
A nonlow2 r.e. degree with the extension of
embeddings properties of a low2 degree

Richard A. Shore∗

Department of Mathematics
Cornell Univeristy
Ithaca NY 14853

Yue Yang
Department of Mathematics

National University of Singapore
Singapore 119260

August 23, 2000

Abstract

We construct a nonlow2 r.e. degree d such that every extension of embedding
property that holds below every low2 degree holds below d. Indeed, we can also
guarantee the converse so that there is a low r.e. degree c such that that the
extension of embedding properties true below c are exactly the ones true below d.
Moreover, we can also guarantee that no b ≤ d is the base of a nonsplitting pair.

1 Introduction

Our goal in this paper is to show how constructions establishing properties shared by all
low2 r.e. degrees (i.e. ones c such that c′′ = 0′′) can be modified to construct a nonlow2

degree with the same properties. This implies that none of the properties considered (nor
indeed all of them together) can separate the low r.e. degrees from the nonlow2 ones. In
particular, none of them can define the low2 r.e. degrees inside the structure R of all the
r.e. degrees.

As examples, we consider the properties established for all low2 r.e. degrees in Shore
and Slaman [1990]. In particular, in §1 we consider extension of embedding properties.
(If X ⊆ Y are partial orderings with the same least and greatest elements 0 and 1, we say
that a partial ordering P (with 0 and 1) satisfies the extension of embedding property
for X and Y if every embedding of X into P (preserving 0 and 1) can be extended to
one of Y .) Thus we construct a nonlow2 r.e. D such that every extension of embedding

∗Partially supported by NSF Grant DMS-9802843 and a Visiting Distinguished Professorship at the
National University of Singapore.

1

property that holds below every low2 r.e. degree (i.e. in R(≤ c), the r.e. degrees below
c, for every low2 r.e. c) holds below d. We then explain in §2 how, in addition, we can
make any such property which fails below some low2 r.e. degree also fail below d. As
there is also a low r.e. c with this same property, we see that even the intersection of
all of these properties fails to distinguish between the low or low2 r.e. degrees and the
nonlow2 ones. In §3 we show how to simultaneously obtain a result previously obtained
directly by Cooper, Li and Yi [ta] by making d not bound any base of a nonsplitting
pair, i.e. for every u < v with u ≤ d there are v0 and v1 such that u < v0,v1 < v and
v0 ⊕ v1 ≡T v.

In the case of low2 degrees, all these constructions proceed by converting what would,
without the assumption of low2-ness, be infinite injury requirements into finite ones. The
crucial point typically is that some positive or negative action would become infinite when
some functional involved in the requirement appears total by having the lim sup of its
domain of convergence go to infinity but is not actually total. This problem is typically
handled by using the low2-ness of the oracle to guess at the totality the functional. The
true outcome is guessed infinitely often and the priority tree can be arranged so that it is
also the leftmost outcome guessed infinitely often. Thus, if we guess that the function is
not total, no action is necessary. On the other hand, if we guess that it is total then we are
assured of the guess being correct and we can act accordingly. In our constructions here,
we replace the guessing at totality by a requirement that forces the specific functional
being considered to actually be total if the lim sup of its domain goes to infinity. Not
surprisingly, the natural mechanism for such a procedure is the restraint typically imposed
to make a degree low2. What we do here is intersperse these requirements with ones that
instead make the set constructed nonlow2. The conflict between these requirement is
then the new feature of the construction. It is handled in the usual fashion of 0′′′ type
priority arguments.

2 Extension of Embeddings

We first consider satisfying extension of embedding properties. We briefly recall the
necessary definitions and notations and refer to Shore and Slaman [1990] for background
and other information.

We begin with the nonextendibility conditions. Let

{x0, . . . , xn} = X ⊆ Y = {x0, . . . , xn, y0, . . . , ym}

be partial orderings (with x0 = 0, the least element of Y and x1 = 1, the greatest element
of Y). The nonextendibility conditions are as follows.

i) For some i and j, xi � yi but

∀x ∈ X [∀x′ ∈ X (x′ < yi → x′ ≤ x)→ xj ≤ x].

2

ii) For some i and j, yi � xj but

∀x ∈ X [∀x′ ∈ X (yi ≤ x′i → x ≤ x′)→ x ≤ xj].

iii) For some i and j, yi � yj but

∀x, x′ ∈ X [∀x′′ ∈ X (x′′ < yj → x′′ ≤ x) & ∀x′′ ∈ X (yi ≤ x′′ → x′ ≤ x′′)→ x′ ≤ x].

Shore and Slaman [1990] proved the following Non-Extendibility Lemma and Ex-
tendibility Lemma for low2 r.e. degrees.

Lemma 2.1 (Shore and Slaman [1990)] If X ⊆ Y are partial orderings satisfying
one of the nonextendibility conditions then there is a low2 c and a monomorphism f :
X → R(≤ c) which cannot be extended to one of Y.

Lemma 2.2 (Shore and Slaman [1990)] Let X ⊆ Y be finite partial orderings not
satisfying any of the nonextendibility conditions. If c is an r.e. low2 degree and f : X →
R(≤ c) is a monomorphism given by xi 7→ deg Xi = xi for xi ∈ X , then there is an
extension of f given by yi 7→ deg Yi = yi for yi ∈ Y.

Next, we recall some notations. For each yj ∈ Y − X we let

Xg,j = ⊕{Xi|xi ≤ yj}

and

Xl,j = ⊕{Xi|∀x ∈ X (x ≥ yj → xi ≤ x)}.

Given enumerations Ws and Zs of r.e. sets W and Z, the associated length of agree-
ment function and maximum length of agreement function are defined as follows:

l(e, s,W,Z) = µx(¬[ΦWs
e,s (x) ↓= Zs(x)])

and

m(e, s,W,Z) = max{l(e, t,W,Z)|t ≤ s}.

The strategies to satisfy various comparability and incomparability requirements are
as follows.

a) The requirements that xi ≤ yj ⇒ Xi ≤T Yj are met by coding, i.e., making

Y
[0]
j = {0} ×Xg,j.

b) The requirements that yj ≤ xi ⇒ Yj ≤ Xi are met by permitting. Any number

entering Y
[>0]
j must be permitted by Xl,j.

3

c) The requirements that yi < yj ⇒ Yi ≤ Yj are also met by coding, i.e., making

Y
[i+1]
j = {i+ 1} × Y [>0]

i .

d) The requirements that xj � yi ⇒ Xj �T Yi are met by Sacks preservation. We
keep numbers out of Yi to preserve the computations of ΦYi

e through the maximum
length agreement m(e, s, Yi, Xj).

e) The requirements that yi � xj ⇒ Yi �T Xj are met by Sacks coding. We code Xl,i

into Yi up to the maximum length of agreement m(e, s,Xj, Yi).

f) The requirements that yi � yj ⇒ Yi �T Yj are met by both preservation and

coding. We keep numbers out of Yj to preserve the computations of Φ
Yj
e up to

m(e, s, Yj, Yi) and simultaneously code Xl,i up to this length of agreement into Yi.

In Shore and Slaman [1990], the condition that the top set C is low2 is used to guess
the totality of various functionals on the true path. We now see that there is a nonlow2

set which has the same extension of embedding properties.

Theorem 2.3 There is a nonlow2 r.e. degree d such that every extension of embedding
property that holds below every low2 r.e. degree holds below d, in other words, if X ⊆ Y
are finite partial orderings not satisfying any of the nonextendibility conditions and f :
X → R(≤ d) is a monomorphism given by xi 7→ deg Xi = xi for xi ∈ X , then there is
an extension of f given by yi 7→ deg Yi = yi for yi ∈ Y.

Description of Strategies We construct an r.e. set D. The primary requirements are of
two types. Me for the extension of embeddings and Re for nonlow2-ness.

Me is the eth instance of an extension of embedding problem as in Lemma 2.2. It
specifies finite partial orders Xe ⊆ Ye with elements xi, i < ne of Xe and yj, j < me

of Ye − Xe and an ordering �e and representatives Xe,i, i < ne of the elements of Xe
as r.e. sets along with functionals computing them from D, ΦD

e,i(x) = Xe,i(x). In later
constructions, we only use Xe,i up to ΦD

e,i, that is, even if a number x has entered Xe,i by
stage s, we still wait for confirmation that ΦD

e,i(x) ↓= 1 before we act on the basis of x’s
being in Xe,i. We assure that the positive ordering facts about �e are reflected in ≤T on

the Xe,i by requiring that if i ≺e j then X
[i]
e,j = {i}×Xe,i for i, j < ne. Me acts, if it can,

to guarantee the totality of the Φe,i by a restraint imposing requirement similar to those
used to make sets low2.

• Me: If the maximum length of agreement functions m(〈e, i〉, s,D,Xe,i) between
ΦD
e,i and Xe,i go to infinity for all i < ne then these functions are all total (and so

ΦD
e,i = Xe,i for all i < ne).

4

This goal is met by requiring that, each time a new maximum length of agreement has
been reached for every i < ne, lower priority requirements can injure computations below
this new maximum t only a finite number of times altogether. Roughly speaking, each
such requirement of lower priority with a candidate to put into D can use its current
candidate but all new ones appointed later must wait for the length of agreement at
Me to increase and then be chosen larger than all uses for numbers ≤ t. Alternatively, a
requirement higher up on the priority tree but associated with some global requirement Ri

of higher priority than Me may be allowed to injure all computations of some ΦD
e,i(m) for

all sufficiently large m. However, its injuring Me infinitely often corresponds to satisfying
Ri. In such cases, we restart Me above this outcome in the typical 0′′′ fashion.

The outcomes for Me are as usual: ∞ for the maximum length of agreement going to
infinity and 0 for its having a finite lim sup. In the latter case, we satisfy Me by default
and so do not put any subrequirements for Me on the tree above the outcome 0.

Above the outcome∞, we expect to enumerate sets Ye,j, j < me so that we produce an
order monomorphism from Y into R as long as the map given by xe,i 7→ deg(Xe,i) is itself
an order monomorphism. The positive aspects of the order preserving map conditions are
met by overriding coding and permitting requirements (a), (b), (c) on the enumerations
as in Shore and Slaman [1990]. The negative aspects of the order preserving map condi-
tions are achieved by the subrequirements Ne,i, Pe,i and Qe,i associated with Me. They
correspond to the requirements of type (d), (e) and (f), respectively, in Shore and Slaman
[1990]. These subrequirements act the same way as the corresponding requirements in
Shore and Slaman [1990] as far as imposing restraint on, and enumerating numbers into,
the Ye,j. Note that as far as these actions are concerned they do nothing to D and are not
influenced by any requirements other than Ne,k, Pe,k and Qe,k for k ∈ ω as in Shore and
Slaman [1990]. In addition, they replace the oracle guessing at totality using low2-ness
from Shore and Slaman [1990] by imposing low2-like restraint to guarantee the totality of
the relevant functionals if the associated maximum length of agreement goes to infinity.

We let i = 〈a, b, c〉 and Ψc list the partial recursive functionals for c ∈ ω. We list the
types of subrequirements. Their actions for coding into and preservation on the Ye,j are
as described in Shore and Slaman [1990]. In addition, they each have some functional
computed from D. We specify this functional below in terms of oracles involving Xe,j

and Ye,k but as all of these sets are uniformly computable from D (recall that the set
D is Xe,1, which is the top set of the partial ordering), we may uniformly view the
functional as one with oracle D. The requirements attempt to make this functional total
if its maximal length of agreement goes to infinity by appropriate restraint. Of course,
computations from the given oracles are only accepted when the required information
about the Xe,j is computed from D. It is worth pointing out that all computations are
automatically “believable” ones. In a typical tree argument we are often required to use
believable computations, i.e., ones not in conflict with the nodes assumptions about the
action of positive requirements below of higher priority, which may be expected to put
infinite recursive sets into the oracle. As we shall see later in the construction, if, at s, a
node α expects a higher priority node β to put numbers less than s into the oracle, then

5

whenever α is accessible, β has already put in those numbers.

We now list the subrequirements of Me explicitly to fix our notation.

• Ne,i: xe,a � ye,b ⇒ Ψ
Ye,b
c 6= Xe,a; Ψ

Ye,b
c total if limm(c, s, Ye,b, Xe,a) =∞.

• Pe,i: ye,a � xe,b ⇒ Ψ
Xe,b
c 6= Ye,a; Ψ

Xe,b
c total if limm(c, s,Xe,b, Ye,a) =∞.

• Qe,i: ye,a � ye,b ⇒ Ψ
Ye,b
c 6= Ye,a; Ψ

Ye,b
c total if limm(c, s, Ye,b, Ye,a) =∞.

The outcomes for N,P and Q type requirements are again∞ for the maximum length
of agreement going to infinity and 0 for its having a finite lim sup. If any of these re-
quirements, say Q, has an infinitary outcome ∞, i.e. the associated maximum length
of agreement goes to infinity, then the associated functional is total and we win Me by
demonstrating that one of the negative facts assumed about �e is false. (In Shore and
Slaman [1990], this corresponds to the argument that, as we are there assuming that all
these facts about �e are true, all the outcomes of requirements of type (d), (e) and (f) are
finite.) In this case, we restart all requirements of lower priority than Me above the infini-
tary outcome of Q but not, of course, Me (or any of its subrequirements). In particular,
note that if there is some Ri originating at a node between Me and this subrequirement
(and so of lower priority than Me) then Ri is restarted above the infinitary outcome of
Q as described below and so no subrequirements of the version of Ri originating between
Me and Q is put on the tree above the infinitary outcome of Q. If, along the true path,
all subrequirements of Me have finitary outcomes, we argue that the sets Ye,j constructed
satisfy the requirements to meet all the goals of Me.

We now consider the requirements for making D not low2. We build a single functional
Λ(D;x,m) and guarantee (via requirements Re) that for the eth Σ3 set

Σe = {x|∃m∀y∃z(θe(x,m, y, z) ↓)}

there is an x such that ΛD
x = {m|Λ(D;x,m) ↓} is infinite if and only if x /∈ Σe. The

point here is that {x|ΛD
x is infinite} is a ΠD

2 set and these requirements will guarantee
that it is not a Σ3 set. Thus D cannot be low2.

• Re: There is an x such that ΛD
x = {m|Λ(D;x,m) ↓} is infinite if and only if x /∈ Σe.

Re begins by choosing a witness x for diagonalization. As time goes by and Re

is accessible, it enumerates axioms for Λ(D;x,m) for each m. It has subrequirements
Se,x,m for each m. They test for m being a witness to the Σ3 fact that x ∈ Σe by looking
for verifications of the associated Π2 fact ∀y∃z(θe(x,m, y, z)) ↓ for successive y’s. The
outcomes of such a subrequirement are either ∞ or 0 depending on whether the Π2 fact
is true or not. Each time it finds a witness for a new y, it tries to make Λ(D;x, n) ↑ for
each n ≥ m to the extent that its priority allows by enumerating a number less than the

6

use λ(x, n) into D. In the∞ outcome for Se,x,m we get a win on Re by guaranteeing that
Λ(D;x, n) ↑ for all sufficiently large n. Above this outcome, we restart all requirements
of lower priority than Re but of course not Re itself nor any of its subrequirements. In
particular, an M requirement between Re and Se,x,m will be restarted, because M will be
injured when Se,x,m puts the use λ(x, n) (n ≥ m) into D (these uses are selected by Re

which is of higher priority than M). The cost here is an infinite recursive set is put into
D and its members are chosen at the node at which Re appointed x. (Of course, in the
finite outcome only finitely many elements are put into D.) If an Mi of higher priority
than Re is satisfied by some subrequirement, say Qi,j, having an infinitary outcome, we
restart Re at an appropriate later node by choosing a new witness x′ and putting the
corresponding subrequirements Se,x′,m on the tree above the version of Re with witness
x′.

Fix a recursive priority list of the requirements and subrequirements such that the
subrequirements Ne,i, Pe,i, and Qe,i (Se,x,m, respectively) appear after Me (Re, respec-
tively).

We define the priority tree T recursively in the usual manner. We label each node on
T with a requirement or a subrequirement. We assume that the tree T grows upwards.
The root node on T is labelled M0. Suppose that τ is a node on T . If τ is labelled
Re then τ has a unique outgoing edge labelled ∞; otherwise τ has two outgoing edges
labelled ∞ and 0, with ∞ <L 0.

Let ~t be a finite path in T starting from the root node and ending with the node τ
and α a node on ~t labelled Me. We say that Me is Σ3-injured at α on ~t if there is a node
β labelled Ri (with witness x), and a node γ labelled Si,x,m such that

βˆ∞ ⊆ α ⊂ γˆ∞ ⊆ τ.

(Namely, Me is between the pair Ri and Si,x,m, where Si,x,m demonstrates that Ri has a
Σ3-outcome.) We define Re is Σ3-injured at α on ~t similarly.

We say that a requirement Me is satisfied on ~t if there is a node α ∈ ~t labelled Me

such that either αˆ0 is in ~t or α is not Σ3-injured on ~t and there is γ labelled with a
subrequirement of Me such that

α ⊂ γˆ∞ ⊆ τ.

If Me is satisfied on ~t then all its subrequirements are satisfied on ~t. Similarly we can
define Re and its subrequirements being satisfied on ~t.

Continuing the recursive definition of T , if ~t is a finite path in T which ends with the
node τ , then τ is labelled with the highest priority U such that U is either a requirement
which never appeared before on ~t or all its copies are Σ3-injured on ~t or U is a new
subrequirement of an unsatisfied requirement on ~t.

Before we give the formal construction and verifications, let us analyze the conflicts
and how they are solved informally.

7

We first describe the interactions between a typical requirement Qe,i = Q at node β
imposing restraint on D to make its functional total and the various requirements Sj,x,m
that attempt to put numbers into D. Suppose Q at node β is a subrequirement (or
the requirement itself, for that matter) of the last version of Me on the current path
which is at α ⊆ β. Note that we can ignore the believability issue here too. As we shall
see, the subrequirements of Me will be arranged in such a way that no nodes between
α and β labelled with a subrequirement of Me can have infinite outcome. Therefore, we
consider a node δ above β devoted to some Sj,x,m with Rj originating at γ. If δ ⊇ βˆ0
then Q’s actions are finitary and impose only finite restraint on Sj,x,m. If γ ⊇ βˆ∞ then
limm(c, s, Yb, Ya) = ∞ (really, of course the β version of this functional) and Q tries to
make ΨYb

c total and so attempts to impose infinitary restraint on δ.

The case when Rj < Me < Qe,i < Sj,x,m. If Rj has higher priority than Me, then by
construction γ ⊆ α. In this case we allow δ to injure all computations from D needed
by Q on inputs larger than (the code of) δ. If the outcome of δ is ∞ then, of course, we
may ruin Q by making it diverge at all numbers bigger than δ but we get a global win
on Rj and so restart Me above this outcome. On the other hand, if the outcome of δ
is 0 then it destroys the computation needed by Q at each number greater than δ only
finitely often. This allows Q to eventually impose its restraint successfully against lower
priority requirements.

The case when Me < Qe,i < Rj < Sj,x,m. If Rj has lower priority than Me, γ ⊇ α.
As we are assuming that δ ⊇ β, the construction guarantees that γ ⊇ β as well. (There
are no subrequirements of nodes between α and β put on the tree above βˆ∞.) In this
case, the axioms for Λ(D;x,m) that δ tries to kill are chosen at γ ⊇ β. Suppose some
action for δ has injured a computation at z required by Q. The next time a choice of
axiom for Λ(D;x,m) is made must be at a stage at which the functional reaches a new
maximal length of agreement at β. We then require (essentially automatically) that the
use of this axiom be larger than that of the functional at z as computed at node β. Thus
δ can injure the computation at z at most once. In addition, we require that it can
never injure computations at z for z < δ. Thus if limm(c, s, Yb, Ya) = ∞ the restraint
imposed by Q at β will succeed in making its functional total. (Only finitely many lower
priority requirements can ever injure the computation at a fixed z and each of them can
do so only finitely often.) On the other hand, this restraint does not interfere with the
success of an Sj,x,m whose outcome is ∞. Each time it acts to destroy a computation of
Λ(D;x,m) and so perhaps Q’s computation at some z, the next axiom is chosen above
the use of Q’s functional at z, but Q in no way restrains δ from putting in the use of this
new axiom at any later stage.

We now describe the stage by stage construction. At stage s we specify a string δs
of length s, called the accessible string. We initialize all nodes to the right of δs, that is,
cancel all actions desired by these nodes and cancel all restraint imposed by these nodes
and any previous choice of witnesses or killing points. We begin at stage 0 by initializing
all nodes.

8

We say that s is an α-expansionary stage, if the associated maximum length agreement
function as measured at α reaches a new height at stage s.

Construction (stage s):

The root of the tree is always accessible.

Suppose that α is accessible if |α| = s we let α = δs. If |α| < s, we define the next
accessible node and its actions depending on the label of α.

(1) α is labelled Me.

We first execute coding strategies (a) and (c), i.e., for each j < me if x has entered
Xg,j by stage s − 1, then enumerate 〈0, x〉 into Ye,j; for each i, j < me such that

ye,i ≺e ye,j, if z has entered Y
[>0]
e,i by stage s − 1 then put 〈i + 1, z〉 into Ye,j. Fur-

thermore, execute the coding strategies which are promised by any subrequirement
of Me. For example, if Qe,i promised to put the coding marker 〈c, e, b, a, 1, v〉 into
Ye,a , it has not been initialized since making that promise and v enters Xl,〈e,a〉 at
stage s, then enumerate 〈c, e, b, a, 1, v〉 into Ye,a.

α measures the maximum length of agreement m(〈e, i〉, s,D,Xe,i) for all i < ne. If
s is an α-expansionary stage, then αˆ∞ is accessible. If s is not α-expansionary,
then αˆ0 is accessible.

(2) α is labelled a subrequirement, say Qe,i, of Me. The actions for Ne,i and Pe,i
are similar and even simpler, because Q has to deal with both preserving and
coding strategies, whereas N (P respectively) only deals with preserving (coding,
respectively).

α measures the length of agreement m(c, s, Ye,b, Ye,a). If s is an α-expansionary
stage, then αˆ∞ is accessible. We act as follows.

(i) (preservation) set a restraint on Ye,b with value

max{ψYe,bc (v, s)|v < m(c, s, Ye,b, Ye,a)}.

to preserve the computations Ψ
Ye,b
c (v) for all v < m(c, s, Ye,b, Ye,a).

(ii) (coding) Promise that at any stage t > s, if α has not been initialized between
s and t, we will put 〈c, e, b, a, 1, v〉 into Ye,a for every v < m(c, s, Ye,b, Ye,a)
such that v ∈ Xl,〈e,a〉,t and v 6∈ Xl,〈e,a〉,s. (The number 1 in the coding tuple
is used as a tag for subrequirements of type Q. The number 0 is used for
subrequirements of type P .)

If s is not an α-expansionary stage, then αˆ0 is accessible and no action is taken.

(3) α is labelled Re. Let x be α’s witness for Re. (If x is not defined, then pick one
which is big, that is, larger than any number which we have seen so far in this

9

construction.) Let n be the least number at which ΛD(x, n) ↑. Pick a use λD(x, n)
which is big. Define ΛD(x, p) = 1 with use λD(x, n) for s > p ≥ n. Let αˆ∞ (which
is the only leaving edge anyway) be accessible.

(4) α is labelled Se,x,m. Let t0 be the last stage at which α was initialized. Let y be
the least number such that (∀z < s0)θe(x,m, y, z) ↑, where s0 is the stage when α
was last accessible or initialized. Choose a killing point m∗ as follows. Let γ be
the last node below α which has label Re. For any β between γ and α labelled
with a requirement of type M or any of its subrequirements, such that M is not
Σ3-injured at α, let uβ be the biggest use at β for numbers less than or equal to
|α|. For any node δ below α labelled with Se′,x′,m′ such that δˆ∞ ⊂ α, let mδ be
the killing point chosen by δ. For any node δ below α labelled with Se,x,m′ such
that δˆ0 ⊂ α, let λδ be the number λD(x,mδ) where mδ is the killing point chosen
by δ. Let m∗ be

max({t0} ∪ {uβ : γ ⊂ βˆ∞ ⊂ α} ∪ {mδ : δˆ∞ ⊂ α}∪

{λδ : δˆ0 ⊂ α and δ is labelled Se,x,m′}).

If ∃z < sθe(x,m, y, z) ↓ then enumerate λD(x,m∗) into D. Let αˆ∞ be accessible.
Otherwise, let αˆ0 be accessible and do nothing.

This finishes the construction.

We now verify that the construction works.

Lemma 2.4 Suppose P is an infinite path in T . For every requirement or subrequirement
U , there is a unique node α on P labelled U such that either for all n > |α|, U is never
Σ3-injured on P � n or for all n > |α|, it is satisfied on P � n.

Proof. The Lemma follows by an easy induction on e where U is Me, Re or one of their
subrequirements. �

Let P be the true path in T , that is, P is the leftmost path which is accessible
infinitely often. We argue by induction along P that every requirement is satisfied or,
more precisely, that the following Lemma holds.

Lemma 2.5 For each e ∈ ω all requirements Re and Me are satisfied. Indeed, if U is
a requirement or subrequirement and α is the unique node on the true path P associated
with U as defined in Lemma 2.4, then

(a) If U is Re, then there is a stage s0 such that Re does not change its witness x at
any s > s0.

10

(b) If U is Se,m,x and is working for Re at node γ ⊆ α with witness x, as defined in
Lemma 2.4, then there is a stage s such that for all t > s, α does not change its
selection of killing point m∗ at stage t. Moreover, if αˆ0 ⊂ P , then for all n ≤ m∗,
ΛD(x, n) is defined; if αˆ∞ ⊂ P , then for all n ≥ m∗, ΛD(x, n) is undefined. In
fact this is true for any node on the true path labelled with Se,m,x.

(c) If U is Me and αˆ0 ⊂ P , then Xe is not a partial ordering as specified by Me; if
αˆ∞ ⊂ P , then for each z the computation ΦD

e,i(z) is eventually preserved and so
the functionals ΦD

e,i are total.

(d) If U is Qe,i (or Ne,i, Pe,i respectively), i = 〈a, b, c〉and αˆ0 ⊂ P , then Ψ
Ye,b
c 6= Ye,a

(or Ψ
Ye,b
c 6= Xe,a, Ψ

Xe,b
c 6= Ye,a, respectively); if αˆ∞ ⊂ P , then the functional

Ψ
Ye,b
c (or Ψ

Ye,b
c , Ψ

Xe,b
c , respectively) is total and the third (first, second, respectively)

nonextendibility condition is satisfied or Xe is not a partial ordering as specified by
Me.

Proof. We prove (a)-(d) by simultaneous induction and then argue that the requirements
Re and Me are satisfied.

(a) Let α be the unique node on the true path labelled Re as defined in Lemma 2.4.
Let s0 be the first stage after which no node to the left of α is accessible. Let x be the
witness for Re at α chosen at some stage s1 ≥ s0. Then for all s > s1, α never changes
the witness x it uses for Re because Re only changes x when it is either initialized or
some previous version of Re is Σ3-injured at α.

(b) We first argue that the killing point m∗ used by α is eventually fixed. As α is on
the true path, all nodes below it are also on the true path and there is a last stage t0 at
which it is initialized. By induction, the statements (a)-(d) apply to the nodes below α.
For any δ below α labelled with Se′,x′,m′ , the killing point mδ chosen by δ is eventually
fixed by the inductive hypothesis for (b). Furthermore, if δˆ0 ⊂ α, then λD(x,mδ) is
eventually fixed. For any β′ labelled with a requirement M or one of its subrequirement
such that γ ⊂ β′ˆ∞ ⊂ α, the computations at β′ on numbers less than or equal to |α| are
eventually preserved by (c) and (d). In particular, the uses uβ′ for those computations
are eventually fixed. By the definition of the killing point m∗, it is fixed once the numbers
t0, uβ′ , mδ and λδ are fixed.

Now suppose αˆ0 ⊂ P . Let s0 be the first stage after which α’s killing point m∗

is fixed and αˆ0 is accessible. When γ is first accessible after stage s0, say at s1, it
will define ΛD(x,m∗) with big use λD(x,m∗) (if it is not already defined). We claim
that this computation of ΛD(x,m∗) will never be injured, which also implies that for all
n ≤ m∗, ΛD(x, n) is defined. The reason is as follows. The nodes below γ will not make
ΛD(x,m∗) ↑, because those nodes act before ΛD(x,m∗) is defined and at later stages
choose only larger numbers as candidates to enter D; the nodes to the right of αˆ0 are
handled by the initialization. (Ones to the right of γ are initialized at s1; ones above γ
and to the right of αˆ0 were initialized at s0 and have not been accessible between s0

11

and s1.) For the nodes β′ between γ and α, we argue based on the outcome of β′. If
β′ˆ∞ ⊂ α, then by the assignment of requirements on the priority tree we know that
β′ is labelled Se′,j,n for some e′ 6= e, moreover the last copy of Re′ is assigned to a node
γ′ ⊃ γ. Thus when Re′ chooses its axiom λ′ at or after stage s1, λ′ will be larger than
λD(x,m∗). (Note that β acted at s0 and so Re′ needs to choose a new axiom for β’s
killing point when it is first accessible at s ≥ s1.) Therefore the action of β′, which puts
λ′ into D will not injure ΛD(x,m∗). If β′ˆ0 ⊂ α, then by the choice of s0 it will not act,
otherwise, the node β′ˆ∞ which is to the left of α would be accessible. It remains to look
at the nodes above αˆ0, they will not injure ΛD(x,m∗) by their choices of killing points.
Therefore ΛD(x,m∗) is defined.

Finally, suppose that αˆ∞ ⊂ P . Let s be the stage after which no node to the left of
αˆ∞ is accessible and the killing point m∗ is fixed. The action of α, when it is accessible,
makes ΛD(x, n) undefined for all n ≥ m∗.

(c) Let α be the node on the true path which is labelled Me and never Σ3 injured on
P � n for all n greater than the length of α. For notational simplicity, we drop the index
e of X and Y and their elements in the discussions below.

If αˆ0 ⊂ P , then clearly the Xi’s cannot be r.e. sets as specified by Me.

If αˆ∞ ⊂ P , we show that the ΦD
e,i’s are total. Let s0 be a stage after which no node

to the left of αˆ∞ is accessible. For each i and z, we argue that the computation ΦD
e,i(z)

can only be injured finitely often after stage s0. Let us look at the nodes on different
regions on the tree. We only need to consider those nodes δ which are labelled with
Sj,x,m type subrequirements, because only those nodes put numbers into D. If δ is to
the left of α, it is never accessible after s0 and so never injures any computation after
s0. If δ is strictly to the right of αˆ∞, it is initialized whenever αˆ∞ is accessible and
so never considers putting in any number less than the use of the computations seen by
α. If δ is below α, then when α is accessible, so is δ. Thus when we see the computation
ΦD
e,i(z) ↓ at α for the first time, δ has acted. At later stages, when Rj, which is the main

requirement of Sj,x,m, chooses its use λ, λ will be larger than the use ϕDe,i(z). Hence the
action of δ will not injure the computation ΦD

e,i(z).

The only remaining worry is those δ above αˆ∞ labelled Se′,x,m, which are subre-
quirements of some Re′ . First, let us consider the case that Re′ is assigned to a node
above αˆ∞. When ΦD

e,i(z) is first defined at some stage after s0, there are only finitely
many such R’s which have chosen their λ’s and each of them can injure ΦD

e,i(z) at most
once. The reason is as follows. At the stage when Se′,x,m puts λ into D destroying the
computation ΦD

e,i(z), it also makes all axioms having uses larger than λ undefined. At the
next stage when R requirements (not necessarily the same Re′) which are assigned above
αˆ∞ select their new use λ′ after ΦD

e,i(z) has reconverged, hence λ′ will be larger the
new use for ΦD

e,i(z). Finally, we look at the case that Re′ is assigned to a node γ below
α. If |δ| ≤ z, then Se′,x,m can only act finitely often, otherwise, the version of Se′,x,m
on the true path would have outcome ∞, (because they all test the same Π2 condition
(∀y)(∃z)θe′(x,m, y, z) ↓), which implies Me is Σ3-injured by the pair γ and δ. Let s1 be

12

the stage after which all these finitary δ’s will not act. If |δ| > z and α is not Σ3-injured
at δ, then Se′,x,m will not injure ΦD

e,i(z) by the choice of its killing point. If α is Σ3-injured
at δ, let (γ0, δ0) be the innermost pair of R and S requirements, which Σ3-injures α. After
stage s1, the δ’s having length less than z will not act, thus we may assume that |δ0| > z.
Then δ0’s killing point m∗0 is too large to injure ΦD

e,i(z), so is the killing point m∗ for δ,
since m∗ > m∗0.

(d) Let us assume that α is labelled Qe,i and i = 〈a, b, c〉. The arguments for P and
N type subrequirements are similar and we omit them.

If αˆ0 ⊂ P , then clearly Ψ
Ye,b
c 6= Ye,a.

If αˆ∞ ⊂ P , then ΨYb
c is total because it is recursive in D and so our explicit actions

to preserve it succeed as for the functional preserved by Me requirements.

We now show that the third nonextendibility condition is satisfied or Xe is not the
partial ordering specified by Me.

We are given that ya � yb. As ΨYb
c is total and limm(c, s, Yb, Ya) = ∞, ΨYb = Ya.

Now, the only requirements affecting the sets Ya and Yb are subrequirements of Me. By
the definition of the priority tree, all of them on P of higher priority than α have outcome
0 and so act only finitely often. The usual argument for Sacks coding strategies then
shows that Xl,a ≤T Ya: Given a number z larger than all higher priority restraint on Ya,
wait for a stage t > s0 such that m(e, t, Yb, Ya) > z, then z ∈ Xl,a if and only if either
z ∈ Xl,a,t or the coding marker 〈c, e, b, a, 1, z〉 is in Ya.

On the other hand, the usual argument for Sacks preservation strategies shows that
we can compute Ya from Xg,b: Given a number z, wait for a stage t after all positive action
for higher priority strategies affecting Yb have ceased acting such that m(c, t, Yb, Ya) > z

and Y
[0]
b � u = Xg,b � u, where u is the maximal use in the computation ΨYb

c (v) for v <
m(c, t, Yb, Ya). Then this computation is never injured. Thus, Ya ≤ Xg,b. Consequently,
we have Xl,a ≤ Xg,b.

We now assume that Xe is a partial ordering (with respect to ≤T) as specified by Me

and show that X and Y satisfy the nonextendibility condition (iii) with witnesses ya and
yb. For any xi ∈ X , if ∀x′′ ∈ X [x′′ < yb → x′′ < xi], then Xi ≥T Xg,b. For any xj ∈ X ,
if ∀x′′ ∈ X [ya < x′′ → x′ < x′′], then Xj ≤T Xl,a. Since Xl,a ≤T Xg,b, Xj ≤T Xi. Thus
xj ≤ xi as required in (iii).

Now we argue that the requirements Re are satisfied. We consider two cases based
on whether Re has a global Σ3 outcome.

Case 1 There is a node β on P labelled Se,x,m such that βˆ∞ ⊂ P .

At each of the infinitely many stages when βˆ∞ is accessible, β finds a new y such
that (∃z)θe(x,m, y, z) ↓. Therefore, (∀y)(∃z)θe(x,m, y, z) ↓. Hence m is the Σ3-witness
that x is in Σe. On the other hand, by (a), ΛD(x, n) undefined for all n ≥ m∗. It follows
that ΛD

x is finite.

Case 2 For all nodes βm on P labelled Se,x,m, βmˆ0 ⊂ P .

13

In this case, we argue that x is not in Σe and ΛD
x = ω by showing that for all m in ω,

(∃y)(∀z)θe(x,m, y, z) ↑ and ΛD(x,m) ↓.
Fix m. Let sm be the stage after which no node to the left of βm is accessible. Let ym

be the least number such that (∀z < sm)θe,sm(x,m, ym, z) ↑. Then for all z ≥ sm we still
have θe(x,m, ym, z) ↑, since otherwise βmˆ∞ would be accessible. Since this is true for
all m, x is not is Σe. On the other hand, by (a), every ΛD(x,m) is eventually defined.

In both cases, the requirement Re is satisfied.

Finally we argue that for all e, Me is satisfied.

If α is labelled Me is as in Lemma 2.4 and has outcome 0 on P , then Me is trivially
satisfied by (c). If it has outcome ∞ on P , we consider the following two cases.

Case 1. For all β on P labelled with some subrequirement of Me,

αˆ∞ ⊂ βˆ0 ⊂ P.

In this case we argue that we successfully extended the monomorphism f : X → R
to an extension of f which has domain Y .

The argument is easy. We consider the requirements (a)-(f) as listed before Theorem
2.3. For the comparability requirements, the direct coding requirements (a) and (c) are
satisfied by the action in case (1) when Meˆ∞ is accessible; (b) is done by permitting as
stated in action (2)(ii). Let us consider the incomparability requirements (d). Suppose
that xa � yb. Then, by statement (c) of our Lemma, the finitary outcome of Ne,i on
true path shows that ΨYb

c 6= Xa for all c. The arguments for requirements (e) and (f) are
similar.

Case 2. There is β which is labelled some subrequirement of Me, say Qe,i, such that

αˆ∞ ⊂ βˆ∞ ⊂ P.

In this case, (c) of our Lemma says that X and Y satisfy the third nonextendibility
condition or Xe is not a partial ordering as specified by Me.

Thus the requirements Me are satisfied. �

3 Nonextension of Embeddings

Our goal in this section is to show that there are individual r.e. degrees c and d which
are low and nonlow2, respectively, such that each extension of embedding property (as
specified by a pair X ⊆ Y) is satisfied below each of them if and only if it is satisfied
below every low2 r.e. degree, i.e. X and Y fail to satisfy each of the nonextendibility
conditions (i)-(iii) listed at the beginning of §2. The existence of such a low c follows
directly from the proof of Lemma 2.1 in Shore and Slaman [1990]. It is shown there that
given X and Y which satisfy one of the nonembeddability conditions, it suffices to get

14

an embedding of X into a finite distributive lattice L with the supremum of the image of
one subset A of X greater than equal to the infimum of the image of another subset B
of X . One then embeds L in R as a lattice with top degree low. The image of X under
the composition of these embeddings can then not be extended to one of Y . Now each
of these lattices L can be embedded as a lattice with 0 and 1 into the atomless Boolean
algebra. Thus we can take c to be the low top of an embedding of the atomless Boolean
algebra into R. In this case all of these lattices can be embedded into R(≤ c) preserving
0 and 1 and so any extension of embedding problem satisfying one of the nonextendibility
conditions fails in R(≤ c).

Now we could argue that we can make the nonlow2 degree d constructed in §1 simul-
taneously the top of an embedding of the atomless Boolean algebra. This construction
seems rather difficult so instead we revert to an earlier analysis of the nonembedding
conditions that is easier to implement. In Fejer and Shore [1985] it is shown that one
can divide the argument into two pieces. If the set B mentioned above does not consist
precisely of just the 1 of the partial ordering X then it suffices to embed the lattice L
into the degrees below d preserving just 0. Thus to take care of these cases, it suffices to
make the d of Theorem 2.3 be above the top of an embedding of the atomless Boolean
algebra into R. The cases in which B = {1} are handled separately by showing that one
can assume that A = {x|x < 1} and that there is more than one maximal element of A.
It then suffices to embed X into R(≤ d) in such a way that the supremum of the image
of A is d. Thus it suffices to prove the following two propositions.

Proposition 3.1 The degree d of Theorem 2.3 can be constructed so that, in addition
to the properties described there, there is an r.e. a ≤Td such that there is an embedding
of the atomless Boolean algebra into R(≤ a) preserving 0 and 1.

Proof. We incorporate a standard minimal pair and finite injury construction (as, for
example, in Soare [1987]) of an embedding of the atomless Boolean algebra into R with
top a into the construction of Theorem 2.3 replacing d by d⊕ a. The only interactions
between our construction and that of the embedding is that ours imposes additional finite
restraints on the (minimal pair type) construction of a and the embedding construction
requires additional finite positive actions which, of course, go into d⊕ a. Clearly the
addition of these finitary positive requirements does not cause any new problems for the
restraint that our construction requires. The positive actions from our construction of d
do not affect the sets built for the embedding of the atomless Boolean algebra below a
as they do not put numbers into a. Similarly, they are not affected by the minimal pair
restraint on a which applies only to numbers going into a. Thus the minimal pair type
restraints needed to construct a as required are successful as well. �

Proposition 3.2 For every r.e. degree d and every partial ordering X with 0 and 1 and
more than one maximal element strictly below 1, there is an embedding of X into R(≤ d)
preserving 0 and 1 such that the join of the images of all the elements x of X with x < 1
is d.

15

Proof. Let X = {0, 1, x2, . . . , xn}. As in Fejer and Shore [1985], we use the technique of
the Sacks splitting theorem to produce degrees d2, . . .dn such that ⊕{di|2 ≤ i ≤ n} ≡T d
and di �T ⊕{dj|2 ≤ j 6= i} for each i ≥ 2. The required embedding of X into R(≤ d)
is now given by sending xi to ⊕{dj|xj ≤ xi}, 0 to 0 and 1 to d. �

Thus we have a low r.e. degree c and a nonlow2 one d which satisfy exactly the same
extension of embedding properties. This shows that no collection of such properties can
separate the low r.e. degrees from the nonlow2 ones in R and so that no set of such
properties can define the class of low2 degrees in R.

4 Nonsplitting bases

Finally, we modify the construction in §1 and §2 to make sure that no degree u ≤ d is
the base of a nonsplitting pair.

Theorem 4.1 There is an r.e. nonlow2 degree d such that it satisfies the statements of
Theorem 2.3 and Proposition 3.1 and for any u ≤ d and any v > u there is a splitting
v0,v1 of v above u, i.e. u <Tv0,v1 <T v and v0 ⊕ v1 ≡T v.

For simplicity, let us call the set we are constructing in Proposition 3.1 D rather
than D ⊕ A. In addition to the requirement of that construction, we have the following
splitting requirements Te for e ∈ ω.

• Te: If Ue = ΦD
e and Ve ≥T Ue then there exist Ve,0 and Ve,1 such that

Ve,0 t Ve,1 = Ve ∧ Ve �T Ue ⊕ Ve,0, Ue ⊕ Ve,1.

The requirements Te list the candidate degrees u ≤ d and companion degrees v ≥
u. They are responsible for an enumeration of a set splitting Ve,0, Ve,1 of Ve and have

subrequirements Ze,j,k that try to guarantee that Ψ
U⊕Ve,k
j 6= Ve.

• Ze,j,k: Ψ
Ue⊕Ve,k
j 6= Ve.

These subrequirements act by preserving U ⊕ Ve,k on the Ψj use up to the maximal
length of agreement. The use on U is preserved by restraining D; that on Ve,k, by putting
numbers enumerated in Ve into Ve,1−k as in the Sacks splitting theorem. If one of these
subrequirements has an infinitary outcome it makes Ve,k recursive and so preserving

Ψ
U⊕Ve,k
j is equivalent to making a functional with oracle D total if the corresponding

length of agreement goes to infinity.

Without loss of generality, we can assume that V
[0]
e = Ue. The strategy for Te is

as follows. Te tries to make ΦD
e total if the length of agreement with Ue has infinite

16

lim sup as we did for Me in Theorem 2.3. In addition, it enumerates sets Ve,k, k = 0, 1.
When accessible it enumerates every number that has appeared in Ve since the last
such stage into precisely one of the Ve,k in accordance with the priority of the desires
of its subrequirements as in the Sacks splitting theorem. That is, it determines the
subrequirement Ze,i,k of highest priority that would be injured by enumerating the new
numbers that have entered Ve into Ve,k and puts them all into Ve,1−k.

The strategy for subrequirement Ze,j,k is as follows. We compute the maximal length

of agreement between Ψ
Ue⊕Ve,k
j and Ve as usual. Ze,j,k tries to protect these computations

(and so in effect asks that no number below the use corresponding to the maximal length
of agreement be enumerated into Ve,k). In addition, it acts to guarantee, by the low2-like

strategy, that Ψ
Ue⊕Ve,k
j is total if this maximum length of agreement goes to infinity. Note

that its restraint for the low2-like preservation strategy is imposed directly only on Ue
via its computation from D but not on the Ve,k. The restraint on the Ve,k is imposed
by the Sacks splitting type strategy implemented by Te and produced by its respecting
the requests of the Ze,j,k for preserving computations. If the length of agreement goes
to infinity, the combined effect of these two procedures is to make Ve,k recursive and

Ψ
Ue⊕Ve,k
j total. In this case, we win the global requirement Te because we have shown

that Ve ≤T Ue.
Thus below the infinitary outcome of Ze,j,k, there are no more subrequirements for Te

and all strategies of lower priority than Te are restarted.

If the length of agreement has a finite limit then the actions of Ze,j,k are finitary.
It then behaves like the finitary subrequirements of Me and so does not interfere with
satisfying the R requirements. Moreover, if the Ze,j,k are finite for all j, k, then the usual
argument for the Sacks splitting theorem shows that we satisfy Te.

The interactions between the Te requirements and their subrequirements Ze,j,k with
the nonlow2-ness requirements R and the infimum requirements N of Theorem 2.3 are
essentially the same as those of the Me and their subrequirement. There are no inter-
actions between the Me and Te requirements or their subrequirements. Indeed, other
than the interactions with the R type requirements, the Ze,j,k interact only with other
subrequirements of the same Te and then only by directing it as to which Ve,k numbers
enumerated in Ve should be put into by Te. As in the analysis for Proposition 3.1 the
interactions with the embedding construction are also trivial. Hence all the strategies
can be combined.

5 Bibliography

S. B. Cooper, A. Li and X. Yi [ta], On the distribution of Lachlan nonsplitting bases,
University of Leeds, Department of Pure mathematics, 1998 Preprint series no. 37.

P. A. Fejer and R. A. Shore [1985], Embeddings and extension of embeddings in the r.e.
tt and wtt degrees, in Recursion Theory Week: Proceedings, Oberwolfach 1984, H. D.

17

Ebbinghaus, G. H. Müller and G. E. Sacks, eds., Springer-Verlag, Berlin, 1985, 121-140.

R. A. Shore and T. A. Slaman [1990], Working below a low2 recursively enumerable
degree, Arch. Math. Logic 29, 201-211.

R. I. Soare [1987], Recursively Enumerable Sets and Degrees, Perspectives in Mathemat-
ical Logic, Springer–Verlag, Heidelberg, 1987.

18

