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Abstract

The computability properties of a relationR not included in the language
of a computable structureA can vary from one computable presentation to an-
other. We describe some classic results giving conditions onA orR that restrict
the possible variations in the computable dimension ofA (i.e. the number of
isomorphic copies ofA up to computable isomorphism) and the computational
complexity ofR. For example, what conditions guarantee thatA is computably
categorical (i.e. of dimension1) or thatR is intrinsically computable (i.e. com-
putable in every presentation). In the absence of such conditions, we discuss
the possible computable dimensions ofA and variations (in terms of Turing de-
gree) ofR in different presentations (the degree spectrum ofR). In particular,
various classic theorems and more recent ones of the author, B. Khoussainov, D.
Hirschfeldt and others about the possible degree spectra of computable relations
on computable structures and the connections with computable dimension and
categoricity will be discussed both in general model theoretic settings and in
restricted classes of structures such as graphs, linear and partial orderings, lat-
tices, Boolean algebras, Abelian and nilpotent groups, rings, integral domains,
and real or algebraically closed fields.

1 Introduction

The general subject area of this paper is effective model theory. There are (at least)
two versions of what is the basic subject matter of model theory. Along with Chang
and Keisler [1990] one can take the “logical” point of view that it deals with the con-
nections between formal language and their interpretations, or models. Alternatively,
with Hodges [1993] we can say that it is the study of the construction and classifi-
cation of structures within specified classes of structures. The first view starts with
∗Partially supported by NSF Grant DMS-9802843.
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theories and so the effective version deals with decidable theories, ones for which
we have a computable procedure for deciding the validity of each sentence or its
truth in a model under consideration. The second is an algebraic view that starts
with structures and so the effective version deals with computable structures in the
sense that we can compute the basic relations and operations on the structure. Each
approach provides a rich area for investigation. In this paper we consider only cer-
tain topics from the second, structural or algebraic point of view. One that considers
both is Khoussainov and Shore [1999]. More general introductions can be found in
The Handbook of Recursive Algebra(Ershov et al. [1998]), especially the articles by
Harizanov [1998] and Ershov and Goncharov [1998]. ThisHandbookalso contains
other useful survey papers on aspects of effective model theory and algebra and an
extensive bibliography. The one most closely related to the theme of this paper is
Goncharov [1998]. Another interesting survey is Millar [1999] inThe Handbook of
Computability Theory(Griffor [1999]). One book in progress on the subject is Ash
and Knight [2000].

As for approaches to effectiveness, one can profitably study the issues of com-
putability in model theory and algebra in terms of a wide range of notions from
polynomial-time to Borel. In this paper, we restrict ourselves to the fundamental no-
tion of computability (and relative computability) as determined by Turing machines
(with oracles). We begin with the basic definition.

Definition 1.1 A structureA is computableif its domainA is computable and the
functions and relations ofA are uniformly computable (or, equivalently, the atomic
diagram ofA, D(A, a)a∈A, is computable).A is computably presentableif A is
isomorphic to a computable structureB via a mapf : A → B which we call a
computable presentationofA.

• From now on, all structures will be computable unless otherwise specified.

The question we want to address in this paper is whether computability properties
of structures depend on the choice of presentation and if so, how? From the classical
mathematical viewpoint, two presentationsA andB of a structure are, after all, the
same structure, i.e. they are isomorphic, so one might ask how can they differ. On the
other hand, it is a commonplace in computer science that the choice of representation
of data can be crucial in determining the ease of its use. Thus, from the mathematical
point of view, the surprise will be that there are differences at all. From the com-
puter science point of view, the surprise is the extent of the differences. The choice
of presentation can not only make operations faster or slower but can change them
from computable to noncomputable in drastic ways. A classic and striking exam-
ple is the notion of dependence in vector spaces (linear dependence) or algebraically
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closed fields (algebraic independence). While we know how to effectively determine
whether elements are dependent or not in each setting in the standard presentations
of, for example, the infinite dimensional vector space (or algebaically closed field)
over the rationals,Q, this cannot be done in all computable presentations of these well
known structures (Metakides and Nerode [1977], [1979]). The source of the problem
is that, althoughA andB may be isomorphic, the isomorphism between them may
not be computable. Thus a relation (like dependence), even though it is preserved
under isomorphisms, is not explicitly part of the language and so may be computable
in one computable presentation and not another. The point here is that the underlying
notion of equivalence between computable structures that is relevant to issues about
preserving computability properties is computable rather than classical isomorphism.

Definition 1.2 A is computably isomorphicto B, A ∼=c B, if there is a computable
f : A→ B which is an isomorphism. We also say then thatA andB areof the same
computable isomorphism type.

Definition 1.3 The (computable) dimensionof a structureA is the number of its
computable isomorphism types.A is computably categoricalif its computable di-
mension is1, i.e. everyB isomorphic toA is computably isomorphic toA.

Example 1.4 〈Q,≤〉 is computably categorical: The usual back and forth argument
used to show that any two dense linear orderings without endpoints are isomorphic
is effective and produces computable isomorphisms between any two computable
presentations ofQ.

Example 1.5 〈N, s〉 is computably categorical: GivenB ∼= N, one defines the re-
quired computablef : N → B by recursion. First,f(0) is the least element ofB
and then iff(n) = b we letf(n+ 1) = s(b).

On the other hand, if one considers the natural numbers with the usual ordering
relation but without the successor function, the structure is not computably categori-
cal. Indeed, as the above argument shows, any presentationA in which the successor
function is computable is computably isomorphic to the standard presentation. Thus,
there are presentations in which the successor function is not computable

Proposition 1.6 〈N,≤〉 has a computable presentationA in which the successor
function is not computable and so〈N,≤〉 is not computably categorical.

Proof. We constructA = 〈A,�〉 by induction. Without loss of generality, we as-
sume that we have a common enumeration of all the computations of the computable
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functionsφn in which just one computationφn(x), for somen andx, converges at
each stages. We begin with all the even numbers inA0 in their usual order. At
stages of the construction, we see ifφn converges on input2n at stages and gives
output2n + 2. If so, we add2s + 1 to As to getAs+1 and put2s + 1 between2n
and2n + 2 in the ordering�. If not, As+1 = As. Of course,A = ∪As. It is easy
to see thatA is computable. (To see if some odd number2s + 1 is in A just go to
stages of the construction. Similarly, ifx, y ∈ A, we can determine ifx � y at
the stage by which both have been put intoA.) It is also immediate thatA ∼= N as
we start out with an ordering onA0 isomorphic toN and add at most one element
between any two consecutive elements of the original ordering onA0. On the other
hand, the usual diagonal argument now shows that noφn is the successor function on
A. (If φn(2n) converges and equals2n + 1 then the immediate successor of2n in
A is 2s+ 1 wheres is the stage at whichφn(2n) converges. In every other case, the
immediate successor of2n in A is 2n+ 2 which is not the value ofφn(2n).) �

Example 1.7 As in Example 1.5 the integersZ as a group with+ or as a ring with
+ and× is computably categorical as it is finitely generated. The rationals,Q, are
also computably categorical as a field as one can effectively generate them from0,
1 and the field operations+ and× using a procedure that identifies a fractionp/q
as the elementr such thatp = q × r. A bit of Galois theory can then be used to
show thatQ̄, the algebraic closure ofQ, is computably categorical. On the other
hand, the algebraic closure ofQ extended by infinitely many transcendentals has
computable dimensionω. The argument need here is more complicated than for
〈N,≤〉 but follows from the results of Metakides and Nerode [1979] mentioned above
as well as more general theorems that we will discuss below.

2 Categoricity and Intrinsic Computability

Since we have intimated that the source of variation in computability properties
among different presentations is the fact that the isomorphism between them might
not be computable, it is natural to conjecture that computable categoricity should ob-
viate this problem and any relation or operation computable in one presentation of
a computably categorical structure should be computable in all presentations. This
conjecture is false as stated but is true for all the relations or operations in which a
mathematician is likely to actually be interested. We begin with the formal defini-
tion of persistence of computability over presentations and a counterexample to our
conjecture. We then show in what sense it is essentially correct.

Definition 2.1 (Ash and Nerode [1981])If R ⊆ An, thenR is intrinsically com-
putable (c.e.)if f [R] is computable (c.e.) for every isomorphismf : A → B.
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Example 2.2〈N,≤〉: The successor function is not intrinsically computable by Prop-
osition 1.6.

Example 2.3 〈N, s〉: Every computable relation is intrinsically computable. Sup-
poseR ⊆ N is computable andf : N → B is another computable presentation of
N . By the argument of Example 1.5,f is computable. Of course,̄R, the complement
of R in A, is also computable. Asf is a bijectionf [R] andf [R̄] are complementary
in B . As they are both the images of computable sets under a computable map they
are computably enumerable and so actually computable. (The argument forn-ary re-
lationsR is essentially the same and we will frequently consider only unary relations
when there is no real difference.)

On the other hand, computable categoricity does not guarantee that all com-
putable relations are intrinsically computable.

Example 2.4 Consider the structureQ with the usual ordering and then additional
dense subsetsR andR′ with R computable andR′ not. It is easy to construct an
isomorphismf : 〈Q,≤, R〉 → 〈Q,≤, R′〉 and soR is not intrinsically computable
even thoughQ is computably categorical.

There are two views of what has gone wrong in this counterexample. One is that,
although there is some computable map between the two presentations ofQ given
in this example (indeed the identity map is such an isomorphism asR is not in the
language), the isomorphismf is not computable. The way to solve this problem is to
strengthen the notion of computable categoricity.

Definition 2.5 A is computably stableif every isomorphismf : A → B is com-
putable.

Thus the Examples above show that〈N, s〉 is computably stable but〈Q,≤〉, while
computably categorical, is not computably stable. The stronger notion, however,
clearly suffices to guarantee that the computability of any relation cannot change
from one presentation to another. Perhaps surprisingly, it is easy to see that it is also
necessary.

Proposition 2.6 (Ash and Nerode [1981])A is computably stable if and only if every
computable relation onA is intrinsically computable.

Proof. The argument given in Example 2.3 proves sufficiency. For necessity, suppose
every computable relation onA is intrinsically computable and consider the succes-
sor relationR onA as a computable set of natural numbers with the usual ordering.
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SupposeB is any other presentation ofA given byf : A→ B. As the image ofR is
computable we can use it to computably calculatef as in Example 1.5.�

The other view of what is wrong with Example 2.4 is that the relationR consid-
ered is not invariant under automorphisms and so not mathematically relevant to the
structure. This suggest the following proposition saying that computable categoricity
is enough to guarantee intrinsic computability for all the relations of interest.

Proposition 2.7 If A is computably categorical then every invariant (under auto-
morphisms) computable relation onA is intrinsically computable.

Proof. SupposeA is computably categorical,R ⊆ A is computable, andg is an
isomorphism fromA to B. We wish to show thatg[R] is computable. AsA is com-
putably categorical, there is a computable isomorphismf : A → B. As in Example
2.3,f [R] is computable. AsR is invariant under automorphisms, in particular under
g−1f , f [R] = g[R] and sog[R] is also computable.�

Before considering specific conditions on structures that imply computable cate-
goricity or stability and so guarantee that computational properties do not vary among
presentations, we mention a number of general results on when various specified
types of mathematical structures are computably categorical.

Theorem 2.8 (Goncharov [1973]; LaRoche [1977]; Remmel [1981]; Goncharov and
Dzgoev [1980])A Boolean algebra is computably categorical if it has finitely many
atoms. If not, it has dimensionω.

Theorem 2.9 (Remmel [1981a]; Goncharov and Dzgoev [1908])A linear order is
computably categorical if it has only finitely many adjacent pairs of elements. If not,
it has dimensionω.

Theorem 2.10 (Nurtazin [1974]; Metakides and Nerode [1979])A real or alge-
braically closed field of finite transcendence degree overQ is computably categori-
cal. Ones of infinite degree have dimensionω.

Theorem 2.11 (Goncharov [1980])Every Abelian group has dimension1 or ω.

Theorem 2.12 (Goncharov, Lempp and Solomon [2000])Every Archimedian or-
dered group has dimension1 or ω.

These results provide a type of dichotomy theorem for each of the classes of
structures described. Every one is either computably categorical and so very well be-
haved in terms of computability properties or has the maximum possible number of
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computable isomorphism types. Moreover, in each case, there is a structural analysis
that tell us into which category each model falls. As is indicated by these exam-
ples, when there is such a dichotomy the dividing line seems to be that some sort
of finiteness property characterizes the computably categorical structures. We saw
this explicitly in the analysis of〈N, s〉 in Example 1.5 where the structure’s being
finitely generated in the usual sense was the key to computable stability. Of course,
any finitely generated computable structure is computably stable by the same argu-
ment. As it turns out, with the proper version of what it means to be finitely generated
and an additional assumption on the decidability of what for algebras amounts to the
existence of solutions of systems of equations and inequations, this condition is also
necessary.

Definition 2.13 A structureA is n-decidable(for n ∈ N) if the set of prenex sen-
tences ofTh(A, a)a∈A with n − 1 alternations of quantifiers is computable. So, for
example,A is 1-decidableif the set of prenex sentences ofTh(A, a)a∈A with either
only existential or only universal quantifiers is decidable.

Theorem 2.14 (Ash and Nerode [1981]; Goncharov [1975])If A is1-decidable, then
A is computably stable if and only if there are constantsc ∈ A and a computable
sequenceφi(c, x) of existential formulas such that for eachi there is a uniquea ∈ A
satisfyingφi and eacha ∈ A satisfies someφi.

Here the sequence of formulasφi provide the generating process from the finitely
many parameters̄c as we can search for witnesses to the existential formulas to gen-
erate the unique elementa satisfying eachφi. This is situation forQ in Example 1.7
where the formulas express the facts that each element is either a sum of1’s or the
solutionr of an equation of the formp + r = 0 or p = r × q wherep is a sum of
1’s andq is such a sum or a solution to an equation of the first type. On the other
hand,Q̄ is not finitely generated in the usual sense and the argument that it is com-
putably categorical relies on specifying elements as roots of polynomials overQ and
so determining them only up to isomorphism. Given the previously mentioned rela-
tionship between computable categoricity and the intrinsic computability of invariant
relations, it is not unreasonable that we have a result for computable categoricity that
is analogous to Theorem 2.14.

Theorem 2.15 (Goncharov [1975])If A is 2-decidable then it is computably cate-
gorical if and only if there arec ∈ A andφi(c, x) as in Theorem 2.14 except that the
φi determine elements not uniquely but only up to automorphism, i.e. ifφi(c, a) and
φi(c, b) then there is an automorphism ofA takinga to b.
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The decidability assumptions in Theorem 2.14 and 2.15 are necessary (Gon-
charov [1977]). Moreover, the type of dichotomy results given in Theorems 2.8-2.12
are also provided by decidability type conditions on the structures themselves.

Theorem 2.16 (Goncharov [1982]; Nurtazin [1974], Goncharov [1977])Every∆2-
categorical structure (i.e. there is always a∆2 isomorphism between any two presen-
tations) and every1-decidable structure hasdim 1 or ω.

However, the dichotomy between computable categoricity and dimensionω does
not hold for all types of structures. The first indication of such phenomena was in the
following theorem:

Theorem 2.17 (Goncharov [1980a])For eachn, 1 ≤ n ≤ ω there is a structure of
dimensionn.

Indeed, there are several examples of common mathematical theories whose mod-
els can have all possible dimensions and, as we shall see in Theorem 4.1, exhibit the
widest possible range of variation in computability properties.

In addition to trying to characterize when a structure is computably categorical or
stable, it is natural to ask when individual relations are intrinsically computable. As
with structures, there is a nice answer if we assume a certain amount of decidability.

Theorem 2.18 (Ash and Nerode [1981])If 〈A, R〉 is 1-decidable thenR is intrinsi-
cally c.e. if and only if, for some finite list of parameters~a fromA and computable
set of existential formulasφi,A |= R(~x)⇔

∨
φi(~x,~a). Of course,R is intrinsically

computable if and only if it and its complement are both intrinsically c.e.

The possible routes to the failure of computable categoricity or stability or intrin-
sic computability are intimately connected with the possible complexity of a given
computable relationR onA in various presentations ofA. We explore this topic in
the next section.

3 Degree Spectra

The question we want to address here is how complicated canf [R] be for a com-
putable (c.e.) relationR onA if R is not intrinsically computable. The idea of the
range of variability is captured in the following definition from Harizanov [1987].
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Definition 3.1 If R is ann-ary relation onA, thedegree spectrum ofR,DgSp(R),
is {degT (f [R]) | f : A → B is an isomorphism}. (degT (X) is the Turing degree of
X.)

Of course,R is intrinsically computable if and only ifDgSp(R) = {0}. Many
natural examples of relations that are not intrinsically computable have degree spec-
trum the setC of all c.e. degrees orD, the set of all degrees. Again there are con-
ditions that guarantee thatR has such a spectrum (Harizanov [1987], [1991]; Ash
Cholak and Knight [1997]) but here we concentrate on the possibilities of producing
more specific sets of degrees as degree spectra of computable relations. The gen-
eral question is which sets of degrees can be realized as the degree spectrum of a
computable relation. We mention a few examples.

Theorem 3.2 (Harizanov [1993])There is anA and a relationR onA suchA has
exactly two computable presentations andDgSp(R) = {0, c}with c noncomputable
and∆0

2.

Theorem 3.3 (Khoussainov and Shore [1998])For any computable partially ordered
setP (with least element) there exists a structureA of dimension the cardinality of
P and a (computable) unary relationU onA such thatDgSp(U) ∼= P and every
element ofDgSp(U) is c.e.

Theorem 3.4 (Hirschfeldt [1999])For every uniformly c.e. setW of c.e. degrees.
there is an〈A, R〉 withDgSp(R) =W.

A more difficult problem (in the finite dimensional case) is to control both the
degree spectrum ofR and the computable dimension ofA simultaneously. The fol-
lowing theorem subsumes all of the above results on finite degree spectra as well as
Theorem 2.17 on computable dimension.

Theorem 3.5 (Hirschfeldt [1999]; Khoussainov and Shore [2000])For every finite
setW of c.e. degrees, there is an〈A, R〉 such thatDgSp(R) = W anddim(A) =
|W|.

Many natural infinite classes of degrees other thanD andC can also be realized
as the degree spectra of computable relations. Here are some examples.

Theorem 3.6 (Hirschfeldt [1999])Each of the following classes can be realized as
the degree spectrum of a computable relation: theΣ0

n degrees, the∆0
n degrees,D(≤

a) andC(≤ a) for any c.e.a.

9



The only known limitations on the degree spectrum of a computable relationR
are imposed by the fact that forR ⊆ An, {f [R]| there is a computableB and an
isomorphismf : A → B} is Σ1

1 in R. Thus, there are countable partial orders
that cannot be realized in the c.e. degrees as the degree spectrum of any relation
R on any structureA. Similarly, such a partial order with least element cannot be
realized anywhere in the Turing degrees as the degree spectrum of a computable
relation. Indeed, not every finite set of degrees can be realized as a degree spectrum:
Any degree spectrum containing a hyperarithmetic degree and a nonhyperarithmetic
degree is uncountable and any unbounded spectrum contains a cone of degrees.

It turns out that controlling the degree spectrum is also connected to another
long standing problem involving computable categoricity. In classical model theory,
a countably categorical structure remains countably categorical when expanded by
finitely many constants. Results of Goncharov [1975] and Millar [1986] showed that
computably categorical structures remain computably categorical when expanded by
a constant if they are sufficiently decidable. (Goncharov assumed2-decidability and
Millar reduced this to1-decidability.) The question of whether the decidability as-
sumption is necessary was finally answered in Cholak, Goncharov, Khoussainov and
Shore [1999].

Theorem 3.7 (Cholak, Goncharov, Khoussainov and Shore [1999])For eachk ∈ ω,
k ≥ 2, there is a computably categoricalB whose expansion by any constant has
computable dimensionk.

This result was then later derived as an easy corollary of the work in Khous-
sainov and Shore [1998] on degree spectra. Both analyses left open the question of
whether expansion by a constant could change a computably categorical structure to
one with infinite dimension. Hirschfeldt’s [1999] proof of Theorem 3.5 supplied the
techniques to answer this question as well.

Theorem 3.8(Hirschfeldt, Khoussainov and Shore [2000])There exists a computably
categorical structureA whose expansion by any constant has dimensionω.

4 Interpretations and Algebraic Examples

The original examples of structures with finite dimension and relations with finite
degree spectra were always ad hoc constructions of families of computably enu-
merable sets or graphs. In the case of finite dimensionality, there was a sequence
of results showing that this phenomena occurred in various classes of mathematical
structures: partial orders and (implicitly) graphs in Goncharov [1980a] from which
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the case for lattices follows easily; groups and then two step nilpotent groups in
Goncharov [1981] and Goncharov, Molokov and Romanovskii [1989]; and integral
domains in Kudinov [1997]. Typically, these proofs proceeded by coding families
of c.e. sets into structures in the desired classes. A more general coding method has
now been devised for producing such results as well as many other phenomena in-
volving degree spectra, categoricity and other computability issues in many classes
of mathematical structures.

Theorem 4.1 (Hirschfeldt, Khoussainov, Shore and Slinko [2000])For each of the
following theories and each setW of c.e. degrees of sizen, there is a modelA and
a relationR on A (which can be taken to be a substructure ofA) such that the
dimension ofA is n and the degree spectrum ofR isW. There is also a modelB
which is computably categorical but some expansion by a constant has dimension
n and one which has dimensionω when expanded by a constant: graphs, lattices,
partial orders, commutative semigroups, rings (with zero divisors), integral domains
and nilpotent groups.

The analysis here begins with classical interpretability methods for theories as in
Hodges [1993] and takes as its starting structures graphs (which are just symmetric ir-
reflexive binary relations). Suppose we want to interpret arbitrary graphsG in a class
A of structuresA. The standard procedure calls for formulasφD(x) andφR(x, y)
in the language ofA that specify a domainDA and an edge (SIB) relationRA on
DA so that for each graphG there is anA ∈A such thatG ∼= 〈DA, RA〉. For our
purposes we need especially effective translations.D andR must be intrinsically
computable with a computable “natural transformation” fromDA to G. In this way
we can preserve computability properties across the interpretation. To deal with is-
sues of isomorphisms,D andR must be invariant. To control dimension, we also
want the interpreted structureAG = (DA, RA) to determineA in an effective way
and any isomorphism ofAG to be extendible to one ofA. We guarantee this last
condition by requiring that there be, for eachG, a computable familyφi(ā, b̄i, x) of
existential formulas with̄a ∈ A andb̄i ∈ DA such that everyx ∈ AG satisfies some
φi(ā, b̄i, x) and no two distinct elements ofDA satisfy any oneφi(ā, b̄i, x).

These conditions on interpretations suffice for the simplest of the classes men-
tioned in the theorem. For rings and integral domains we must generalize to inter-
preting equality as a new (invariant, intrinsically computable) equivalence relation
QA and extend all the new conditions to deal with sets of representatives. The result
for commutative semigroups follows from the interpretation into integral domains by
considering a subset of the integral domain that forms a commutative semigroup un-
der the multiplication operation of the ring. The interpretation into nilpotent groups
is a two step one. The first uses the translation of graphs into integral domains (of
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finite characteristicp > 2) and the second uses Malcev’s [1965] representation of a
ringR as the center of the group of matrices of the form 1 a c

0 1 b
0 0 1

with a, b, c ∈ R

with the ring operations definable from the matrix multiplication in an appropriately
effective way.

The especially effective interpretations produced to prove Theorem 4.1 can be
used to transfer other phenomena from arbitrary computable structures to ones of the
types listed in the theorem. We give two such applications.

Theorem 4.2 (Slaman [1998]; Wehner [1998]): There is a structureA without a
computable presentation that has presentations of every nonzero degree.

Corollary 4.3 There are such lattices, partial orders, commutative semigroups, rings,
nilpotent groups, integral domains.

Theorem 4.4 (Ash [1986]): For each even computable ordinalα there is a well-
orderingW which is∆α+1-categorical but not∆α-categorical, i.e. ifV is a com-
putable presentation ofW then there is an isomorphism betweenW andV which is
∆α+1 but there is some presentationV for which there is no such isomorphism which
is ∆α.

Corollary 4.5 There are such lattices, partial orders, commutative semigroups, rings,
nilpotent groups, integral domains.

We close this paper by mentioning some diverse topics within mathematical logic
that are related to the methods and goals of the analysis of computability properties
of relations on computable structures discussed here. First, there are clear analogies
between the methods and results on intrinsic computability and degree spectra and
those of reverse mathematics. This subject systematically analyzes which existence
assumption axioms are needed to prove standard theorems of classical mathematics.
(The best source for Reverse Mathematics is Simpson [1999] although the connec-
tions with computable model theory and algebra are not always made explicit.) The
fact that some relation on a structure such as “commuting with every element of a
group” is not intrinsically computable typically means that the existence of the set
of such elements, the center of the group, is not provable in RCA0 the standard base
theory of reverse mathematics. The fact that the spectrum of the relation includes0′,
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typically means that the proof of existence requires ACA0 (arithmetic comprehen-
sion). The other standard systems of reverse mathematics have similar computability
theoretic analogs and usually proofs from one area carry over to the analogous ones
in the other.

Second, the phenomena of dichotomies between structure theory and nonstruc-
ture theorems has become commonplace in both model theory and descriptive set
theory. Of course, each area has it’s own version of what one requires to have a
structure theorem. Usually, the requirements from the computability standpoint are
the most stringent. In model theory, the relevant issues include ones about transfer-
ring model-theoretic phenomena from structures of one class such as graphs where
certain properties are easy to arrange to others such as groups where they are less
obvious (as in Mekler [1981]). In descriptive set theory, the analysis frequently cen-
ters around the issue of completeness of various properties at different levels of a
hierarchy with respect to Borel reducibilities (as, for example, in Friedman and Stan-
ley [1989]; Camerlo and Gao [2000]; Hjorth and Kechris [1996]). Thus the types of
interpretations described in this section for translating results on degree spectra will
supply ones that can be used in both model theory and descriptive set theory. On
the other hand, even when not entirely effective the work in these other areas can at
times be used in our setting. One example is the interpretations of graphs in fields in
Friedman and Stanley [1989]. Although not quite satisfying the conditions we need
in Theorem 4.1, their interpretation can be used, for example, to derive the analog
of Theorem 4.4 for fields as long asα is sufficiently large. We look forward to the
development of further connections among all these topics.
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