. closed and open) sets. For
properties of the Baire space and the Cantor space see for instance [5].
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Let ϕfn be the partial function computed with oracle f by the oracle Turing
machine with index n (see [16] for an introduction to oracle Turing machines). In
the following, by a Turing functional on the Baire space we mean a partial mapping
Ψ : ωω −→ ωω for which there exists some n such that domain(Ψ) =

{
f : ϕfn total

}
,

and for every f ∈ domain(Ψ) and x ∈ ω, Ψ(f)(x) = ϕfn(x). This also gives us an
effective listing {Ψn}n∈ω of the Turing functionals. If Ψ = Ψn is a Turing functional
and σ is a string, then Ψ(σ) denotes the partial function Ψ(σ)(x) = ϕσn(x): for
details see [16, Definition 1.7]. When necessary we can also regard Ψ as a mapping
from strings to strings by identifying Ψ(σ) with the longest string ρ ⊆ Ψ(σ). Turing
functionals on the Cantor space, and related definitions, are defined similarly.

A mass problem is any subset A ⊆ ωω. On mass problems one can define ([7];
see also [10], section XIII.7) the following reducibility relation ≤,

A ≤ B ⇔ (∃n)[Ψn(B) ⊆ A],

i.e. A ≤ B if there is a uniform Turing reduction procedure by means of which
any function in B computes some function of A. Let ≡ denote the equivalence
relation generated by ≤. The ≡-equivalence class of a mass problem A, denoted by
degM(A), is called the Medvedev degree (or simply, the M-degree) of A, or the degree
of difficulty of A. We use boldface capital letters A,B, . . . to denote Medvedev
degrees.

The collection of Medvedev degrees is not only a partial order, but in fact:

Theorem 1.1 ([7]) The Medvedev degrees form a distributive lattice with 0, 1, de-
noted by M.

Proof. We sketch the proof for later reference. We define the following operations
∨ and ∧ on mass problems A,B:

1. A ∨ B = {f ⊕ g : f ∈ A and g ∈ B}, where, given partial functions ϕ and ψ,
we let

ϕ⊕ ψ(x) =

{
ϕ(y), if x = 2y,
ψ(y), if x = 2y + 1;

2. A∧ B = 〈0〉ˆA∪ 〈1〉ˆB, where for a given string σ and a given mass problem
A,

σˆA = {σˆf : f ∈ A} .

It is now easy to see (for an easy reference, see for instance [10, Section XIII.7])
that these operations on mass problems can be used to define the operations of
supremum ∨, and infimum ∧, on Medvedev degrees as

degM(A) ∨ degM(B) = degM(A ∨ B),

degM(A) ∧ degM(B) = degM(A ∧ B).
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These operations distribute over each other: for instance, one can easily check that,
for all mass problems A,B, C,

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C).

Finally, the least degree 0 is defined as 0 = degM(A), where A contains some
computable function; and the greatest degree 1 is defined as 1 = degM(∅). �

It is known that M has cardinality 22ℵ0 ([9]), although each Medvedev degree
has big cardinality, as shown by the following:

Lemma 1.2 Every M-degree contains 22ℵ0 different mass problems.

Proof. LetA be any mass problem. For every mass problem B we have by absorption
that A ≡ (A ∨ B) ∧ A; since different B’s produce different mass problems of the
form (A ∨ B) ∧ A, the claim is proved. �

We recall that a Brouwer algebra is a distributive lattice L with 0, 1, equipped
with a binary operation →, satisfying for all a, b ∈ L,

a→ b = min {c : b ≤ a ∨ c} .

Lemma 1.3 ([7]) M is a Brouwer algebra.

Proof. We give the proof for later reference. If A,B are mass problems, then define
a new mass problem

A → B = {〈z〉ˆg : (∀f ∈ A)[Ψz(f ⊕ g) ∈ B]} .

It is easy to see that B ≤ (A → B)∨A, and B ≤ C ∨A if and only if (A → B) ≤ C.
Thus we can extend to degrees by defining

degM(A)→ degM(B) = degM(A → B),

thus showing that M is a Brouwer algebra. �

Definition 1.4 An M-degree in M is called closed (respectively: dense, discrete) if
it contains a mass problem that is closed (respectively: dense, discrete) in the Baire
space.

The following two lemmas record known facts. (By a sublattice, we mean also
that the least element and the greatest element are preserved.)

Lemma 1.5 ([2]) The closed Medvedev degrees form a sublattice, MCl.
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Dyment, [4], shows that there is no greatest dense Medvedev degree. However:

Lemma 1.6 ([4]) The dense Medvedev degrees, with the addition of 1, form a sub-
lattice, MDe. The discrete Medvedev degrees form a sublattice, MDi.

If we restrict our attention to mass problems that are subsets of the Cantor
space, and use for reduction on these mass problems Turing functionals on the
Cantor space, we get in a similar way a Brouwer algebra, denoted by M0,1, called
the Medvedev lattice on the Cantor space.

The Medvedev degree in M01 of a mass problem A ⊆ 2ω will be denoted by
degM01(A). Similarly to the Medvedev lattice on the Baire space, an M-degree in
M01 is called closed (respectively: dense, discrete) if it contains a mass problem
that is closed (respectively: dense, discrete) in the Cantor space. Thus, in analogy
with the Baire space, one can consider the sublattices formed by the closed (dense,
discrete) degrees, denoted by M0,1

Cl (M0,1
De , M0,1

Di ): in order to get lattices with a
greatest element, for M0,1

De , M0,1
Di , in analogy with the Baire space case, one has to

add the top element 1.
For every f ∈ ωω define (viewing a function as an infinite sequence)

f 01 = 〈1f(0)01f(1)01f(2) · · · 〉

where 1x denotes 1 · · · 1︸ ︷︷ ︸
x times

. Notice that the assignment f 7→ f 01 is a Turing functional

and provides a homeomorphism between ωω and the subset G of the Cantor space,

G = {g ∈ 2ω : (∃∞x)[g(x) = 0]} .

Given A ⊆ ωω, define the mass problem A01 ⊆ 2ω, as A01 = {f 01 : f ∈ A}; and
given B ⊆ G, define Bω = {f ∈ ωω : f 01 ∈ B}.

Theorem 1.7 The embedding ι : M01 −→ M given by ι(degM01(B)) = degM(B)
is an isomorphism. The isomorphism maps closed degrees to closed degrees; the
isomorphism, and its inverse, map dense (discrete) degrees to dense (discrete) de-
grees. In particular M0,1

De 'MDe and M0,1
Di 'MDi, where ' denotes lattice-theoretic

isomorphism.

Proof. Notice that if A ⊆ ωω then A ≡ A01, and A is dense (discrete) if and only if
so is A01. Moreover, if B ⊆ G, then B ≡ Bω and B is dense (discrete) if and only if
so is Bω. Notice also that every closed B in the Cantor space is also closed in the
Baire space. The rest of the proof is a routine check. �

It is worth noticing that if A is closed in the Baire space, then A01 need not be
closed in the Cantor space: for instance, choose a noncomputable f and take

A = {〈n〉ˆf : n ∈ ω} .

Then the constant function g(x) = 1 is in the closure of A01 (since for every n,
〈1n〉ˆ〈0〉ˆf 01 ∈ A01), but not in A01.
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Remark 1.8 In the rest of the paper we do not specify whether we work in the Baire
space or in the Cantor space, in those cases in which proofs for both M and M01

are, mutatis mutandis, virtually the same, or the Cantor case immediately transfers
to the Baire space and vice versa, by the isomorphism provided by Theorem 1.7. Of
course, mass problems have to be meant as mass problems in the Baire space or in the
Cantor space, and Turing functionals must be regarded as Turing functionals on the
Baire space or the Cantor space, according to the case. When distinctions between
the Cantor space and the Baire space are necessary (for instance when dealing with
closed degrees, or with perfect trees) we will treat each case separately.

Finally we observe that the Turing degrees and the enumeration degrees can
be viewed as substructures of the Medvedev lattice. Since f ≤T g if and only if
{f} ≤ {g}, it is immediate to observe ([7]) that the Turing degrees embed into the
Medvedev lattice, via an embedding preserving least element 0 and join operation
∨. Medvedev degrees of singletons are usually called degrees of solvability.

If A is a set then let
EA = {f : range(f) = A} ,

and let EA = degM(EA). If A 6= ∅, then EA is called the problem of enumerability
of A, and EA is called the degree of enumerability of A. As already observed by
Medvedev, [7], if B 6= ∅ then A ≤e B if and only if EA ≤ EB, thus the degrees of
enumerability are isomorphic with the enumeration degrees (preserving 0 and ∨).

2 The closed Medvedev degrees

Since MCl is a sublattice of M, it is natural to ask if it is also a Brouwer subalgebra,
or at least a Brouwer algebra.

Theorem 2.1 MCl is not a Brouwer algebra.

Proof. In fact, if f, g are functions such that {g} 6≤ {f} and f is the characteristic
function of a 1-generic set, then for every closed mass problem C such that {g} ≤
{f} ∨ C, we can construct a function h such that C 6≤ {h} and {g} ≤ {f} ∨ {h}.
To show this, let f, g be as above: without loss of generality, we may assume that
also g is a characteristic function, so we start in fact with sets A,B such that A is
1-generic, and B 6≤T A. Let C be a closed mass problem such that for every k ∈ C,
k 6≤T A. We want to build a suitable h as the characteristic function of a set D. In
the rest of the proof we often identify A, B, and the set D to be constructed, with
their respective characteristic functions f, g, h. We recall that a set X is 1-generic
if for every c.e. set W of strings in 2∗, there is a σ ⊂ X such that either σ ∈ W , or
for every τ ⊇ σ, τ /∈ W .

We aim at constructing D so that k 6≤T D for all k ∈ C, and

B ≤T A⊕D.

6



We construct D by a finite extension argument. In order that A⊕D should compute
B we use the following coding: the nth bit of B will be A(m) where m is the nth
bit on which A and D differ. At stage s we define a finite initial segment τs of D.

Stage 0. Let τ0 = λ.
Stage s + 1. Suppose we have defined τs. We want to ensure that Ψs(D) is

partial or lies outside C. Suppose τs is of length n and let E be A with the first n
bits replaced by τs, i.e.

E(i) =

{
τs(i), if i < n;
A(i), if i ≥ n.

We distinguish the following two cases:

1. Ψs(E) is partial. Then there must be some finite initial segment of E which
is sufficient to force partiality. In order to see this suppose otherwise, and let
m be the least number such that Ψs(E)(m) ↑. Then the c.e. set of strings

V = {σ : Ψs(σ)(m) ↓}

can be transformed into a c.e. set V ′ to give a witness that A is not 1-generic –
just let Ψs be replaced by any Turing functional Φ such that for every function
k, Φ((A � n)ˆk) = Ψs(τsˆk), where A � n is the initial segment of A of length
n. In this case, then, we can take an initial segment of E sufficient to force
partiality. This still codes B correctly, because this initial segment agrees with
A on its new bits. Then extend it to a suitable τs+1 so as to code the next bit
of B, B(s).

2. Ψs(E) is total. In this case Ψs(E) /∈ C because Ψs(E) ≤T A and nothing in C
is computable in A. Because C is closed we can take τ such that τs ⊆ τ ⊂ E,
and nothing extending Ψs(τ) is in C. Finally, choose τs+1 to be some finite
extension of τ which codes the next bit B(s) of B.

�

Corollary 2.2 M0,1
Cl is not a Brouwer algebra.

Proof. The above proof works for M0,1 as well, as h is built as a function that lies
in the Cantor space. �

Remark 2.3 Recall that Muchnik reducibility ≤w on mass problems (see [8]) is the
nonuniform version of Medvedev reducibility: A ≤w B if

(∀f ∈ B)(∃g ∈ A)[g ≤T f ].

7



The equivalence classes of mass problems under the equivalence relation ≡w gen-
erated by ≤w are called Muchnik degrees. It is well known, see [8], that Muchnik
reducibility gives rise to a Brouwer algebra on Muchnik degrees, called the Much-
nik lattice. The proof of Theorem 2.1 shows that the result stated therein holds of
Muchnik reducibility too: if f, g are as in the proof of the theorem then there is no
closed mass problem C such that {g} ≤w C ∨ {f} and C ≤w D for all closed D such
that {g} ≤w D ∨ {f}. Thus the lattice of closed Muchnik degrees is not a Brouwer
algebra: see also Simpson’s result, [14], stating that the lattice of Muchnik degrees
of (lightface) Π0

1 classes does not form a Brouwer algebra.

3 The dense Medvedev degrees

We now turn our attention to the dense Medvedev degrees, i.e. the Medvedev
degrees containing some dense mass problem. It might be worth noticing that the
property of M-degrees of not being dense does not coincide at all with the property
of being nowhere dense. Indeed, every M-degree is nowhere dense, in the sense that
it contains some nowhere dense mass problem: to see this, for every mass problem
A we have that A ≡ A∨{f} when f is computable, and A∨{f} is nowhere dense.

Given a poset P = 〈P,≤〉, we recall that a subset B ⊆ P is an automorphism
base for P, if every automorphism F of P which is the identity on B, is also the
identity on P . We begin our investigation on the dense degrees with the following
result.

Theorem 3.1 The dense Medvedev degrees form an automorphism base of M.

Proof. Suppose that A and B are mass problems and A 6≤ B. We show that there
exists a dense D such that D ≤ A, but D 6≤ B. (This is enough to show that the
dense degrees form an automorphism base of the Medvedev lattice. Indeed, suppose
that F is an automorphism which is the identity on the dense degrees, and F (A) = B
where A 6≤ B: if D is dense, D ≤ A, and D 6≤ B, then D = F (D) ≤ F (A) = B,
a contradiction.) So, let A ∈ A, B ∈ B, and construct a dense D as follows. For
every Turing functional Ψ, since A 6≤ B, choose a function f = fΨ ∈ B such that
Ψ(f) ↑ or Ψ(f) /∈ A, and let

D = {g : (∀Ψ)[g 6= Ψ(fΨ)]} .

Then D 6≤ B; moreover D ≤ A since A ⊆ D; finally D is dense since its complement
is countable. �

Next, we introduce a class of dense degrees that are particularly useful in exam-
ples and applications:
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Definition 3.2 For every f , let

Bf = {g : g 6≤T f} ,

and let Bf = degM(Bf ).

Mass problems of the form Bf , for some f , and their respective M-degrees have
been extensively used in the literature concerning the Medvedev lattice, see e.g.
[18]. For instance, it is known, see [18, Lemma 2.2] that each Bf is join-irreducible
and meet-irreducible: in fact, join-irreducibility follows from the fact that for every
noncomputable f ,

Bf ∧ degM({f}) = max {A : A < Bf} .

Moreover:

Theorem 3.3 For every non-computable f , the non-zero M-degrees of the form Bf

are exactly the M-degrees X satisfying M |= ϕ(X), where ϕ(v) is the first order
formula in the language of posets,

ϕ(v) := (∃u < v)(∀w < v)(w ≤ u).

As a consequence the M-degrees of the form Bf , for some function f , are first-order
definable in M.

They are also characterized by:

Bf = min {A : A 6≤ degM({f})} .

Since the M-degrees of the form degM({f}) (called the degrees of solvability) are
first-order definable ([4]), this provides another first-order definition of the Bf ’s.

Proof. By the remark preceding the Theorem, it suffices show that if B is an M-
degree satisfying ϕ(v), then B = Bf , for some f . Let A be the greatest M-degree
strictly below B. By Dyment’s characterization of empty intervals in [4], there exists
an f such that A = B ∧ degM({f}), and B 6≤ degM({f}). Let B ∈ B. It follows
that B 6≤ {f} hence B ⊆ Bf , hence Bf ≤ B. On the other hand Bf 6≤ B ∧ {f}.
Hence B ≡ Bf . �

Question 3.4 Is MDe a Brouwer subalgebra of M, or at least a Brouwer algebra?
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4 Ideals and filters

We recall some basic notions and definitions of lattice theory. For more details see
for instance [1].

Definition 4.1 In a lattice L = 〈L,∨,∧,≤〉 a nonempty subset I ⊆ L is said to be
an ideal if for all x, y ∈ L,

y ∈ I and x ≤ y ⇒ x ∈ I,
x, y ∈ I ⇒ x ∨ y ∈ I.

Let I be an ideal of L. I is proper if I 6= L. A proper ideal is prime if for all
x, y ∈ L,

x ∧ y ∈ I ⇒ x ∈ I or y ∈ I.

If L is a lattice then the ideal I generated by a nonempty subset X ⊆ L (i.e. the
smallest ideal under inclusion, containing X) is given by

I =
{
a : (∃F ⊆ X)[F finite, F 6= ∅ and a ≤

∨
F ]
}
.

The dual notion of an ideal is that of a filter. It is well known (see e.g. [1]) that I
is a prime ideal if and only if the complement Ic is a prime filter.

Definition 4.2 ([4]) Let I be the ideal generated by the dense degrees.

The following is trivial by Lemma 1.6:

I = {A : (∃D ∈MDe − {1}) [A ≤ D]} .

It is shown in [17] that I is not principal. We will show in Theorem 5.5 that the
dense degrees themselves do not form an ideal. Moreover:

Corollary 4.3 ([17]) I is prime.

Proof. We give the proof for later reference. Suppose that A ∧ B ≤ D where D is
dense, and let Ψ be a Turing functional providing the reduction. Suppose that there
exists an initial segment α such that Ψ(α)(0) = 0. Then consider

D− = {f : αˆf ∈ D} .

Clearly D− is dense, and the Turing functional Φ(f) = Ψ(αˆf) reduces D− to A,
showing that degM(A) ∈ I. A similar argument shows that degM(B) ∈ I if we
assume that there exists an initial segment α such that Ψ(α)(0) = 1. Since one of
these cases must hold, we have proved that either degM(A) ∈ I or degM(B) ∈ I. �

Hence:
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Corollary 4.4 ([2]) The complement of I is a prime filter, denoted by F.

It is shown in [2] that F is not principal.

Definition 4.5 ([2]) Let FCl be the filter generated by the nonzero closed Medvedev
degrees.

The following is trivial by Lemma 1.5

FCl = {A : (∃C ∈MCl − {0}) [A ≥ C]} .

It is shown in [17] that FCl is not principal.3 We will see in Theorem 6.5 that
the nonzero closed degrees themselves do not form a filter.

Lemma 4.6 If A and B are mass problems such that B is closed, and B 6≤ A then,
for every C,

B ≤ A ∨ C ⇒ C nowhere dense.

Proof. Let B 6≤ A, with B closed. The claim follows from the proof of Theorem 2.8
in [19], which shows that if B is closed and D is dense then D → B ≡ B. Therefore it
suffices to observe that if B ≤ A∨C and C is dense in some interval then there exists
a dense D such that B ≤ A∨D (if C is dense in, say, [[α]], then D = {f : αˆf ∈ C}
is dense and C ≤ D), hence B ≡ D → B ≤ A, giving B ≤ A, a contradiction.

For the ease of the reader we include, however, a direct proof of the claim.
Suppose that B ≤ A∨C via a Turing functional Ψ, where B is closed and C is dense
in the basic neighborhood [[α]]. Consider the following Turing functional Φ: On
input f , compute Φ(f)(x) by recursion as follows: suppose that Φ(f)(x − 1) ↓ (if
x > 0) and we have already computed relatively to f a finite string αx−1 ⊇ α (with
α−1 = α). Then look for the first pair β, αx of finite strings (of the same length)
such that β ⊂ f , αx−1 ⊆ αx and Ψ(β ⊕ αx)(x) ↓. Define Φ(f)(x) = Ψ(β ⊕ αx)(x);
otherwise Φ(f)(x) is undefined. Let now f ∈ A. Notice that by density of C in
[[α]], for every x there is a function g ∈ C extending αx−1 such that Ψ(f ⊕ g)(x) ↓.
Thus for every x we can find β, αx as above, hence Φ(f) is total. On the other hand
suppose that for every x we pick gx ⊃ αx with gx ∈ C, and let hx = Ψ(f ⊕ gx):
then hx ∈ B, limx hx = Φ(f), and thus Φ(f) ∈ B since B is closed. This shows that
B ≤ A, a contradiction. �

Corollary 4.7 ([2]) FCl ⊆ F.

3Recently Paul Shafer has proved (personal communication) that FCl is not prime.
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Proof. The inclusion FCl ⊆ F follows by the previous lemma since we cannot have
C ≤ D if D is dense and C 6= 0 is closed. �

That strict inclusion holds in Corollary 4.7 has been shown in [2]. The proof
given there uses another interesting filter of the Medvedev lattice, namely the filter
generated by the nonzero discrete M-degrees. This filter will be denoted in this
paper by FDi. By Lemma 1.6, we have

FDi = {A : (∃C ∈MDi − {0}) [A ≥ C]} .

Dyment shows that if A does not contain computable functions and is discrete, then,
for every B,

A ≤ B ⇒ B nowhere dense.

Hence, FDi ⊆ F.
On the other hand, [2] shows

Theorem 4.8 ([2]) FDi 6⊆ FCl. Hence F 6⊆ FCl.

It is shown in [17] that FDi is not prime and the corresponding quotient lattice
has cardinality 22ℵ0 . Dyment, [4], shows that FDi is not principal. We will show in
Theorem 8.6 that the nonzero discrete degrees do not form a filter.

Remark 4.9 The ideals and filters introduced in this section have, of course, corre-
sponding versions in M01. By virtually the same proofs, all the results and properties
shown in this section remain unaltered if one replaces M with M01.

5 The ideal I generated by the dense degrees

We define a perfect tree in the Baire space to be a function T : 2∗ −→ ω∗ such that
for every σ, τ ∈ 2∗,

1. σ ⊆ τ ⇒ T (σ) ⊆ T (τ);

2. T (σˆ〈0〉)|T (σˆ〈1〉).

A perfect tree is computable if it is computable as a function. If T is a perfect
tree, then we denote by [T ] the set of infinite paths through T . The set [T ] is a
perfect (i.e. closed and without isolated points) subset of the Baire space. We also
say that a string τ is on T , if τ ⊂ f for some f ∈ [T ].

By abusing notation, we can also regard a tree T in the Baire space as a total
mapping T : 2ω −→ ωω, by letting

T (f) =
⋃
σ⊂f

T (σ).
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Then T is a homeomorphism of 2ω onto [T ]. Moreover if T is computable then the as-
sociated homeomorphism of 2ω with [T ], and its inverse T−1, are Turing functionals.
Notice that here T (f) ≡T f .

Definition 5.1 A mass problem A is dense in a perfect tree T if it is dense in [T ],
i.e. [T ] is contained in A, the closure of A in the Baire space.

Notice that in the above definition we do not require that A ⊆ [T ]. If T is
computable, this additional property implies that the M-degree of A is dense: see
Theorem 5.4.

If we require that the tree be a function T : 2∗ −→ 2∗, then we get the definition
of a perfect tree in the Cantor space. For perfect trees in the Cantor space, one can
make observations similar to those made for trees in the Baire space. In particular,
the set [T ] of infinite paths is a perfect subset of 2ω.

The following lemma relates trees in the Cantor space to trees in the Baire
space. Given a string σ ∈ ω∗, we define σ01 ∈ 2∗: if σ = 〈x0 · · ·xn−1〉 then σ01 =
〈1x001x10 · · · 1xn−10〉. Moreover, if σ ∈ 2∗ is a string whose final bit is 0, σ =
〈1x001x10 · · · 1xn−10〉, then we define σω ∈ ω∗, σω = 〈x0 · · ·xn−1〉. Finally, if T is a
perfect tree in the Baire space, then define T 01 : 2∗ −→ 2∗, by T 01(σ) = (T (σ))01,
and if T is a perfect tree in the Cantor space such that for every nonempty σ, T (σ)
ends with the bit 0, then define T ω : 2∗ −→ ω∗, by T ω(σ) = (T (σ))ω.

Lemma 5.2 Under the assumptions specified above, T 01 is a perfect tree in the
Cantor space, and T ω is a perfect tree in the Baire space.

Proof. Obvious. �

The given proof of the following theorem works, modulo obvious modifications,
both for M and M01. In addition to the usual caveats, one here has also to distin-
guish between trees in the Cantor space, or trees in the Baire space, depending on
whether one is looking for a proof suitable to M01 or to M.

Theorem 5.3 For every mass problem A of non-zero M-degree, if degM(A) ∈ I

then A is dense in some computable perfect tree.

Proof. Suppose that A ≤ D via the Turing functional Φ, and D is dense; we are
given that A does not contain computable functions. Define a computable perfect
tree T as follows:

1. T (λ) = λ;

2. Suppose we have defined T (σ); find the least quintuple τ0, τ1, ρ0, ρ1, s where
T (σ) ⊆ τi, ρi ⊆ Φ(τi)[s], and ρ0|ρ1. (Here the appendix [s] denotes that we
perform at most s− 1 steps in the computations). Then define T (σˆ〈i〉) = τi.

13



Such a triple τ0, τ1, s exists, since otherwise, by density of D and by the fact
that D ⊆ domain(Φ), we would have that for every f ⊃ T (σ) and f ∈ D,

Φ(f) =
⋃

T (σ)⊆τ

Φ(τ) :

a contradiction since Φ would map all functions in D∩ [[T (σ)]] to computable
functions.

Moreover, we can think of Φ◦T as a computable perfect tree too, by letting
Φ◦T (λ) = λ, and Φ◦T (σˆ〈i〉) = ρi, where ρi and s are as in the definition of
T (σˆ〈i〉) above. We now conclude the proof of our claim, by showing that A is
dense in Φ◦T . Let g ∈ [Φ ◦ T ], and assume that τ ⊂ g. Let σ be the least string
such that τ ⊆ Φ ◦ T (σ). By density, let h ∈ D, h ⊃ T (σ). Then Φ(h) ⊃ τ , and
Φ(h) ∈ A. �

Note that the tree T built in the above proof is a Φ-splitting tree, i.e. for every
σ there exists some x such that Φ(T (σˆ〈0〉))(x) ↓6= Φ(T (σˆ〈1〉))(x) ↓. We also
recall that a pair (σ0, σ1) of strings such that Φ(σ0)(x) ↓6= Φ(σ1)(x) ↓ is called a
Φ-splitting on x. (In the context of the Cantor space, see for instance [6] for details
on Φ-splitting trees, and Φ-splittings.)

Theorem 5.4 If T is a computable perfect tree, A ⊆ [T ] and A is dense in T then
degM(A) is dense.

Proof. Suppose that A is dense in some computable perfect tree T , with A ⊆ [T ].
Then A ≤ T−1(A) (viewing T and T−1 as Turing functionals), and T−1(A) is dense:
if σ is any interval, then A ∩ [[T (σ)]] 6= ∅, hence T−1(A) ∩ [[σ]] 6= ∅. �

Theorem 8.5 will show that there are M-degrees containing mass problems not
in I that are dense in some computable perfect tree.

One should not believe that all degrees in I are dense. In fact:

Theorem 5.5 There exists an A ∈ I such that A is not dense. So the dense degrees
are not an ideal.

Proof. (First proof.) The result easily follows from Corollary 4.3 and Lemma 4.6.
Indeed consider any mass problem A with degM(A) ∈ I and any mass problem
C such that degM(C) ∈ F such that A 6≤ C, hence A 6≤ A ∧ C: for instance take
A = Bf = {g : g 6 ≤Tf}, assume that f is not computable, and take C = {f}. Then
degM(A ∧ C) ∈ I, as A ∧ C ≤ A, but there is no dense D such that A ∧ C ≡ D,
since for such a D we would have A 6≤ D, hence C ≤ D−, for some dense D−, by the
proof of Corollary 4.3, giving degM(C) ∈ I.
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(Second Proof.) For a different, but perhaps more interesting and useful proof, we
present a direct construction of mass problems A and B such that B is dense, A ≤ B,
but A 6≡ D, for any dense D. In fact we construct A to be dense in the interval 〈0〉,
but not equivalent to any dense mass problem, so that the mass problems A and
B = {f : 〈0〉ˆf ∈ A} satisfy the claim. Notice that we do not specify below whether
we work in the Baire space or in the Cantor space, as the proofs for both cases are
virtually identical.

The construction of A is by steps. At step n we define a finite mass problem
An, and a sequence g0, g1, . . . , ghn of prohibited functions which are banned from
the final A, together with a sequence σ0, σ1, . . . , σkn of prohibited neighborhoods (all
extending 〈1〉), for which we want to guarantee that A ∩ [[σi]] = ∅ for the final A.
We guarantee that An ⊆ An+1, and that hn, kn are increasing in n. At the end of
the construction we take A =

⋃
nAn. We also guarantee that at the end of each

step s, there are still available neighborhoods, i.e. neighborhoods σ extending 〈1〉
that are not comparable with prohibited ones, and such that As∩ [[σ]] = ∅. At each
step, each parameter keeps the same value as at the preceding step if not explicitly
modified. Also let {σ0

i }i∈ω be a listing of the neighborhoods extending 〈0〉. Finally,
we fix some listing {(Ψn,Φn)}n∈ω of all pairs of Turing functionals.

Step 0: Let A0 = ∅, and h0 = k0 = −1.
Step n + 1: Let (Ψ,Φ) = (Ψn,Φn). The idea is to diagonalize against possible

reductions Φ(A) ⊆ D and Ψ(D) ⊆ A, with D dense. Pick an available neighborhood
ρ ⊇ 〈1〉, and let σ = ρˆ〈0〉: the choice of σ is motivated by the fact that if we prohibit
σ, then ρˆ〈1〉 will still be available.

We distinguish the following cases:

1. (∃∞f)[f not computable, Ψ(Φ(f)) /∈ An, and Ψ(Φ(f)) 6= f ]. In this case
pick such an f 6= g0, g1, . . . , ghn : let f ∈ An+1, prohibit Ψ(Φ(f)), by letting
hn+1 = hn + 1 and ghn+1 = Ψ(Φ(f)). Then the pair (Ψ,Φ) cannot be used in
any equivalence D ≡ A.

2. (∃τ ⊇ σ)(∀f ⊃ τ)[f noncomputable ⇒ Ψ(Φ(f)) ↑]. In this case choose such
a τ and pick a noncomputable f ⊇ τ , f 6= g0, g1, . . . , ghn , and let f ∈ An+1.
Then the pair (Ψ,Φ) cannot be used in any equivalence D ≡ A.

3. If neither of these first two cases hold and there exists a string τ ⊇ σ with no
Ψ◦Φ-splittings above it, then we can choose τ̂ ⊇ τ such that {g0, g1, . . . , ghn}∩
[[τ̂ ]] = ∅, pick a noncomputable f ⊃ τ̂ such that Ψ(Φ(f)) ↓, and let f ∈ An+1.
Then the pair (Ψ,Φ) cannot be used in any equivalence D ≡ A, since by
construction eventually A will not contain any computable function, whereas
by the absence of splittings, on the neighborhood [[τ̂ ]], Ψ◦Φ when defined
outputs computable functions, and thus Ψ(Φ(f)) is computable.

4. Otherwise, prohibit σ, by defining kn+1 = kn+1 and σkn+1 = σ. In this case, we
use the density of D to show that (Ψ,Φ) cannot witness an equivalence D ≡ A:
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We can build a computable perfect tree T , with T (λ) = σ, which is Ψ ◦ Φ-
splitting. For almost all noncomputable f ∈ [T ] we have that either Ψ(Φ(f)) ∈
An or Ψ(Φ(f)) = f . Thus by cardinality, in [T ] there are noncomputable
functions f such that Ψ(Φ(f)) = f . Pick such an f , and let τ ⊂ f be such
that Ψ(Φ(τ)) ⊇ σ (without loss of generality we may assume that Φ(τ) is in
fact a string). By the density of D there exists a g ∈ D such that g ⊃ Φ(τ),
but then Ψ(g) ⊇ σ, thus Ψ(g) /∈ A, since σ is prohibited.

At the end of Step n+ 1, take a noncomputable function f ⊃ σ0
n which has not

been prohibited so far, and let f ∈ An+1.
The observations made throughout the construction should make it clear that

the mass problems A and B = {f : 〈0〉ˆf ∈ A} have the required properties. �

Remark 5.6 The first proof of the previous theorem shows in fact that if A ∈ I,
C ∈ F, and A 6≤ C then

(∀D)[D dense and A ∧C < D⇒ A ≤ D];

in particular, if A is dense then,

A = min {D : D dense and A ∧C < D} .

Remark 5.7 How does one transfer proofs from the Cantor space to the Baire space,
and conversely? Often, proving either case is enough to get the remaining case as
an immediate consequence of the isomorphism given in Theorem 1.7. As observed in
Remark 1.8 a somewhat careful analysis should be made when closed mass problems
and perfect trees are concerned. For instance one can argue that proving Theorem
5.3 for the Baire space immediately yields the result for the Cantor space since T 01

is a computable perfect tree in the Cantor space if T is a computable perfect tree in
the Baire space. To get the result for the Baire space as a consequence of the result
for the Cantor space, one has to slightly modify the proof for the Cantor space, and
build a computable perfect tree T such that for every nonempty σ, T (σ) ends with the
bit 0. But this can be easily done, by defining T (λ) = λ, and in the inductive step,
T (σˆ〈i〉) = T (σ)ˆτiˆ〈0〉, where τi is as in the proof of Theorem 5.3. This guarantees
that T ω is a computable perfect tree in the Baire space. The argument then goes like
this: if A ≤ D and D is dense in the Baire space, then A01 ≤ D01 and D01 is dense
in the Cantor space. Therefore there exists a tree T in the Cantor space such that
for every nonempty string σ, T (σ) ends with the bit 0, and A01 is dense in T ; it is
then easy to conclude that A is dense in T ω.

Definition 5.8 A mass problem X is said to be ≡T-closed if

f ∈ X and f ≡T g ⇒ g ∈ X .
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Examples of ≡T-closed mass problems are mass problems that are upwards ≤T -
closed (whose M-degrees are called Muchnik degrees), and the Turing degrees (re-
garded as mass problems).

Theorem 5.9 If A and B are mass problems that are ≡T-closed and A is of nonzero
M-degree, then

A ≤ B ⇔ B ⊆ A.

Proof. Suppose first that we work in the Cantor space, and A,B ⊆ 2ω are mass
problems that are ≡T-closed, A does not contain computable functions, and A ≤ B,
via the Turing functional Φ. Let T be a computable perfect tree associated with B
(which is dense) and Φ as in the proof of Theorem 5.3. Let f ∈ B: then T (f) ≡T f ,
i.e. T (f) ∈ B, and since T is Φ-splitting, we have that Φ(T (f)) ≡T T (f) (see for
instance [6]), and thus f ∈ A since Φ(T (f)) ∈ A and A is ≡T-closed.

Next, we give the proof for the Medvedev lattice on the Baire space. Suppose
that A,B are as above, but A,B ⊆ ωω. Thus A01 ≤ B01, hence B01 ⊆ A01 by
the Cantor space case. If now f ∈ B then f 01 ∈ B01, hence f 01 ∈ A01 ⊆ A, but
f ≡T f

01, then by T-closure, f ∈ A. This shows that B ⊆ A. �

Remark 5.10 Notice that in the Cantor space, since T (f) ≡tt f and Φ(T (f)) ≡tt

T (f) in the above proof, this shows that the claim is true also for mass problems
that are ≡tt-closed, i.e. if A,B ⊆ 2ω are ≡tt-closed, then

A ≤ B ⇔ B ⊆ A.

Let MT be the sublattice of M generated by the M-degrees containing Turing
degrees (regarded as mass problems).

Theorem 5.11 For every n ≤ 2ℵ0 the free distributive lattice with 0, 1 on n gener-
ators is embeddable in MT.

Proof. It is enough to consider the case n = 2ℵ0 . Let L = 〈L,∨,∧, 0, 1 ≤〉 be the free
distributive lattice with 0, 1 on the generators {ai}i∈2ℵ0 . Choose a set of functions
{ti}i∈2ℵ0 whose T-degrees are independent, i.e. for every i ∈ 2ℵ0 and finite F ⊆ 2ℵ0 ,
ti ≤T

∨
j∈F tj implies i ∈ F : see [13] for the existence of such an independent set of

T-degrees. For every i ∈ 2ℵ0 let Ti = {g : g ≡T ti}, and Ti = degM(Ti). We claim
that the embedding ai 7→ Ti extends to a lattice theoretic embedding. The crucial
point is to show that∧

i∈I0
(
∨
j∈J0

i

ai,j) ≤
∧
i∈I1

(
∨
j∈J1

i

ai,j)⇔
∧
i∈I0

(
∨
j∈J0

i

Ti,j) ≤
∧
i∈I1

(
∨
j∈J1

i

Ti,j)
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where I0, I1, {J0
i }i∈I0 , {J1

i }i∈I1 are finite subsets of 2ℵ0 whose elements are in this
particular case identified with numbers, the ai,j’s are generators, and the mass prob-
lems Ti,j lie in {Ti}i∈2ℵ0 . If I is a finite set, whose elements are identified with num-
bers, then we can identify a mass problem of the form

∧
i∈I Ci (with the obvious

meaning by associativity) with
⋃
i∈I〈i〉ˆCi.

The nontrivial part is to show ⇐. So assume that∧
i∈I0

(
∨
j∈J0

i

Ti,j) ≤
∧
i∈I1

(
∨
j∈J1

i

Ti,j).

First we want to show that

(∀i ∈ I1)(∃r ∈ I0)[J0
r ⊆ J1

i ].

Assume i ∈ I1, then there is a Turing functional Ψ which reduces
∨
j∈J1

i
Ti,j to∧

i∈I0(
∨
j∈J0

i
Ti,j). Let r ∈ I0 be such that there is some function f ∈

∨
j∈J1

i
Ti,j

with Ψ(f) ∈ 〈r〉ˆ(
∨
j∈J0

r
Tr,j). As Ψ(f) ≡T

⊕
j∈J0

r
tr,j, it follows that

⊕
j∈J0

r
tr,j ≤T⊕

j∈J1
i
ti,j. Thus, by independence, J0

r ⊆ J1
j . But then

∨
j∈J0

r
ar,j ≤

∨
j∈J1

i
ai,j. Since

i is arbitrary, this shows that
∧
i∈I0(

∨
j∈J0

i
ai,j) ≤

∧
i∈I1(

∨
j∈J1

i
ai,j), as desired. �

6 The filter F

An obvious consequence of Theorem 5.3 is:

Theorem 6.1 If A is non-zero and contains some mass problem that is not dense
in any computable perfect tree then A ∈ F.

Also, by Lemma 4.6,

Corollary 6.2 For every mass problem A, if degM(A) ∈ FCl then A is nowhere
dense.

The following result uses the condition on the elements of F given in Theorem
6.1 to construct a degree that is in F but not in FCl. For a different construction see
[2, Corollary 3.7].

Theorem 6.3 There exists a countable mass problem A, of non-zero degree, such
that A is not dense in any computable perfect tree, and A 6≥ C for any closed C
unless C contains computable functions.
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Proof. Let {Te}e∈ω be a listing of all computable perfect trees. We build a mass
problem A of noncomputable functions, satisfying, for all e, the requirements:

Pe : Ψe(A) closed⇒ Ψe(A) contains a computable function

Ne : A not dense in [Te].

At stage s > 0 we define an approximation As to A, such that the closure As is
countable; moreover we define a neighborhood τ to be available if τ is not comparable
with any neighborhood that has been declared prohibited so far, and [[τ ]]∩As−1 = ∅.
At the end of each stage we guarantee that there remain available neighborhoods.

Stage s = 0: do nothing.
Stage 2e+ 1: Take the least available σ. If there exists a string τ ⊇ σ such that

for some noncomputable f ⊃ τ , Ψe(f) ↑, then let f ∈ A2e+1 for some such f ⊃ τ .
Otherwise, define by recursion three sequences τn, σn (of strings) and fn of func-

tions as follows:

1. let τ0 be the first string τ ⊇ σ for which Ψe(τ)(0) ↓, let σ0 = τ0ˆ〈1〉 and choose
a noncomputable function f0 ⊃ τ0ˆ〈0〉;

2. let τn+1 be the first string τ ⊇ σn for which Ψe(τ)(n) ↓, let σn+1 = τn+1ˆ〈1〉
and choose a noncomputable function fn+1 ⊃ τn+1ˆ〈0〉;

Let fn ∈ A2e+1 for all n. Notice that A2e+1 has countable closure if A2e has.
Stage 2e+2: Assume that we have already defined A2e+1, with countable closure.

Pick a neighborhood τ such that τ is on Te and [[τ ]]∩A2e+1 = ∅: such a neighborhood
exists since by cardinality we cannot have [Te] ⊆ A2e. Suppose that σ is the least
string such that τ ⊆ Te(σ). Define Te(σˆ〈0〉) to be prohibited. Notice that at next
stage there will be available neighborhoods, e.g. those extending Te(σˆ〈1〉). Notice
also that A2e+2 = A2e+1.

Finally take A =
⋃
sAs. This ends the construction. We now check that the

construction works.
To see that Pe is satisfied, consider the least available string σ at stage 2e+1, and

assume that Ψe is defined on all noncomputable functions f ⊃ σ. Then we define the
sequence fn ⊃ σ, with fn ∈ domain(Ψe) whose limit is

⋃
n σn ∈ domain(Ψe). But

then limn Ψe(fn) converges to the computable function Ψe(
⋃
n σn): thus if C ≤ A

via Ψe and C is closed, then C contains a computable function.
To show that Ne is satisfied, we observe that our action at stage 2e + 2 picks a

τ on Te and guarantees that A ∩ [[τ ]] = ∅. �

The above theorem provides also another proof, in addition to Theorem 4.8, that
FCl is strictly included in F.

Finally, Theorem 6.5 below shows that the nonzero closed degrees do not form a
filter, in other words the nonzero closed degrees are properly contained in FCl. We
first need the following lemma:
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Lemma 6.4 If B ≡ C and C is closed then B is either of countable degree or contains
a perfect set.

Proof. Suppose Φ(C) ⊆ B. If Φ(C) is countable then C ≥ Φ(C) ≥ B ≥ C and thus
B is of countable degree. If not then, as Φ(C) = {g : (∃f)[f ∈ C and Φ(f) = g]} is
analytic and uncountable, by a classical theorem due to Suslin (see for instance [5])
Φ(C) contains a perfect set, and thus so does B ⊇ Φ(C). �

Theorem 6.5 There is a closed A of nonzero degree, and a B ≥ A with B not of
closed degree.

Proof. By the Lemma, it suffices to construct a closed A not containing computable
functions, and a subset B ⊆ A which is not of countable degree and contains no
perfect subset. Suppose A is perfect and every member is of minimal Turing degree
(see for instance [6]). We build B in 2ℵ0 many stages (at stage α we define Bα) with
the condition that by the end of each stage we have put put fewer than 2ℵ0 many
elements of A into B, and have guaranteed that fewer than 2ℵ0 many (prohibited)
specified elements of A will never go into B.

As there are only 2ℵ0 many perfect sets Pα we may at stage α < 2ℵ0 guarantee
that Pα * B: If Pα * A then there is nothing to worry about. Otherwise, there is
an element f of Pα not yet in Bα and we satisfy the requirement by prohibiting f
from ever entering B, guaranteeing that f /∈ B.

Similarly there are only 2ℵ0 many countable sets. Let {(Cα,Φα)}α<2ℵ0 be an
enumeration of all pairs consisting of a countable set, and a Turing functional.
Without loss of generality we may assume that the Cα do not contain any computable
function. We act at stage α to guarantee that Φα(B) * Cα. If Φα(A) = {g : (∃f)[f ∈
A and Φα(f) = g]} is not countable, by Suslin’s theorem it contains a perfect subset
and so there are 2ℵ0 many elements of A on which Φα is one-one. We may choose one
of these f (that have not been prohibited so far from entering B) with Φα(f) /∈ Cα,
such that we can put f into B. This guarantees that Φα(B) * Cα. On the other
hand, if Φα(A) is countable, then there are 2ℵ0 many elements fβ of A such that
Φα(fβ) is partial for all β or there is an f such that Φα(fβ) = f for all β. In the
second case, as the fβ are of minimal degree, f is computable. If we now put one of
these fβ into B then we also guarantee that Φα(B) * Cα. This shows that B � C for
every countable C not containing computable functions, thus B is not of countable
degree. �

7 Quotient lattices

Let M/I denote the quotient lattice obtained dividing M by the ideal I.
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The equivalence class of a degree A will be denoted by A/I. We recall (see e.g.
[1]) that the partial ordering relation in M/I, denoted by ≤/I, is given by

A/I ≤/I B/I ⇔ (∃D ∈ I)[A ≤ B ∨D].

The following is an immediate consequence of Lemma 4.6:

Theorem 7.1 MCl embeds into M/I as a sublattice.

The next theorem shows that the congruence provided by I is not the identity
on the elements of F.

Theorem 7.2 There exist M-degrees A B in F such that B 6≤ A but in the quotient
M/I, [B]/I ≤/I A/I.

Proof. We show that there exist mass problems B, D and a singleton {T} such that
B does not contain any computable function and is not dense in any computable
perfect tree (hence its M-degree is in F), D is dense, B 6≤ {T} (where we identify T
with its characteristic function), and

B ≤ {T} ∨ D.

First define a perfect tree T by induction on the length of the input string as follows:

1. T (λ) = λ:

2. Suppose that we have defined T (σ) for all strings σ such that |σ| = e. Suppose
also that all T (σ) have the same length, say k. We define T (σˆ〈i〉): pick a
function f ∈ [Te], with say f(k) = j; then define T (σˆ〈i〉) = T (σ)ˆ〈uj〉ˆ〈i〉,
where uj = 0 if j 6= 0, and uj = 1 if j = 0.

Notice that [T ] (which is in fact a tree in the Cantor space) is not dense in any
computable perfect tree. Indeed, if Te is a computable perfect tree then there is an
f ∈ [Te] (the one we pick in the construction at the relevant stage) such that f � e+1
is incomparable with all T (τ) with |τ | = e+ 1. Now take D = {f : f ≡T T

′} (where
T ′ is the jump of T ), and let B = T (D): indeed it suffices to take any dense D whose
elements are not ≤T T . We have that D is dense, B is dense in no computable perfect
tree, and B 6≤ {T}: the last claim follows from the observation that f ≤T T ⊕T (f),
and thus T (f) ≤T T for no f ∈ D. Finally B ≤ {T} ∨ D, as desired. �

Let now M/F denote the quotient lattice obtained dividing M by the filter F. It

is known ([2]) that the cardinality of M/F is 22ℵ0 .
The equivalence class of a degree A will be denoted by A/F. We recall that the

partial ordering relation in M/F, denoted by ≤/F, is given by

A/F ≤/F B/F ⇔ (∃C ∈ F)[A ∧C ≤ B].

It is possible to show that the congruence associated with the filter is not the
identity on the elements of I.
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Theorem 7.3 There exist M-degrees A and B in I such that B 6≤ A but in the
quotient M/F, [B]/F ≤/F A/F.

Proof. Take B = Bf and A = Bf ∧ degM({f}), where f is not computable. Then
B ∧ degM({f}) ≤ A, and degM({f}) ∈ FCl ⊆ F. �

Question 7.4 What is the cardinality of M/I?

8 A few remarks on degrees of enumerability

A set A is of quasi-minimal e-degree if A is not c.e. and for every total function f ,
if f ≤e A then f is computable. Moreover, A is of nontotal e-degree if there is no
total function f such that f ≡e A.

Lemma 8.1 ([4]) If A ≤ EA and A is countable then there exists f ∈ A such that
f ≤e A. Thus if A has nontotal e-degree then EA does not contain any countable
mass problem.

Theorem 8.2 ([2]) If A is immune then EA ∈ FCl.

Proof. If A is immune then

EA ≥ {f : f 1− 1 and range(f) ⊆ A} ,

while the latter mass problem is clearly closed and of non-zero degree. �

There are quite natural classes of dense M-degrees that are bounded above by
degrees of enumerability. For instance, given any A let E≥e

A = {f : A ≤e f}: clearly
E≥e

A is dense and E≥e

A ≤ EA. It is known ([11]) that E≥e

A ≤ E≥e

B if and only if
A ≤e B. For another example of dense degrees below degrees of enumerability,
define E∗A = {f : range(f) =∗ A}, where =∗ denotes equality modulo a finite set.

Theorem 8.3 For every nonempty A, E∗A is dense and if A is not c.e. then E∗A < EA.

Proof. The only nontrivial part is to show that EA 6≤ E∗A if A is not c.e.: if EA ≤ E∗A
via the Turing functional Ψ then A =

⋃
σ∈ω∗ Ψ(σ), giving that A is c.e. . �

The degrees of enumerability turn out to be useful to derive easy observations
on I and F. We have already recalled that FCl 6⊆ FDi ([2]). The converse inclusion
does not hold either:

Corollary 8.4 FDi 6⊆ FCl
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Proof. Let A be an immune set of quasiminimal e-degree (see for instance [12]).
Then EA ∈ FCl by Theorem 8.2. On the other hand by Lemma 8.1, there cannot be
any nonzero countable (hence any nonzero discrete) M-degree C such that C ≤ EA.
�

Finally, we show that there are mass problems that are dense in some computable
perfect tree, but with M-degree not in I: see Theorem 5.3.

Theorem 8.5 There exists a mass problem A which is dense in some computable
perfect tree, but degM(A) /∈ I.

Proof. Let A be an immune set. Let x, y ∈ A, with x 6= y. We are going to show that
EA is dense in some computable perfect tree T , but on the other hand degM(EA) /∈ I

since by Theorem 8.2, EA ∈ F.
We define T as follows:

1. T (λ) = λ;

2. Suppose that we have defined T (σ). Then define:

T (σˆ〈0〉) = T (σ)ˆ〈x〉,
T (σˆ〈1〉) = T (σ)ˆ〈y〉.

Then T (σˆ〈0〉)|T (σˆ〈1〉) for every σ, and for every g ∈ [T ], range(g) ⊆ A, thus
[T ] ⊆ EA. �

Finally:

Theorem 8.6 There exist degrees A and B such that A 6= 0, A < B, and A
is discrete, but B is not discrete. Thus the nonzero discrete degrees are properly
contained in FDi.

Proof. Let f be a noncomputable total function, and let A be such that f <e A,
but dege(A) is not total. (In fact for every f there is such a set A, by relativizing
the construction of a quasiminimal e-degree.) Then {f} < EA, but by Lemma 8.1,
we have that deg(EA) does not contain any countable mass problem. �
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