
The n-r.e. degrees: undecidability and �1
substructures

Mingzhong Cai y

Department of Mathematics
Cornell University
Ithaca NY 14853

Richard A. Shore�

Department of Mathematics
Cornell University
Ithaca NY 14853

Theodore A. Slamanz

Department of Mathematics
University of Califonia, Berkeley

August 11, 2010

1 Introduction

Turing reducibility (introduced in Turing [1939]) captures the intuitive notion of one set
A � N being computable from another B, We write A �T B, A is Turing reducible to
or computable from B to mean that there is a Turing machine (program) � that can
compute A if given access to an �oracle�for B in the sense that the computing machine
is augmented by a procedure that allows it to ask for any number n it computes if
n 2 B and to receive the correct answer. This reducibility naturally induces a partial
order �T on the set D of equivalence classes (called Turing degrees or simply degrees)
a = fBjA �T B &B �T Ag. The structure ofD then captures that of relative complexity
of computation of sets and functions (on N). The study of this relation on all sets
(functions), and on many important subclasses of sets has been a major occupation of
recursion (computability) theory ever since its introduction.

In addition to the full structure, D, the most important substructures studied have
been those of the recursively enumerable degrees, R, and D(� 00), the degrees below

yPartially supported by NSF Grant DMS-0852811.
�Partially supported by NSF Grants DMS-0554855, DMS-0852811 and John Templeton Foundation

Grant 13408.
zPartially supported by NSF Grant DMS-1001551 and by the John Templeton Foundation.

1



the halting problem, K = fej�e(e) convergesg whose degree is denoted by 00. The
recursively enumerable sets are those which can be enumerated (listed) by a recursive
(computable) function. They can also be seen as those sets A for which there is a very
simple approximation procedure, a recursive function f(x; s) to the characteristic function
A(x) of A such that 8x(f(x; 0) = 0 & lim f(x; s) = A(x)) that changes its mind about
membership in A at most once, i.e. there is at most one s such that f(x; s) 6= f(x; s+1).
Shoen�eld�s Limit Lemma [1959] says that the sets (or functions) computable from the
halting problem 00 are precisely those with some convergent recursive approximation,
i.e. the sets A such that there is a recursive function f(x; s) such that 8x(f(x; 0) =
0 & lim f(x; s) = A(x)). So, while for each x there are only �nitely many changes, the
number of such changes over all x may be unbounded.
In this paper we study a natural hierarchy of intermediate classes of sets and degrees.

The n-r.e. sets are those for which there is a recursive approximation f(x; s) as above
for which there are at most n changes of value at each x. The corresponding degree
structures are denoted Dn, the degrees of the n-r.e. sets. (So D1 = R the r.e. degrees.)
This hierarchy was introduced by Putnam [1965] and Gold [1965]. It was extended into
the trans�nite by Ershov [1968, 1968a, 1970] who proved that the sets in the trans�nite
hierarchy he de�ned are precisely those computable from 00.
The early work on degree theories began with the investigation of local algebraic or

order-theoretic properties of the structures. This work continues in full force to this
day. In the past three decades or so, a more global approach has emerged as well.
Here one studies issues such as the decidability or, more generally, the complexity of
the theories of degree structures as well as related questions about de�nability in, and
possible automorphisms of, these structures.
For the �rst couple of decades, a major motivating idea was that (at least some

of) these structures should be simple and characterizable by basic algebraic properties.
Shoen�eld�s conjecture [1965] would have been such a complete characterization of R
analogous to that of the rationals as the countable dense linear order without endpoints.
Even after the conjecture had been refuted by Lachlan [1966] and Yates [1966], Sacks
[1966] still conjectured that the r.e. degrees were decidable. More recent results have
produced a dramatically di¤erent prevailing paradigm for D, D(�T 00) and R as well
as many degree structures for other notions of reducibility. Rather than seeing the com-
plexity of the structures as an obstacle to characterization, it suggests that a su¢ ciently
strong proof of complexity would completely characterize each structure. Instead of ex-
pecting the structures to be decidable and homogeneous with many automorphisms (like
the rationals), one looks to prove that the theories are as complicated as possible, there
are de�nable degrees and that the structure has few automorphisms.
Typical results include the following:

Theorem 1.1. D, D(�T 00) and R are each undecidable by Lachlan [1968]; Epstein
[1979] and Lerman [1983]; and Harrington and Shelah [1982], respectively.

Theorem 1.2. The theories of D, D(�T 00) and R are as complicated as possible,

2



i.e. recursively isomorphic to true second order arithmetic for D and to true �rst order
arithmetic for D(�T 00) and R by Simpson [1977]; Shore [1981]; and Harrington and
Slaman and then Slaman and Woodin (both unpublished) (see Nies, Shore and Slaman
[1998] for a proof and stronger results), respectively.

Theorem 1.3. All relations invariant under the double jump that are de�nable in arith-
metic are de�nable in D, D(�T 00) and R where for D we mean second order arithmetic
and for the others �rst order by Slaman and Woodin [2001] (see Slaman [1991] for an
announcement and Shore [2007] for a quite di¤erent proof that applies to various sub-
structures of D as well), essentially Shore [1988] (but see also Nies, Shore and Slaman
[1998, Theorem 3.11 and the remarks following it])and Nies, Shore and Slaman [1998],
respectively. (The converse holds by the de�nability of these degree structures in arith-
metic.)

A survey paper for this area is Shore [2006].

In this paper we take the �rst steps on this road for the structures Dn by proving
that they are all undecidable. We conjecture that our work can be extended along the
lines of Nies, Shore and Slaman [1998] to show that their theories are also all recursively
isomorphic to that of true arithmetic. Perhaps one can even prove de�nability results as
done there for R. Basic survey papers on the structure of the Dn are Arslanov [2009,
2010] and Stephan, Yang and Yu [2009].

Another important theme in the study of these degree structures has been delimiting
the similarities and explicating the di¤erences among them. While it is relatively easy
to distinguish among D, D(�T 00) and R in many way the issue becomes particularly
compelling when we turn to the Dn. It is easy to imagine, and was proved early on, that
moving from R to all sets or even to the unlimited approximations characterizing those
below 00 introduces many di¤erences. For the Dn, however, the question is what does the
ability to change precisely one more time buy us in terms of additional degrees, algebraic
structure and complexity.

Of course, the �rst question is are the Dn actually distinct. Indeed, there are, for
each n, (n + 1)-r.e. degrees which are not n-r.e. ([Cooper [1971] with the stronger
result that they can be found not even n-rea in Jockusch and Shore [1984]]). While
the one quanti�er theory of all the degree structures from R to D are the same since
one can embed all �nite (even countable) partial orderings into R (and so all the rest
as well), there were many early results establishing elementary di¤erences between R
and the other Dn with cupping, density and lattice embedding properties playing the
featured role (as in, for example, Arslanov [1985] Cooper et al. [1991], Downey [1989],
respectively). Di¤erences between any of the other Dn, however, seemed hard to �nd.
Downey [1989] even conjectured that they might all be elementarily equivalent, i.e. all
sentences (in the �rst order language with �) true in any Dn for n � 2 is true in all
of them. This conjecture was not refuted until quite recently. Arslanov, Kalimullin
and Lempp [2010] provide an elementary di¤erence between D2 and D3. In fact, the

3



sentence they exhibit on which the structures di¤er is at the smallest possible level: two
quanti�ers (89). They conjecture (as one would now expect) that the Dn are pairwise
not elementarily equivalent. They also conjecture that this level of di¤erence (89) is as
small as possible in the strong sense that every 98 sentence true in any Dn is true in
every Dm for m � n.
Now an 98 sentence is true if there are choices (parameters substitutable) for the

existentially quanti�ed variables such that the resulting universal sentence is true of
these parameters. The strongest way that their conjecture could be true is for the same
parameters to work in both structures. This view brings to mind a much earlier question
raised about other pairs of our degree structures. Are any �1 substructures of any others.
(M is a �1 substructure of N , M �1 N , if for any �1 formula 9�y'(�x; �y) where ' is
quanti�er free and any choice of elements �a fromM,M � 9�y'(�a; �y), N � 9�y'(�a; �y).)
Slaman ([1983]) proved early on that this fails at the extreme ends: R �1 D(� 00)

(and so, a fortiori, Dn �1 D(� 00) for any n � 1. Slaman and then others raised the
natural question of whether it could be that Dn �1 Dm for any n < m. Yang and Yu
[2006] provided a negative answer for n = 1 and m = 2 (and so for any m � 2). We
complete the picture by showing that Dn �1 Dm for any n < m. (We have just heard
that Arslanov and Yamaleev are preparing a di¤erent proof for the case n = 2.)
Turning now to our proofs, we begin with undecidability. As usual (see for essentially

our situation §2 of Nies, Shore and Slaman [1998] or for a more general model theoretic
treatment Hodges [1993, 5.3]), we have a formula 'D(x; �p) which, for each choice of
parameters �p, de�nes a subset D of our structure Dn and another formula 'R(x; y; �p)
which de�nes a binary relation R on D. To prove undecidability it su¢ ces to show that,
as the parameters vary over Dn, a su¢ ciently rich class of structures (D;R) are coded in
this way. In our case, we code partial orders. As the (r.e.) set of theorems of the theory
of partial orders is recursively inseparable from the (r.e.) set of sentences (of the language
of partial orders) that are false in some �nite partial order (Taitslin [1962]), it su¢ ces
to code any collection of relations containing all �nite partial orders. The point here is
that if Dn were decidable then the set of sentences true in every partial order coded by
'D and 'R as the parameters �p range over all elements of Dn would be recursive. Of
course, it contains the theorems of the theory of partial orders and, if we code all �nite
ones, is disjoint from the set of sentences with �nite counterexamples. As it turns out, it
is no more di¢ cult to prove that one can code all recursive partial orders than all �nite
ones. This is what we do explicitly in our proof of Theorem 1.4. We use the basic idea
of the domain being maximal degrees g �T a not joining some other degree p above q
from Harrington and Shelah [1982] and build on their work.

Theorem 1.4. Given a recursive partial order (!;��) and an n � 1, there exist uni-
formly n-r.e. sets Gi for each i 2 !, an n-r.e. set L and r.e. sets P and Q such that:

1. Each gi is a maximal n-r.e. degree below a such that q � gi _p where A =
L

iGi.

2. gi � gj _ l if and only if i �� j.

4



Thus the required formulas 'D and 'R de�ning our domains and order relations have
parameters a, p and q. The �rst says that x is a maximal degree below a such that
q � x _ p. The second says that x � y _ l. so we have the desired result.

Theorem 1.5. The theories of Dn are undecidable for every n.

If instead of recursive inseparability, we wanted to rely only on the undecidability of
the theory of partial orders, we should code all partial orders recursive in 00 as every
sentence which is not a theorem (of the theory) has a counterexample recursive in 00 by
the e¤ective version of the completeness theorem.

One can with only minor modi�cations not a¤ecting the structure of our proof handle
partial orders recursive in 00:We precisely describe the modi�cations needed in 6.5. With
some additional work and a serious reorganization of the priority tree, one can get all
partial orders recursive in 000. One puts in a new type of node which guesses in a �3

procedure at each bit of information about this partial order and bases later work on
these guesses. The added complexity is considerable without much gain for applications.
It seems that one can even get any �3 partial order by a slightly more complicated
procedure. We brie�y describe this procedure in 6.5 as well.

It is worth remarking that our proof works for n = 1 as well as all larger n. In-
deed, it can be signi�cantly simpli�ed for n = 1 by omitting all items that consider the
possibility that the Gi and Wi (the list of n-r.e. sets recursive in A) are not r.e. This
gives a considerably simpli�ed proof of the undecidability of R along the lines suggested
in Harrington and Shelah but with a simpler statement using fewer parameters and a
signi�cantly easier construction. We do not believe any proof even for R along these
lines has been published before.

We next turn to �1 substructures.

Theorem 1.6. Dn �1 Dm for n < m.

The technical result needed here is the following generalization of Theorem 1.12 in
Yang and Yue [2006] who do the case n = 1:

Theorem 1.7. For any n � 1, there are r.e. degrees g;p;q, an n-r.e. degree a and an
n+ 1-r.e. degree d such that:

1. For every n-r.e. degree w � a, either q � w _ p, or w � g.

2. d � a, q � d _ p, and d � g.

This theorem shows directly that Dn is not a �1 elementary substructure of Dn+1 in
the language with _ as well as �: In Dn, no w below a has the property that q � w_p
and w � g while inRn+1, d �T a has both properties. We can eliminate _ by rephrasing
the property of w as 9z(w;p � z & q � z) & w � g which is �1 in just � and so the

5



existence of a w with this property is true in Dn+1 (i.e. d) but false in Dn. Of course, as
d is in Dm for every m � n+ 1, Dn �1 Dm as well.
Much of the construction and veri�cation is the same for Theorems 1.4 and 1.7. We

treat the �rst theorem as primary. In §2 where we cover basic notions and conventions
common to both, we use curly brackets {} to indicate changes (usually alphabetic only at
this stage) for the second theorem. The rest of the paper is divided into two parts, one for
each of the theorems. Each part describes �rst the requirements (§3, 7), then the priority
tree (§4, 8), the construction (§5, 9) and �nally the veri�cations that the construction
succeeds (§6, 10). We describe everything in full detail for the �rst theorem and then for
the second describe only the changes needed. In our descriptions of the constructions,
material enclosed in square brackets [] is meant to convey intuition or describe aspects
of the construction that will only be veri�ed later. It is not part of the formal de�nition
of the construction procedures.

As might be expected from the types of requirements, both constructions are 0000

arguments even for the case n = 1. As these constructions go, however, ours are at the
simpler end: the priority tree is �nitely branching, there is no backtracking and only
one type of requirement is injured along the true path. The key idea for carrying the
arguments from the r.e. case (n = 1) to the n-r.e. one (n > 1) in Theorem 1.4 is what
we call shu­ ing (§5.2). Roughly speaking, at the crucial 0000 determined nodes, we are
attempting to construct functionals � that, to working towards the maximality of the gi,
try to compute some given n-r.e. set W = �(A) from one Gi that we are building over
the full construction. The most delicate part of the veri�cation of the �rst construction is
the correctness of these functionals (Lemma 6.8). We argue that the cause of an incorrect
computation, say of �(u), must be that some number z entered A for the �rst time and
allowed W (u) to change. Another delicate argument shows that if W also changed for
the �rst time, we could correct the functional � (or see that we are not on the true
path). If the change in W was not that u entered for the �rst time, we argue that we
can shu­ e A between two past values (giving, via �, two di¤erent values for W (u)) by
repeatedly taking z out and putting it back in as necessary so as to eventually show that
W 6= �(A).The point here is that z has entered A for the �rst time while the change in
W is not a �rst change. Thus as Wl can make no more than n changes overall, it can
make no more than n� 2 additional changes. On the other hand, as z has entered A for
the �rst time, we can make n � 1 more changes in A and so eventually guarantee that
W 6= �(A).
In the second construction (§9.2.1), the correctness of the functionals � becomes

immediate as we simply change G when necessary. The crucial problem then becomes
guaranteeing the correctness of computations fromG diagonalizing againstD (§10). Here
we take advantage of the fact that D can change one more time than any other set by
using a procedure like one used in Yang and Yu [2006] to remove a number (that entered
for the �rst time) from D. In our case it allows us to either cure some problem we are
facing or start a shu­ ing procedure for A diagonalizing against the o¤ending W .

6



2 Basic Notions and Conventions

Given a set A, let A � u be the initial segment of A of length u.
We use upper case Greek letters to denote Turing functionals. For any Turing func-

tional �, the use of a convergent �(A;x) is de�ned as the least number u such that
�(A � u;x) #. We use lower case Greek letters corresponding to the Turing functional
to denote the use, e.g. �(A;x) denotes the use of � at x. More importantly, we injure
the computation by adding �(A;x) � 1 into A, but not by adding �(A;x) into A. If it
doesn�t cause confusion, we may omit A and write �(x).

We will have families 	, �, � and � which specify standard enumerations of all the
Turing functionals. We follow the usual conventions for such standard enumerations such
as the approximations to these functionals for any (approximation to an) oracle set at
stage s asks questions about (makes use of) only numbers less than s and converges only
at inputs less than s. We also assume, without loss of generality, that for the standard
enumerations with two oracles such as �(G�P ;x) the uses on both are always the same
and we denote it by �(x).

We will also construct two families of Turing functionals �(G) and �(W�P ). For the
ones with two oracles, we do not require that the uses of W and P are the same. Hence
we can write 
(W ;x) and 
(P ;x) to denote the W and P parts of the use, respectively.
Although for simplicity we generally work as if we are speci�cally de�ning these oracles
at each individual x with the associated uses, we really are assuming that the uses are
monotonic in x and make all changes to keep them that way, usually without explicit
mention. As Q is r.e., when we are computing it from W � P by �, except for this
monotonicity condition, we only need to produce computations (axioms) that at x give
output 0 when x =2 Q. These may be injured and new ones put into � (perhaps with
larger use). In the case that x =2 Q and we are expecting � to compute Q, we must
eventually settle on a convergent computation (axiom) applying to Wi � P . If x 2 Q,
when x enters Q it su¢ ces to kill any current computation of 0 from Wi�P . We do this
by putting a number less than the P -use into P . We can then simply keep the value of
� at 1 without changing the use (remembering that P is r.e.).

In our two constructions, we specify priority trees which grow downward. At each
stage s of the construction, we build a path of length s {at most s} of accessible nodes
along the priority tree. Our convention is that, the nodes to the left of, or above, a node
� have higher priority. We always preserve the information used at previous stages by
the nodes that are to the left of the accessible ones by initializing the nodes that are to
the right of the accessible ones, i.e., remove all information from previous stages such as
witness numbers, de�ned functionals and imposed restraints.

Nodes can impose two types of restraint: a permanent one or an alternating one.
Permanent restraint means that no node of lower priority can act so as to injure the
restraint by changing a set where restrained. By convention permanent restraint imposed
at stage s restrains the initial segments of length s of L and all the Gi {A, D and G}. Any

7



permanent restraint on P must be mentioned speci�cally. [We never need to restrain Q.]
Alternating restraints are caused by the announcements of A-stages or P -stages which we
describe later in the construction. Basically, during A-stages, we remove the alternating
restraint for L and the Gi {A and D} allowing numbers to enter (or leave) these sets and
we impose an alternating restraint on P and Q {and G} so that no numbers can enter P
or Q {or G} at this stage. During P -stages, we do the opposite (except that no numbers
ever leave the r.e. sets P or Q {or G}).

3 Requirements I

We now begin the proof of our main technical result.

Theorem 1.4. Given a recursive partial order (!;��) and an n � 1, there exist uni-
formly n-r.e. sets Gi for each i 2 !, an n-r.e. set L and r.e. sets P and Q such that:

1. Each gi is a maximal n-r.e. degree below a such that q � gi _p where A =
L

iGi.

2. gi � gj _ l if and only if i �� j.

First, for the negative order facts, we have requirements for each pair i �� j and each
e:

	e;i;j : 	e(L�Gj) 6= Gi:

Similarly for each triple (i; j; e) with i 6= j, we also want:

�e;i;j : �e(Gj) 6= Gi;

i.e., the Gi�s are pairwise incomparable.

Then for each pair (i; e) we need:

�e;i : �e(Gi � P ) 6= Q:

We also need the main requirements that each gi is a maximal n-r.e. degree g �T a
such that q � g _ p. We let Wi be an e¤ective list of all the n-r.e. sets.

�e;i : �e(A) =Wi ! [9�(�(Wi � P ) = Q) _ (9k(Wi �T Gk))]:

� Note that these� requirements by themselves do not ensure that each gi is maximal.
That is why we need the � requirements to make all theGi�s pairwise incomparable.
The � requirements then do guarantee that the gi are maximal.

8



If it does not cause confusion, we may omit the subscripts of the requirements and
sets in our argument to simplify the notation.

Finally, we have to deal with the positive order facts, i.e., Gi �T L � Gj for i <� j.
We will guarantee that, for x > i; j, x 2 Gi , x 2 L or x 2 Gj. Putting numbers into
a Gi is initiated only by a 	 or � requirement. For � action, we simply put a witness
x that is going into Gi (for diagonalization) into L as well. When action is initiated for
diagonalization by 	 at stage s, we put x into Gi and also into each Gl with l >� i for
each l < x. As, in this case, i �� j, this action does not add elements to Gj and so it
does not injure the 	 computation initiating the action. We say that each witness x (for
a 	 or � requirement) has an associated block of sets (the Gl such that l < x and i � l
or Gi and L, respectively). During the construction x moves into or out of all the sets in
its block simultaneously.

4 Priority Tree I

We put all the 	;�;� and � requirements into one priority list. Our priority tree consists
of nodes and branches. Each node is associated with a requirement in the list and each
branch leaving a node is assigned an outcome. We label each node with its associated
requirement and each branch with the assigned outcome. When we list outcomes of a
node we do so in a left to right order that speci�es the left to right order on the priority
tree of the branches leaving that node

A 	 or � node has two outcomes: d and w, which stand for �diagonalization�and
�wait�respectively.

A � node has outcomes sn�1, sn�2, ..., s1, i and w. Outcome si stands for �shu­ e�
for the i-th time. We will explain what this means in detail in the construction. Roughly,
it means that we expect to shu­ e between two versions of A (by removing numbers from
A and then possibly putting them back in) as we cycle back to this node. The expected
result of this shu­ ing is to guarantee that �(A) 6= W by a diagonalization. Outcome i
stands for �in�nite�agreement between �(A) and W and outcome w stands for �wait�.

A � node � has outcomes d, g�1, g�2,...,g�k and w. As usual, d and w stand for
�diagonalization� and �wait� respectively. Each �i is a � node above � which has
outcome i along �. If 
 is a node below � extending the g�i branch from �, then we say
that 
 sees an �i�� pair. [The intuition here is that 
 believes that �i and its associated
requirement is satis�ed by �.]

A � node � is active at 
 � � if � has outcome i along 
 and 
 does not see an
�0� �0 pair such that �0 � � � �0 � 
. For there to be a g�i outcome of a � node �, we
also require that �i be active at �. We order these g�i�s from left to right in descending
order going down the tree to �, i.e., �1 � �2 � ::: � �k. [This choice of left to right order
comes into play at the very end of the proof of Lemma 6.16 and is discussed in §??.]
The priority tree is de�ned recursively as follows: suppose � is an immediate extension

9



of �, we associate � with the highest priority requirement among all requirements which
either have not appeared above � or are � requirements that, above � , have appeared
only at nodes � with outcome i such that � sees an ��� pair with � � � � �. [So � looks
inactive but not really satis�ed, i.e. if satis�ed at some earlier point it has since been
�captured� by some other pair.] Then we add the corresponding number of branches
(outcomes) below � . It is easy to see that this tree is recursive.

5 Construction I

At stage s of the construction, we build a path of length s of the accessible nodes along
the priority tree. It is possible that at some accessible node we will announce that s is
an A-stage or a P -stage. All later nodes accessible at s must respect this announcement
by acting according the the rules governing A-stages or P -stages: no changes in A can
occur once a P -stage has been announced and none in P or Q once an A-stage has been
announced. In the construction, we will make sure that the �rst accessible � node with
a type g outcome (if any) makes the announcement for the stage s. An over-riding rule
is that permanent restraint imposed by a node (not since initialized) is not violated by
action at any node of lower priority (i.e. below it or to its right). If any instruction below
leads to any such situation, we do not carry it out and instead go to outcome w [and do
nothing].
In this section, we �rst describe the construction at stage s for each node when there

has been as yet no announcement for the stage and then specify the modi�cations for
when there has already been one.

5.1 no announcement, 	 or � node

The actions at 	 and � nodes are quite standard: If it is the �rst time we come to this
node (after it was last initialized), then we pick a witness number x which is fresh, i.e.,
larger than any number we have seen by this point in the construction. In general, at a
	 (	(L � Gj) 6= Gi) or a � (�(Gj) 6= Gi) node with a witness x already assigned (and
not yet canceled by initialization), we check whether the computation at x converges to
0. If it diverges or converges to a nonzero number, then we do nothing and go to the w
outcome. If it converges to 0 and x =2 Gi, then we do a diagonalization: put x into Gi and
into all the other sets in its block as described in Section 3, impose permanent restraint
[to preserve the use of the computation] and go to the d outcome. If x is already in Gi,
then we (again) go to outcome d [and keep the restraint already imposed].

5.2 no announcement, � node

At a � node � (�(A) = W ) if we have not yet had a type s outcome (since � was last
initialized) let t be the last stage at which � was accessible (since last initialized). If

10



there is a such stage and a u < l�(t); l�(s) such that �(u) (and so W (u)) di¤er at t and s
with the di¤erence not being that u has enteredW for the �rst time and the only change
in A � �(u) at t is that some z has entered its block of sets for the �rst time because
of the action of a node extending � then we initiate a shu­ e on z by removing z from
its block of sets, impose permanent restraint and go to outcome s1. We call this shu­ e
strategy Plan S with shu­ e points sp1(= t) < sp2(= s). [Note that these shu­ e points
have the property that Asp1(= Asp1 � sp1) and Asp2(= Asp2 � sp2) di¤er below sp1 only
in that z is in its block of sets in Asp2 and out of them in Asp1. More crucially, they
produce di¤erent values for � at some u, i.e. �(Asp1;u) 6= �(Asp2;u).] If we had an
outcome of type s at the last stage t at which � was accessible, we check whether W (u)
is di¤erent at s than at t. If so, restore the initial segment of A to the version of A which
is di¤erent from the current one (by putting z into or taking it out of its block of sets),
impose permanent and let the outcome be si+1. If not, we stay at the si outcome. [This
maintains any previously imposed permanent restraint.]
If we haven�t initiated shu­ ing, let l�(s) be the length of agreement between the

current versions of �(A) and W . Note that whenever we initialize this node �, we also
initialize the values of this function to be 0. If this is the �rst time that l�(s) > 0 after
it has last been initialized, or l�(s) > l�(t) where t is the last stage when � had an i
outcome, then we go to the i outcome; otherwise we go to the w outcome.
If we go to the i outcome, we continue to de�ne a functional � [aiming to make

�(W � P ) = Q]. At this point, we enumerate a new axiom making �(W � l�(s) � P �
v;w) = Q(w), where v is a fresh number and w is one more than the largest number
where we have previously de�ned � (since it was last initialized). If P has changed on its
�-use at some x < w and the change was caused by the action of a node �^g� [necessarily
extending �^i] with witness x as in §5.4.2, then we rede�ne �(x) to be the current value of
Q(x) withW -use l�(s) and fresh P -use. [As P is r.e. this change permanently invalidates
the previous axiom for �(x).] Similarly, if W has changed on its use u1 (where its old
P -use is v1) so as to make �(x) divergent but x has not entered Q, we see if x is currently
the witness for some � node � below � (for G). If so, we look at the last stage t at which
� was accessible and see if its outcome was g�. If G has not changed on �(x) as de�ned
at the point of stage t at which � was reached and the change in W includes one at some
u making it di¤erent from the common value of �(u) and W (u) at t, then we rede�ne
�(x) with W -use l�(s) = u2 and fresh P -use. In all other cases of a W or P change on

(W ;x) or 
(P ;x), respectively, that makes �(x) divergent we rede�ne �(x) with the
same uses as it last had but for the new values of W and P (subject, of course, to our
monotonicity requirements on the use).

5.3 no announcement, � node

At a � node � accessible for �rst time after it has been last initialized, we pick a fresh
witness x for diagonalizing �(Gi � P ) 6= Q. In general, if we have a witness x already
assigned (and not yet canceled by initialization), we check whether the computation

11



converges at the witness x. [As usual when there are higher priority requirements that
are expected to put in�nitely many numbers into a set, we restrict our attention to
computations that are consistent with our beliefs as prescribed by our actions in §5.4.2.
Here this means the following:] We also require that the computation be believable, i.e.
for every requirement �̂ assigned to a node � with witness x̂ and �^g�̂ � � for some
�̂, �(x) < 
�̂(P ; x̂) and if 
�̂(P ; x̂) has been previously increased by a Ŵ change (as
described at the end of §5.2) from say u1 to u2 and v1 � 1 is not yet in P then �(x) < v1
as well. If �(x) does not converge with a believable computation or so converges to a
nonzero number, then we go to the w outcome and do nothing.

[If the believable computation �(Gi � P ;x) converges to 0 with P -use �(x), then
we would like to diagonalize, i.e., put x into Q and preserve the P and Gi use of the
computation. However, we must worry about whether doing so injures some already
de�ned � computation at a node above �. For example, if there is a such a �(W�P ) = Q
which computes Q(x) = 0 with 
(P ;x) � �(x), then our desired diagonalization would
falsify this computation of Q while correcting the � computation (by putting its use into
P and rede�ning the functional) would injure our � computation for diagonalization.
Our plans must be more subtle.] If �(x) converges with a believable computation we
proceed as follows:

Let �1 � �2 � ::: � �k be all the active nodes above � with each �j de�ning its
functional �j(Wlj � P ). Let 
j(P ;x) be the P -use of �j at x, if it has already been
de�ned. [See §?? for some comments on the left-right ordering indicted here for these
nodes and the associated outcomes g�j below.]

5.3.1 Plan D: diagonalization

If �(x) < 
j(P ;x) for all j for which 
j(P ;x) is de�ned, we do a modi�ed diagonalization:
We enumerate x into Q and also enumerate 
�j(P ;x)� 1 into P for each j. [This allows
us to correct the �j(x) when �j^i is next accessible.] We now impose the usual permanent
restraint but also one on P � �(x) [to preserve the � computation] and go to outcome d.
Until � is initialized, it has outcome d at every later stage at which it is accessible.

5.4 Stage Announcements

If we cannot follow Plan D, i.e., �(x) � 
j(P ;x) for some j, then we take the largest j
such that �(x) � 
j(P ;x) [and are likely to go to outcome g�j where we build a functional
� computing Wlj from Gi]. [The choice of j is relevant at the very end of the proof of
Lemma 6.8 but our choice of the largest j (rather than say the smallest) doesn�t make
any di¤erence in this construction. It does, however, matter in the at the end of the
proof of Lemma 10.1 for our second theorem.]

12



5.4.1 Plan A: A-stage announcement

If this is the �rst time (since the last initialization) that we would go to the g�j outcome
or the last time we went there we announced a P -stage then we go to outcome g�j and
announce an A-stage [and so allow elements to be enumerated into or taken out of A].
Otherwise, let t be the last stage when �^g�j was accessible. By our construction and

case assumption, t must have been announced as an A-stage at �^g�j . (If some node to
the right or left of �^g�j made an announcement at stage t then � would not have been
accessible at t. If some node � above � made an announcement at t then one would also
have to be made above � at s contrary to our case assumption that no announcement
has been made at this stage before we reached �.)

5.4.2 Plan P: P -stage announcement

We now go to the g�j outcome and extend� by adding axioms computingWlj(u) fromGi
with fresh use for any u < l�j(s) for which� has not previously been de�ned. In addition,
we put 
j(P ;x)� 1 into P to injure the current � computation (since 
j(P ;x) � �(x)).
[This kills the current computation of �(x) and as P is r.e. it can never apply to W �P
again.] Moreover, if 
j(P ;x) has been previously increased by a Ŵ change (as described
at the end of §5.2 from say u1 to u2 and v1 � 1 is not yet in P then we also put v1 � 1
into P . [This kills the old computation of �j(x) as well as and guarantees that it too will
never again apply to W � P .] [We will rede�ne �j with axioms using the new version of
P with a fresh P -use and Wlj use l�j(v) when we next get to �j^i at v. The result of
this action is that we increase the �j use from P and Wlj and so the next time when this
� is accessible with the g�j outcome, the use �(x) must be larger than that of this stage.
If this happens in�nitely often �j(x) diverges but we expect to satisfy the associated �
requirement by building �(Gi) = Wlj at �^g�j . We then also satisfy the � requirement
associated with � as �(x) diverges as well.] We now announce that the current stage is
a P -stage.
If there has been a change in Gi that leaves �(u) unde�ned where it had previously

been de�ned, we put in a new axiom computing the current value of Wlj(u) with the old
use.
[We shall argue for � on the true path with true outcome g�j that we build � con-

sistently and correctly compute Wlj at each stage (Lemma 6.8). Typically, it turns out
that, along the true path, if Wlj has changed where previously computed, then Gi must
have changed at the corresponding part used in the computation.]

5.5 modi�cations with a stage announcement

When there is has already been a stage announcement before we reach �, the node � has
to obey the appropriate rules. For a 	, � or � node, we see what we would have done
if there had been no stage announcement as yet. If that action is compatible with the

13



current stage announcement (no announcement of an A-stage or change in A if a P -stage;
no change in P or Q and no announcement of a P -stage if an A-stage), we proceed as if
there had been no announcement. If not, we do nothing and go to outcome w.

For a� node, the modi�cation is slightly trickier. [Later we will need the fact that each
node along the true path passes down alternating A and P restraints in the construction.]
Here in order to go to the i outcome, we need to wait (with outcome w) for a stage when
the stage announcement is di¤erent from the last stage t when we had an i outcome,
and also the length of agreement is longer than its last value. [In this way, the � node
passes down alternating A and P restraints along the i outcome.] When we have already
initiated shu­ ing, we act as before at A-stages and at P -stages we go to outcome w. [This
maintains the permanent restraint imposed when we initiated shu­ ing or last shu­ ed
as the nodes that imposed it are now to our left.]

6 Veri�cation I

6.1 True path and true outcome

First of all, as in usual priority tree arguments, there is a leftmost path accessible in�nitely
often. (Each node has only �nitely many outcomes.) This is the true path and the
outcomes along it the true outcomes.

Lemma 6.1. Numbers enter or leave A or L only when permanent restraint is imposed
by a �, 	 or � node. When such nodes � impose permanent restraint, we move to the
left of any previous outcome that has been accessible since � was last initialized.

Proof. By inspection of the construction.

Lemma 6.2. At most one node acts to change A at any stage s.

Proof. If we �rst act at � to change A at s then we move to an outcome to the left of all
previously accessible ones (since � was last initialized) by Lemma 6.1. So all later nodes
accessible at s that can change A are accessible for the �rst time since last initialized and
so at most appoint fresh witnesses or (for � nodes) begin their construction of � anew.
None of these witnesses can go in at s as no convergences can be seen at numbers larger
than s. No shu­ ing can been initiated for any of the � nodes by construction.

Lemma 6.3. If a node � is initialized at stage s then it never later acts to change any
set below s.

Proof. If � is a �, 	 or � node it only acts to put numbers at least as large as its witness
x into A or P and any witness appointed after s is larger than s. For � and 	 nodes
this is immediate. For �, its action puts numbers of the form 
(P ;x)� 1 into P and by
construction 
(P ;x) > x. For � nodes, the only action changing sets is shu­ ing. This

14



shu­ ing only involves numbers appointed below � at stages when � was accessible since
it was last initialized.

Recursively along the true path, we now determine the actions of the nodes on it after
no node to their left is ever accessible and prove that all the requirements are satis�ed
along it. For any node � on the true path we let s(�) be the �rst stage at which � is
accessible but after which no node to its left is ever accessible again.

Lemma 6.4. Any permanent restraint imposed by a node � at any s � s(�) is never
injured by any other node.

Proof. The only actions that can injure such restraint after s(�) are ones by nodes above
it on the true path. None can change A or L by Lemma 6.1. As for P , the only permanent
restraint imposed on P is by � nodes when we go to outcome d and restrain P � �(x).
Now nodes �̂ above � of type � with outcomes g�̂ may put numbers into P but they only
put in ones of the form 
�̂(P ; x̂) and our believability requirement on the computation
of �(x) guarantees that all of the current values of these 
�̂(P ; x̂) are larger than �(x).
The only way one of them could decrease is if it had previously been increased from u1
to u2 by a change in W as described at the end of §5.2 and then W changes back to
the old value before the old computation is killed by v1 � 1 going into P . However, our
believability condition also requires that �(x) is less than these v1 as well. Any later
change increases the use above the previous values Thus no changes every occur in P
below �(x).

Lemma 6.5. The �nal witness for any node � chosen at s(�) is larger than any perma-
nent restraint of higher priority than �.

Proof. By construction the witness is chosen fresh and so larger than anything previously
seen. The only nodes of higher priority that can impose permanent restraint later are
ones above �. None of type �, 	 or � can do so by Lemma 6.1. One of type � also
imposes permanent restraint only when it moves left to outcome d contradicting our
de�nition of s(�).

Before we show that the requirements are satis�ed we analyze the alternating re-
straint.

6.2 Alternating A and P -stages

Lemma 6.6. Every node along the true path above the �rst � node � with type g outcome
on the true path never sees or makes a stage announcement (imposes alternating restraint)
when accessible. For the other nodes � on the true path, their true outcomes, o, are
accessible at in�nitely many A and P -stages. Indeed, after s(�^o), the stages at which
�^o is accessible alternate between A and P ones (the node passes down alternating A
and P restraints along its true outcome).

15



Proof. For any node above � the claim is immediate from the rules of the construction.
For a � or 	 node below �, it is immediate from the construction that after s(�) either
we always have outcome w or, whenever we are at � after the �rst time we have outcome
d we also have outcome d. So for these nodes the Lemma is obvious. For a � node
below �, either the true outcome is shu­ ing (s), or waiting (w), or in�nitary (i). In the
two former cases, the outcome is again eventually constant: Once we move to a type s
outcome, the construction guarantees that we can move only to the left to another type
s outcome. Thus the outcome is eventually constant at some type s outcome. As for
outcome w, any rightmost outcome that is the true outcome of a node � on the true
path is the outcome at almost every stage at which � is accessible. In the third case, our
construction in §5.5 ensures that it passes down alternating A and P restraint along the
outcome i as required.

The � node � which �rst makes the announcements along the true path must have
true outcome some g�. Then according to our construction, if it announced a P -stage
the last time it was accessible, we follow Plan A and make an A-stage announcement. If
it last announced an A-stage, then we follow Plan P and announce a P -stage.

Finally for any other � node �0 on the true path, the claim is also immediate for true
outcome d or w as above. In the case of a g� outcome, the construction automatically
guarantees that it always waits for an alternation in the type of restraint to move again
to the true g� outcome.

We next analyze the functionals � and � that we construct.

6.3 The functionals are well-de�ned and correct

Lemma 6.7. The functionals � built at nodes �^i on the true path starting at s(�^i)
are well-de�ned, i.e., we do not add contradictory axioms in the construction and when
de�ned give the correct current value for Q. They are de�ned on arbitrarily large initial
segments of ! and so, if convergent at every x, they correctly compute the desired sets.

Proof. It is clear by construction that we de�ne �(x) at least once for each x: As �^i is on
the true path, l�(s) is going to in�nity on the stages at which �^i is accessible. On each
of these stages we de�ne � on a new number. Once de�ned �(x) is then de�ned at every
stage at which �^i is accessible by construction. As for consistency and correctness, note
�rst that it is immediate from the construction that at any stage at most one axiom in �
applies to the current value of W � P . Now, the only way any problem could arise is if
Q(x) has changed for some x but W and P have not changed on the corresponding use
or they change and then W reverts back to a previous value that applies to some older
computation (with value 0). However, in our construction, Q(x) can change only when
we implement Plan D to put x into Q at a some stage v for a � node �̂. Any number x
put into Q by such nodes to the right of �^i must be both appointed fresh and then put
in while we are to the right of �^i without �^i becoming accessible in between. Thus

16



when �^i is again accessible � has not been de�ned at x and so when we de�ne �(x) we
set it equal to 1 with the �rst axiom and all later ones as well. Any x put in by nodes to
the left of �^i are in by s(�^i) and so we de�ne � correctly on them as well.
Thus we can assume that �̂ is below �^i. If � is active at �̂, then when x enters Q

at v we put 
(P ;x)� 1 into P by construction and so kill the current computation and
put in a new one giving the correct answer when we next reach �^i. If � is not active
at �̂, there must be a �rst �0 � �̂ with �0^�̂ � �̂ for some �̂ � �. So in particular, �
is active at �0. Now �0 has a witness x0 necessarily less than x (as x is appointed later)
and at stage v when we reached �0^g�̂ we put 
(x0) < 
(x) into P and so kill the current
computation of �(x) and correct it when we next reach �^i. Note that both P and Q are
r.e. so 
(P ;x) � 1 has never been in P before and x will never leave Q. As we impose
permanent restraint when we go to outcome d and diagonalize, no later change inW can
return us to any old computation.

Lemma 6.8. The functional � de�ned at the true g� outcome of a � node � (for Gi)
on the true path starting at s(�^g�) is well-de�ned. When �(u) is convergent while we
are at �^g�, it always give the current value of W (u) on an initial segment of !. Indeed,
�(Gi) = W as desired. (For notational convenience we assume that � is assigned the �
requirement for W which is constructing the functional � at its i outcome.)

Proof. As for the �nal claim, note �rst that by construction if �(u) is ever de�ned it
is de�ned at every u0 < u and then it is de�ned there at every later P -stage at which
�^g� is accessible. Moreover, at these stages we extend its domain of de�nition to l�(s)
which is going to in�nity since �^i � � is on the true path. Once �(u) is de�ned, its use
never changes by construction and so if, at every stage when de�ned at �^g�, it correctly
computes W (u), it does so in the end.
For correctness, we argue by induction on the stages at which �^g� is accessible

beginning at s(�^g�) that �(u) = W (u) at every u at which � is de�ned. This is
obviously true by construction if s is the �rst stage at which �(u) is de�ned. Suppose
it is true at s and the next stage at which �^g� is accessible is t and the problem occurs
at u.
Note that no change in A � s or P � �(x) can occur between s and t. No node to

the right of �^g� can make such a change by Lemma 6.3. No node to its left can do so
as they are never accessible after s(�^g�). No node above �^g� can change A at all by
Lemma 6.1. Nodes above �^g� may act to put numbers of the form 
�̂(P ; x̂) into P via
other � requirements �̂ above � with outcome g�̂ but by our believability condition on
the �(x) computation, at stage s none of them are below �(x) at s. The only way one of
them could decrease is if it had previously been increased from u1 to u2 by a change in
W as described at the end of §5.2 and then W changes back to the old value before the
old computation is killed by v1 � 1 going into P . However, our believability condition
requires that �(x) is also less than these v1.
If s was a P -stage then no change occurred in A � s at s so none has by stage t. Thus

if W (u) at t is di¤erent from its value at s it would be di¤erent from �(A;u) at t since

17



that is the same as it was at s. This would move us to outcome w at � and so �^g�
would not be accessible for a contradiction.

Suppose then that s was an A-stage. No change in P � �(x) occurs at s as no node
above the one announcing the A-stage can change P without declaring a P -stage or
moving left and none after it can because it is an A-stage. Moreover, none can occur
before t as above. If no change occurs in A at s then, as none occurs before t, �(u) and
�(u) would be the same at t as at s. If this value is not that ofW (u) at t then �^i would
again not be accessible at t for a contradiction. Thus there has been some change in A
at s. By Lemma 6.2, there is precisely one z that entered or left its block of sets at s. By
Lemmas 6.1 and 6.3, the node � causing the change must extend �^g� as we are after
s(�^g�) and �^g� is accessible. Now if there is no change in W (u) between s and t, then
the only way we could have a disagreement with �(u) at t (so the old axiom for �(u) at
s is no longer valid but we cannot simply put in a new one with the same value) is that
the change for z returns us to a previous computation of �(u) giving a di¤erent value.
However, such a change in z can be caused only by � shu­ ing z. Such a shu­ e returns
A � v to its value at a previous stage v. If �(u) was de�ned at v then by induction it
would have the same value as �(u) and W (u) and no change can have happened in any
of these when we reach t. Thus we would still have agreement at t as required. So we
may also assume that W (u) is di¤erent at s and t.

Suppose �rst that z < �(x) and Gi is in its block of sets. Next, suppose the change
occurred because of some shu­ ing procedure at �. If �(u) was �rst de�ned before the
shu­ ing began at �, then we would have a contradiction as above.

If �(u) was �rst de�ned after the shu­ ing began, say at v � s with, for the sake of
de�niteness, z 2 G, then its use is fresh at v and so larger than z. Let v0 � v be the next
stage after v at which we shu­ e z at �. If v0 = s then z has been in Gi from v to s and
is removed at stage s by our action at � � �^g�. Thus when we next return to �^g� at
t we have z =2 Gi for the �rst time since �(u) was de�ned and we rede�ne it to be the
current value of W (u) as required. So we may assume that v0 < s and at stage v0 we
have �(u) = W (u) = �(u) at �^g� by induction. When we reach � at v0 we remove z
from its block of sets including Gi and impose permanent restraint. When �^g� is next
accessible, say at v00 � s, we rede�ne �(u) = W (u) = �(u) with z =2 Gi (and its block
of sets) but with the rest of A � v0 the same as it was at v0 (because of the permanent
restraint imposed at v0 which, by Lemma 6.1, could be violated only by moving to the
left of � which could then not cause our problem at s). If v00 = s then at stage s we
shu­ e z back into Gi (and its block of sets) at � and impose permanent restraint. We
next return to �^ga at t and have �(u) and �(u) and so W (u) the same as they were at
stage v0 at �^g�, i.e. they all agree as required. Finally, if v00 < s then later at stage s
we shu­ e at � between the values for all of these sets and functionals that we had at v0

and v00. Thus once again when we reach �^g� at t all agree.

Thus the change that has occurred is that z entered Gi for the �rst time at s. If the
change in W (u) is not that u has entered for the �rst time, then we would have initiated

18



a shu­ ing procedure at � at stage t and so move to �^s1 hence to the left of �^g� � �^i
for a contradiction.
Thus through stage s, W (u) = 0. Suppose �(u) was �rst de�ned at s0, of course

with value 0 and fresh use q. We claim that z < q and so its entry into G allows us to
correct �(u) at t as desired. If not, it was chosen fresh as a witness for � at a point in
the construction during a stage s00 � s0 after �(u) was de�ned at s0 but before s. In this
case, however, z > s00 and so z > �(u) at s00. Note that �(u) is de�ned at s00 because z is
appointed at � � � � �^i. Now from the point of stage s00 at which �^i is accessible to
stage s any change in A � s00 would initialize � and so z could not enter A at s. (At s00
no node between �^i and � can change A without moving left of �. Then at � all nodes
to the right of � are initialized and so cannot make any changes below s00 by Lemma 6.3.
As � appointed a witness at s00, this is the �rst stage at which � has been accessible since
it was last initialized so all A action by nodes below � also involve only numbers larger
than s00. Finally, any A action after s00 by a node of higher priority than � would also
initialize it by Lemma 6.1.) Thus at s, �(u) and A � �(u) are the same as they were at
s00, i.e. �(A; u) = 0 = W (u) at s with the same computations as at s00. Now the only
changes in A during stage s is that z enters its block of sets but z > s00 and then no
changes occur in A � s before stage t. Thus at stage t we also have �(A; u) = 0 and so if
W (u) = 1 at t, the outcome of � would not be i, for a contradiction.
Finally, suppose z � �(x) or Gi is not in its block so no change occurs in Gi � �(x)

at s and so none before t. When �(u) was de�ned at the P -stage v (necessarily before
the A-stage s), u < l�(v) and so after v, u < 
(W ;x) whenever it is de�ned. In fact, at
each P -stage during which we reach �^g� (starting with v) we put 
(P ;x) into P and
subsequently increase 
(W ;x) to l�(v0) > l�(v) when we are next at �^i (at v0 > v).
Each computation of �(x) killed in this way can never to reapply to W � P as P is r.e.
As we cannot reach �^d, the only other way 
(x) can change requires a W change that
causes a di¤erence between the previously computed common values of � and W . By
our induction assumption this cannot have occurred before s. So all axioms for �(x)
provided before s are invalid by the end of stage s.
As W (u) has di¤erent values at s and t, the change in W introduces a value of W (u)

that we see at �^i at some �rst stage v00 after s but no later than t. As we have argued,
no old computation of �(x) is still valid at v00. Thus by construction we would increase

(P ;x) at v00 to a fresh value larger than �(x). When we return to �^g� at t, 
(P ;x) is
now larger than �(x) which has not changed since s. Thus by construction, g� cannot be
the outcome of � at t for a contradiction.

6.4 All requirements are satis�ed

Finally we want to show that all requirements are satis�ed.
The positive order requirements are easily veri�ed by our construction.

Lemma 6.9. If i <� j then Gi �T L�Gj.

19



Proof. Consider an x > i; j. To decide if x 2 Gi go to stage x of the construction and see
if x has been appointed as a witness for some � or 	 requirement with Gi in its block.
If not, then x =2 Gi. (Indeed x is not in any Gk.) If it is in the block for a � requirement
then L is also in its block. If for a 	 requirement then Gj is in the block. In any case, as
once appointed x moves into or out of all sets in its block during the entire construction,
x 2 Gi , x 2 L in the � case and x 2 Gi , x 2 Gj in the 	 case.

We now move to the negative (diagonalization) requirements.

Lemma 6.10. The � and 	 requirements are satis�ed.

Proof. Suppose the requirement is assigned to the node � on the true path. If, after s(�),
we ever go to outcome d and so diagonalize, the result is immediate from the construction
and Lemma 6.4. If not, it must be that the outcome is always w after after s(�). If the
relevant computation converged to 0 the correct computation would be available from
some point on and so by Lemma 6.6 we would eventually see it at an A-stage and so
move to outcome d by Lemma 6.5. If not, then x never enters Gi and we also satisfy the
requirement as desired.

We next consider the � requirements.

Lemma 6.11. If a � node � on the true path has true outcome d then the associated
requirement is satis�ed.

Proof. Consider the stage s(�^d) when � has outcome d (and is never again initialized).
We put the witness x intoQ and impose permanent restraint to preserve the computations
�(Gi � P ;x) = 0. Lemma 6.4 shows that this computation is preserved.

Lemma 6.12. If a � node � on the true path has true outcome g�, then its requirement
is satis�ed. Indeed, for x the �nal witness for �, both �(x) and 
�(x) go to in�nity on
the stages when �^g� is accessible. Moreover, any time we increase 
�(x) because of a
W change as at the end of §5.2, we later kill the P -use of the old computation as well by
putting v1 into P .

Proof. In this case, by our construction (and Lemmas 6.5 and 6.6), we in�nitely often
put numbers (
(P ;x)� 1) into P and rede�ne �(Wi � P ) with a fresh P -use. (The �rst
of these Lemmas implies that the numbers we want to put into P are larger than any
permanent restraint as they are of the form 
(P ;x) which is larger than the witness x for
�.) So by our criteria for going to outcome g�, we in�nitely often see �(x) > 
(P ;x), so
�(x)must go to in�nity (when �^g� is accessible) along with 
(P ;x) and the computation
�(Gi � P ;x) diverges. As for any increase in 
(x) because of W change as in §5.2, the
next time we are at �^g� we put the associated v1 into P by construction.

Lemma 6.13. If a � node � on the true path has true outcome w then the associated
requirement is satis�ed.

20



Proof. Note that if the outcome of � were d at any stage after s(�) then d would be the
true outcome by construction. Thus in our case, we never put the �nal witness x for �
into Gi. So our only concern is that �(Gi � P ;x) = 0. In this case, there is a stage
after which it always converges to 0 and with a �xed use. By the previous Lemma this
computation is believable at almost every stage when we are at �. Thus by construction
and Lemmas 6.5 and 6.6, as in Lemma 6.12, we would eventually have outcome d for a
contradiction.

We now turn to the � requirements.

Lemma 6.14. If a � node � on the true path has true outcome of type s, then the
associated requirement is satis�ed.

Proof. The nature of the shu­ ing points guarantees that, at every stage with outcome
of type s, �(A;x) #6= W (x) and so this is true at the end of the construction as well
and the requirement is satis�ed. The crucial point here is that the permanent restraint
imposed by � which are increasing as we move left among the type s outcomes can never
be injured (other than by the shu­ ing done by � itself) by Lemma 6.4.

Lemma 6.15. If a � node � on the true path has true true outcome w then the associated
requirement is satis�ed.

Proof. If �(A) = W then the length of agreement would go to in�nity and so, by con-
struction and Lemma 6.6, we would eventually move to outcome i after s(�^w) for a
contradiction.

Finally, we have to deal with the case that every � node on the true path has true
outcome i.

Lemma 6.16. Every � requirement is satis�ed.

Proof. As usual in a 0000 priority tree argument, we want to consider the last node � along
the true path assigned to a given � requirement. To see that there is such a node, argue
by induction on the � requirements. The point here is that any � requirement, once
assigned to a node that is never again initialized, can return to the list of requirements
from which we draw to make assignments of requirements to nodes (along the true path)
only when a strictly higher priority node becomes inactive. So once no node with a higher
priority � requirement assigned ever becomes inactive again, the next node � assigned
to � either becomes inactive once along the true path (by being satis�ed by action at a
lower � node on the true path) and then remains inactive or it never becomes inactive
on the true path. In either case, � is never assigned to a node below � by the de�nition
of the priority tree.

Let � be the last node along the true path assigned to the � requirement (�(A) =Wi).
By the previous two Lemmas, we may assume that its true outcome is i. If there is an

21



� node � (�(Gk � P ) 6= Q) on the true path with true outcome g�, then we have built
a functional � at �^g� that computes Wi from Gk by Lemma 6.8.

If there is no such� node �, then we claim that we have successfully built �(Wi�P ) =
Q starting at s(�^i). By Lemma 6.7, we only have to verify that 
(x) is eventually
constant for each x. We begin to de�ne our � at s(�^i). Assume inductively that 
(x̂)
has stabilized for x̂ < x. Thereafter, once �(x) is de�ned, our construction allows 
(x)
to increase because of a change in P at most once for each time some �^g� below �^i
is accessible and the � requirement assigned to � has witness x or once when �^d is
accessible (again with witness x for �). It can increase because of a W change at most
�nitely often for each such �^g� and stage. (At worst only when W changes on the
domain of � at that stage.) At most one � has x assigned as a witness. If � is not on the
true path, it can be accessible with witness x at most �nitely often. If � is on the true
path, once �^d is accessible, �^g� cannot be accessible again unless � is initialized and
so chooses a new witness. If �^g� is accessible in�nitely often, then some g�̂ (possibly to
the left of g�) would be its true outcome and so �̂ � �. If � = �̂ we contradict our case
assumption. If �̂ � � then � would be come inactive and � would be reassigned later to
a node below �^g� on the true path contradicting our choice of �. Thus �(x) can change
at most �nitely often as required.

6.5 �02 and �
0
3 partial orders

To handle partial orders recursive in 00 we make the following changes in the construction:

We begin with a recursive approximation f(i; j; s) to the (characteristic function of
the) relation i �� j. We now have requirements	e;i;j for every e; i; j with a new additional
leftmost outcome n. At stage s at a node � for 	e;i;j, if f(i; j; ; s) = 1 (so we think we do
not want to diagonalize) we go to outcome n and do nothing. If f(i; j; s) = 0 we act as
before with a new de�nition of the block for our witness x. When x (necessarily larger
than i and j) is appointed as a witness, we determine its block by calculating f(k; l; t) for
each k; l < x and t > x until we reach a t at which either f(i; j; t) = 1 or the relation on
numbers k; l < x de�ned by f(k; l; t) is a partial order �. In the �rst case, the outcome
is again n and we do nothing. In the second case, we put Gk into the block for x if and
only if i � k (i.e. f(i; k; t) = 1). Note that f(i; j; t) = 0 by our case assumption and so
Gj is not in the block.

To see that this modi�cation works, note that if i �� j then from some point on
f(i; j; t) = 0 and so we never again have an outcome n for 	e;i;j and so satisfy the
negative order requirements as before. For the positive ones, suppose k �� l and for
t � t0, f(k; l; t) = 1. For any witness x � k; l; t0, if its block does not contain k then, of
course, x =2 k. If it does contain k it also contains l and so x 2 Gk if and only if x 2 Gl.
(The case for � requirements is as before.)

The modi�cations needed for partial orders recursive in 000 are more complicated.
For each i; j we insert a requirement into the priority order used for the �0

2 case and

22



so on each path of the priority tree a node " that guesses in a �0
3 way whether i �� j,

i.e. the node has in�nitely many outcomes hx; ki with x 2 w and k 2 f0; 1g ordered
lexicographically. We organize determining the outcome of " at each stage s so that if
hx; ki is the leftmost outcome accessible in�nitely often then x is the least witness to
the �3 formula which says that i �� j if k = 1 and the least witness to the �3 formula
which says that i �� j if k = 0. In addition we coordinate this guessing with the stage
announcements so that the true outcome passes on alternating restraint as before. We
then act at nodes as in the �0

2 case but using at each node only the information about
the ordering coded on the outcomes of the " type nodes above it. So for for a 	 type
requirement, if the relation given in this way is not a partial order � or says that i � j,
we go to outcome n. (We put the " nodes on the tree so that any node for a requirement
	e;i;j has an " type node above it assigned to i �� j.) If it is does specify a partial order
with i � j, then we act as before but now the block of sets for a witness x consists of all
Gk with i � k. One can now verify that the construction works. The argument for the
positive order relations runs as follows: If i �� j, �nd the node � on the true path by
which that fact has been decided. Nodes to the left of � put only �nitely many x into Gi
and can be ignored. For nodes to its right that appoint any witness x (necessarily before
stage x), we can wait for the node to be initialized to see if x enters Gi. For nodes below
� in the tree assigned to any 	 requirement, any witness x that puts Gi in its block also
puts Gj and so for those x, x 2 Gi , x 2 Gj. Of course, for witness x for �e;i;k type
nodes, x 2 Gi , x 2 L as before. Of course, for any x not appointed as a witness for
one of these type nodes, x =2 Gi.
If the partial order is only �3, then one adjust the previous procedure by instead of

single nodes with �3 guessing at i �� j putting in individual nodes for each i and j
guessing that a particular number is the (least) witness to the �3 fact that i �� j. Along
a path with the �02 outcome that the witness is correct, one follows a coding stratgey
incorporating this individual fact. If it is true, then some node � on the true path has
the correct witness and all nodes below it obey the required coding strategy. Nodes not
below this one, are handled as above. For each node guessing a witness for the �3 fact,
where we see that it is false, i.e. along a path with the �02 outcome, we put in one more
	 requirement for i �� j. So if i �� j; then along the true path, we will put in 	e;i;j
requirements for every e and so satisfy the requirement.

7 Requirements II

We now turn to our second technical result:

Theorem 1.7. For any n � 1, there are r.e. degrees g;p;q, an n-r.e. degree a and an
n+ 1-r.e. degree d such that:

1. For every n-r.e. degree w � a, either q � w _ p, or w � g.

23



2. d � a, q � d _ p, and d � g.

Our list of requirements is very similar to the one used for our �rst technical theorem:

1. 	e : 	e(G) 6= D;

2. �e : �e(D � P ) 6= Q;

3. �e;i : (�e(A) =Wi)! [9�(�(Wi � P ) = Q) _ 9�(�(G) =Wi)].

In addition, we need to make D �T A. Note that we only add elements into D by
diagonalization for 	 requirements. Whenever we pick a witness x for D, x is fresh at
that stage, and we reserve the pair (x; x+ 1) for coding D into A. If x enters D for the
�rst time, then we also put x into A. If x leaves D later, we either take x out of A or put
x+ 1 into A. In the �rst case, we may shu­ e x into and out of A and D simultaneously
but allowing at most n changes. In the second case, we may shu­ e x+1 into and out of
A and D simultaneously again allowing at most n changes in A (but this may make for
n + 1 changes in D altogether). Therefore in the end x is in D if and only if x is in A
and x+ 1 is not in A. No numbers other than these 	-witnesses enter or leave D in our
construction, and so D is recursive in A, A is n-r.e. and D is (n+ 1)-r.e.

8 Priority Tree II

Our priority tree here is almost the same as the one used in the �rst theorem. Of course,
we do not have � nodes. For any � node �, we put a new [temporary] outcome r�j to
the left of each g�j . So the outcomes of � are d, r�1, g�1, r�2,...,g�k and w. We do not
add nodes below these type r outcomes. [So a stage s may terminate at such an outcome
before we reach level s of the priority tree. We show, however, in Lemma 10.1 that no
node of type r can be on the true path.] The notions of active � nodes, �� � pairs are
de�ned in the same way as in Section 4.

9 Construction II

We only specify the construction at stage s when there is no stage announcement. In the
case when there is a stage announcement, we act as in §5.5. Note that in this construction
we only change G during P stages. The default permanent restraint is on A, D and G
while for P it must be speci�cally mentioned.

24



9.1 	 node and � node

At a 	 node, the action is the same as the one in §5.1 with G for L�Gi and D for Gi.

At a � node �, we follow almost the same procedure as we did in §5.2. The only
di¤erence is in how we revise the computations from old �-axioms. As in the �rst
construction, if P has changed and the change was caused by some � with g� outcome
by putting the old use into P , then we increase the W -use to ls(�) and P -use to be
fresh. If a W change caused some �(x) to be unde�ned, then we check whether x is a
diagonalization witness for some � below �, if so, we also check whether D has changed
by putting in some number for the �rst time at the previous stage when � was accessible
(and � has not been initialized since). If so, we then rede�ne �(x) withW -use up to ls(�)
and fresh P -use. In all other cases we rede�ne the axiom without changing the uses.

9.2 � node

[At a � node, the obvious di¤erence from the �rst construction is that we use D in our
� computation but use G in our � computation. So the arguments in 6.3 are no longer
valid. In the case that W changes, we have no reason to expect a G change. In fact, so
far we have no requirements or procedures that put numbers into G. Here we actively
put numbers into G to correct � computations. We will make full use of the fact that D
is n+ 1-r.e., i.e., it has one more chance to change than A and the Wi. We may remove
a number from D while leaving it in A but putting z + 1 into A. This will a¤ord us the
opportunity to produce a situation in which we may initiate shu­ ing.]

At a � node � accessible for �rst time after it has been last initialized, we pick a fresh
witness x for diagonalizing �(D�P ) 6= Q. If we have a witness x already assigned (and
not yet canceled by initialization) at �, we check whether the � computation converges
at the witness x. If we do not have a believable (de�ned in the same way as in our �rst
theorem) computation �(D � P ;x), we go to outcome w. If we do, we follow Plan D as
in §5.3.1 if we can. If not, we have a planned outcome g�j as in §5.4.1 and check whether
we have not been at this outcome since � was last initialized or whether the previous
stage t when we went to this outcome was a P -stage. If so we announce an A-stage and
continue the construction below �.

Otherwise, we have two possibilities.

9.2.1 Plan R: removal

Let t be the last stage at which � was accessible. If there is a y < 
(W ;x) such that
W (y) has di¤erent values at t and s and the only change in A � t is that some element
z entered D and A for the �rst time at stage t because of the action of a node below
� [necessarily a 	 node], we remove z from D and add z + 1 into A [so we restore the
version of D at stage t up to the � use]. We go to the r�j outcome and terminate the

25



current stage of the construction. We call the least such y the key witness for the removal
plan.

[The idea here is that, before � can become accessible again without being initialized,
we would see at �j if y has left W . If so we would initiate a shu­ e there on z + 1 and
initialize �. If not, we will argue that we must go to the left of g�j and r�j . Roughly,
the idea is that the computation �(D � P ;x) will be the same as that at stage t while

j(P ;x) will have been increased above �(x) by y entering W . ]

9.2.2 Plan G: change G

If we satisfy none of the above criteria, we go to the outcome g�j and continue to build
� consistently. For each u, if �(u) was de�ned at the last stage t at which �^g�j was
accessible and W (u) has not changed since then, we simply update the � axiom with
the current version of G (if necessary) without changing the use. If �(u) was de�ned at
t but W (u) is now di¤erent, then let �(u) be the use of G in the old � computation. We
add �(x)� 1 into G and rede�ne � with a fresh use in G. [We preserve the consistency
of � by doing this as G is r.e.] Then we also de�ne a new computation �(u) for the next
u which was unde�ned with fresh G-use. Finally, we follow Plan P to add 
 uses into P
as in Section 5.4.2 and announce a P -stage.

10 Veri�cation II

We can go through most of Section 6 and show that we have a leftmost path visited
in�nitely often (that it is actually in�nite follows from Lemma 10.1), and each node
along the true path is passing down alternating A-stages and P -stages along the true
path. There are obvious alphabetic changes needed In Lemmas 6.1-6.6 � no L or �.
Otherwise, note �rst that Plan R action for 	 nodes are an exception to Lemma 6.1.
Next, Lemma 6.2 applies to D as well as A and we have to remark that if we implement
Plan R no node is even accessible thereafter, while Plan R action cannot be the second
type to change A (or D) at s by the arguments given in the proof of Lemma 6.2. Finally,
for the proof of 6.3 note that G-uses for � are also chosen fresh. It is then not di¢ cult to
see that functionals are well-de�ned and complete the job we assigned if they are along
the true path. For the ��s, use Lemma 6.7. For the ��s, it is directly guaranteed by our
construction. [The complicated argument for Lemma 6.8 is not needed but see the proof
of Lemma 10.1 for some remnants of it.]

For the veri�cation that all the requirements are satis�ed we continue as in §6.4. The
positive order requirements (Lemma 6.9) are simply replaced by the requirement that
D �T A. Our construction guarantees that x is in D if and only if x is in A and x + 1
is not. Except for the satisfaction of the 	 requirements (Lemma 6.10) in the case of d
outcome all the other veri�cations proceed as in §6.4.

26



As for the 	 requirements, the major issue is that here we add elements into G
(when we construct �) and this action might, a priori, injure some apparently satis�ed
	 requirement of lower priority. To show that the 	 requirements are all satis�ed, we
�rst need a few lemmas.

Lemma 10.1. No outcome of type r can be on the true path.

Proof. The argument is similar to the one in the end of the proof of Lemma 6.8. Consider
any � node � on the true path and suppose, for the sake of a contradiction, that its true
outcome is r�.

Let s = s(�^r�) and, as in the construction, let t be the previous stage at which �
had outcome g�; x, the diagonalization witness at �; y, the key witness for Plan R at s;
and z, the unique element that entered D for the �rst time at t. We remove z from D at
s following Plan R. Let s0 be the next stage at which � is accessible with a believable �
computation. If y was ever out of W between s and s0 (when � was accessible) then, we
would have initiated a shu­ e plan at � and so moved left of � � �^i for a contradiction.
(As we terminate stage s at �^r� with no action, there is no change in A at s. Between
s and s0 Lemma 6.3 shows that A � s is preserved. So if W (y) changes we satisfy the
conditions for shu­ ing at �.) Thus we also assume that y remains in W at every stage
at which � is accessible through stage s0.

Now at stage s we restored the computation �(D � P; x) of stage t by removing z
from D: z is the only change to D up to �(x) at t by Lemma 6.2, and P is preserved
by the A-stage announcement at t. Between t and s, D � t is preserved by Lemma 6.3
and P � �(x) is not injured by nodes to the right. Finally, our believability condition
guarantees that P � �(x) is also not injured by nodes above �. Thus at stage s0 we still
have the same computation of �(x) as at stage t.

Now consider the � computation we build at �^i. At stage s the conditions for Plan
R guarantee that y < 
(W ;x) (at t) has entered W for the �rst time after t and by s.
So when this happens and we are at � we see a change in the W part of �(x) which
makes �(x) unde�ned. Therefore, by our construction, we add a new axiom with W -
use the current length of agreement and P -use fresh, which is larger than �(P; x) at t.
This 
(P; x) remains large since y remains in W , therefore at stage s0 we will see that

(P; x) > �(P; x).

For other active �l�s between � and �, the corresponding 
l(Wl;x)are larger than
�(P; x) at stage t by the rules for going to outcome g�. The only way that anyone of
these uses can decrease is byWl changing at some stage v � s0 from its value on 
l(Wl;x)
at t back to an older version. If this happens, then when �l is accessible at v � s0 we
initiate a shu­ e at �l by shu­ ing z + 1 which we added into A by Plan R at t with
shu­ e points t and v. This would move us to the left of � for a contradiction. Therefore
these uses cannot decrease, and at stage s0 they are still larger than �(P; x). Hence at
stage s0 we will go to the left of the r� outcome by our construction for the desired
contradiction.

27



Lemma 10.2. In the construction at a � node �, if we change G as in 9.2.2 at a stage
s > s(�), then it must be the case that at the previous stage t when �^g� was accessible,
we followed either Plan S or Plan R to change D at some node � below �.

Proof. By our construction, if we must change G by putting in some �(u)�1, thenW (u)
and therefore A � �(u) must be di¤erent at stage s from stage t. By Lemmas 6.3 (for
nodes to the right), 6.2 (for nodes below), 6.1 (for nodes above not of type r) and 10.1
(to see that there are no type r nodes above), such a change in A can only happen at
stage t. Thus we must have changed A and D at stage t below � since � was accessible.

We can change A and D in only three ways: diagonalization at a 	 node, Plan S or
Plan R. By Lemma 6.2 if we have applied diagonalization at a node below �, then it is the
only change at stage t, so at stage s according to our construction we would want to apply
Plan R to remove the element added into D at stage t [and restore the � computation].
Depending on the current stage announcement we would then have outcome either r or
w. Since by assumption the outcome at s is g�j , we must have followed either Plan S or
Plan R at t.

Now we can prove that 	 requirements are not injured by Plan G.

Lemma 10.3. If � is a 	 node (	(G) 6= D) on the true path and we go to outcome d
after stage s(�), then the diagonalization will not be injured thereafter, i.e., the 	-use in
G is preserved and the diagonalization witness x is not removed from D and so the 	
requirement is satis�ed.

Proof. Suppose at stage s > s(�) we diagonalized at � by putting x into D and so impose
permanent restraint on D. First of all, x cannot be taken out of D at subsequent stages,
since only nodes above � could do so and then only if we follow either Plan S or Plan R
at a node above �. Plan S action would move us to the left for a contradiction and there
are no outcomes r above � by Lemma 10.1.

Next we claim that the G-use is also preserved. No node below or to the right of �
can add elements below this G-use into G after stage s, since their �-uses are de�ned to
be fresh. The only worry is that some � node � with �^g� above � might follow Plan
G (at stage s1 > s) to add �(y)� 1 into G for some changed u in W in order to correct
some � axiom. The �(G;u) axiom being killed must have been enumerated before stage
s, since its use was chosen fresh. So W (u) = �(A;u) at stage s.

By Lemma 10.2, the only circumstances under which we change G at stage s1 in
response to this change in W is that D has already changed by some other node � below
�^g� following Plan S or Plan R at the previous stage t at which �^g� was accessible.
Such a � cannot be above � as we would then move to its left, so it must be to the right
of, or below, �^d.

Then there must be another 	0 node �0 (below �) which added a number into D after
stage s (since at stage s we initialized all nodes to the right of � , any change before s

28



cannot be used in shu­ ing or removal) and the number is taken out by � . However, �0

cannot be below, or to the right of, �, as its witness would then be larger than s and
so could not a¤ect the value of W (u) which agrees with �(A;u) at stage s. So we get a
contradiction.

In another words, once we apply diagonalization for �, we (automatically) implement
restraints for A and D and hence to W�s up to the part that we have coded in. So we
can guarantee that there can be no change in W which makes us change G on the uses
we have already seen, and in particular, the 	-use of G is preserved.

11 Bibliography

Arslanov, M. M. [1985], Lattice properties of the degrees below 00, Doklady Ak. Nauk
SSR 283, 270-273.
Arslanov, M. M. [2009], De�nability and elementary equivalence in the Ershov di¤er-

ence hierarchy in Logic Colloquium 2006, Lecture Notes in Logic, Association for Symbolic
Logic and Cambridge University Press, New York, 1�17.

Arslanov, M. M. [2010], The Ershov hierarchy in Computability in Context: Compu-
tation and Logic in the Real World, Cooper, S. B. and Sorbi, A. eds., Imperial College
Press, London.

Arslanov, M. M., Kalimullin, I. Sh. and Lempp, S. [2010], On Downey�s Conjecture,
Journal of Symbolic Logic 75, 401-441.
Cooper, S. B. [1971], Degrees of Unsolvability, Ph.D. Thesis, Leicester University.

Cooper, S. B. Harrington, L., Lachlan, A. H.. Lempp S. and Soare, R. I.[1991], The
d-r.e. degrees are not dense, Annals of Pure and Applied Logic 55, 125-151.
Downey, R. G. [1989], D-r.e. degrees and the non-diamond theorem, Bulletin London

Mathematical Society 21, 43-50.
Epstein, R. L. [1979], Degrees of Unsolvability: Structure and Theory, LNM 759,

Springer-Verlag, Berlin.

Ershov, Y. I. [1968], On a hierarchy of sets I, Algebra and Logic 7, 25-43.
Ershov, Y. I. [1968], On a hierarchy of sets II, Algebra and Logic 7, 212-232.
Ershov, Yu. I. [1970], On a hierarchy of sets III, Algebra and Logic 9, 20-31.
Gold, E. M. [1965], Limiting recursion, Journal of Symbolic Logic 30, 28-48.
Harrington, L. and Shelah, S. [1982], The undecidability of the recursively enumerable

degrees (research announcement), Bulletin of the American Mathematical. Society, N.S.
6, 79-80.
Hodges, W. [1993], Model Theory, Cambridge University Press, Cambridge U.K.

Jockusch, C. G. Jr. and Shore, R. A. [1984], Pseudo-jump operators II: trans�nite
iterations, hierarchies and minimal covers, Journal of Symbolic Logic 49, 1205-1236.

29



Lachlan, A. H. [1966], Lower bounds for pairs of recursively enumerable degrees,
Proceedings of the London Mathematical. Society (3) 16, 537-569.
Lachlan, A. H. [1968], Distributive initial segments of the degrees of unsolvability, Z.

Math. Logik Grund. Math. 14, 457-472.
Lerman, M. [1983], Degrees of Unsolvability, Springer-Verlag, Berlin.

Nies, A., Shore, R. A. and Slaman, T. A. [1998], Interpretability and de�nability in
the recursively enumerable degrees, Proceedings of the London Mathematical. Society (3)
77, 241-291.
Putnam, H. [1965], Trial and error predicates and the solution to a problem of

Mostowski, Journal of Symbolic Logic 30, 44-50.
Sacks, G. E. [1966], Degrees of unsolvability, Annals of Math. Studies 55, Princeton

University Press, 2nd ed., Princeton NJ.

Shoen�eld, J. R., [1959], On degrees of unsolvability, Annals of Mathematics 69,
644-653.

Shoen�eld, J. R. [1965], An application of model theory to degrees of unsolvability,
in Symposium on the Theory of Models, J. W. Addison, L. Henkin and A. Tarski eds.,
North-Holland, Amsterdam, 359-363.

Shore, R. A. [1981], The theory of the degrees below 00, Journal of the London Math-
ematical Society 24, 1-14.
Shore, R. A. [1988], De�ning jump classes in the degrees below 00, Proceedings of the

American Mathematical Society 104, 287-292.
Shore, R. A. [2006], Degree structures: Local and global investigations, Bulletin of

Symbolic Logic 12, 369-389.
Shore, R. A. [2007], Direct and local de�nitions of the Turing jump, Journal of Math-

ematical Logic 7, 229-262.
Simpson, S. G. [1977], First order theory of the degrees of recursive unsolvability,

Annals of Mathematics (2), 105, 121-139.
Slaman, T. A. [1983] The recursively enumerable degrees as a substructure of the �0

2

degrees, handwritten notes.

Slaman, T. A. [1991], Degree structures, in Proceedings Int. Cong. Math., Kyoto
1990, Springer-Verlag, Tokyo, 303-316.

Slaman, T. A. and Woodin, H. [2001], De�nability in Degree Structures, preprint.

Stephan, F. Yang, Y. and Yu, L. [2009], Turing degrees and the Ershov hierarchy
in Proceedings of the Tenth Asian Logic Conference, Kobe, Japan, 1-6 September 2008,
World Scienti�c, 300-321.

Taitslin, M. A. [1962], E¤ective inseparability of the sets of identically true and �nitely
refutable formulas of elementary lattice theory, Algebra i Logika 3, 24-38.
Turing, A. M. [1939], Systems of logic based on ordinals, Proceedings of the London

Mathematical. Society (3) 45, 161-228.

30



Yang, Y. and Yu, L. [2006], R is not a �1-elementary substructure of Dn, Journal of
Symbolic Logic 71, 1223�1236.
Yates, C. E. M. [1966], A minimal pair of recursively enumerable degrees, Journal of

Symbolic Logic 31, 159-168.

31


