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1 Introduction

Effective model theory is the subject that analyzes the typical notions and
results of model theory to determine their effective content and counterparts.
The subject has been developed both in the former Soviet Union and in the
west with various names (recursive model theory, constructive model theory,
etc.) and divergent terminology. (We use “effective model theory” as the
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most general and descriptive designation. Harizanov [6] is an excellent intro-
duction to the subject as is Millar [14].) The basic subjects of model theory
include languages, structures, theories, models and various types of maps
between these objects. There are many ways to introduce considerations of
effectiveness into the area. The two most prominent derive from starting, on
the one hand, with the notion of a theory and its models or, on the other,
with just structures.

If one begins with theories, then a natural version of effectiveness is to con-
sider decidable theories (i.e., ones with a decidable (equivalently, computable
or recursive) set of theorems). When one moves to models and wants them
to be effective, one might start with the requirement that the model A (of
any theory) have a decidable theory (i.e., Th(A), the set of sentences true
in A, is decidable). Typically, however, one wants to be able to talk about
the elements of the model as well as its theory in the given language. Thus
one naturally considers the model as a structure for the language expanded
by adding a constant ai for each element ai of A. Of course, one requires
that the mapping from the constants to the corresponding elements of A be
effective (computable). We are thus lead to the following basic definition:

Definition 1 A structure or model A is decidable if there is a computable
enumeration ai of A, the domain of A, such that Th(A, ai) is decidable. (Of
course, ai is interpreted as ai for each i ∈ ω.)

A typical basic result about decidable models is then the effective version
of the completeness theorem:

Theorem 2 Every complete decidable theory has a decidable model.

The proof consists of noting that the standard Henkin construction can
be done effectively.

A deeper result is that of Harrington [8] and Khissamiev [9]

Theorem 3 ([8],[9]) If T is a decidable ℵ1-categorical theory, then every
countable model of T is isomorphic to a decidable model of T .

There are many other results on decidable models concerning prime, ho-
mogeneous and saturated models of decidable theories. We refer again to [6]
and [14] for surveys and extensive bibliographies.
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If one begins simply with languages and structures, then one is essen-
tially in the realm of general effective mathematics. The effective versions of
various branches of mathematics have been extensively developed beginning
with Fröhlich and Shepherdson [3], Malcev [12], Rabin [15], Nerode and his
collaborators (see [16]) in algebra and Grzegorczyk [5], Lacombe [11] and
others in analysis. In line with these investigations, we begin with a com-
putable language L. An effective structure for the language should have a
computable domain and we should be able to calculate the relevant functions
and relations on this domain:

Definition 4 A structure A for a language L is computable if its domain
A is a computable subset of ω and its functions and relations are uniformly
computable, i.e., there is a computable enumeration ai of A such that the
atomic diagram of (A, ai) is computable.

Obviously, the requirements of computability are significantly weaker
than those for decidability. Indeed, it usually seems to be the case that
far less is provable about computable than decidable models. For example,
if one views a theory T simply as a set of sentences (rather than the associ-
ated set of theorems), then a computable theory need not have a computable
model (e.g., there is no computable nonstandard model of Peano Arithmetic).
Nonetheless, the definition captures what one normally means in mathemat-
ical discourse by an effective structure or presentation. Again, this notion
has been extensively investigated in the settings of particular mathematical
subjects as well as in general model theoretic terms. It is this notion of
effective structure with which we shall be concerned in this paper.

Just as one insists on computable structures in effective model theory, one
is primarily interested in computable maps between the structures whether
they be homomorphism, monomorphism or elementary embeddings. Thus
while classical mathematics and model theory identify isomorphic structures,
effective model theory is concerned with computable isomorphism. A funda-
mental concept is therefore that of computable isomorphism type.

Definition 5 Two computable structures A and B are of the same com-
putable isomorphism type if there is computable isomorphism taking A
to B. The dimension of a structure A is the number of computable isomor-
phism types of computable structures (classically) isomorphic to A.
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How far computable isomorphism types can be from classical ones can be
seen in the following basic result of Goncharov [4]:

Theorem 6 [4] For each n ∈ ω ∪ {ω} there is a computable structure with
dimension n.

We shall primarily be concerned with the effect of expanding a structure
by naming (finitely many) constants on its dimension. Of course, this cannot
decrease the dimension but to what extent it can increase it has been an open
problem that we deal with in this paper. The basic model theoretic notion
with which we begin is (countable) categoricity. A theory T is (countably)
categorical (in classical model theory) if all (countable) models of T are iso-
morphic. A (countable) structure A is (countably) categorical if its theory
Th(A) is (countably) categorical. The analogous concept for effective model
theory deals only with computable structures and isomorphisms:

Definition 7 A computable structure A is computably categorical if
every computable structure isomorphic to A is computably isomorphic to A.
(Equivalently, the dimension of A is 1.)

Example 8 (Q,≤), the rationals with their usual linear order, is a com-
putably categorical structure: The standard back and forth argument show-
ing that the theory of dense linear orderings without endpoints is countably
categorical is effective and so produces computable isomorphisms between
any two such orderings. Similarly, each computable atomless Boolean alge-
bra is computably categorical.

Classically, it is an easy consequence of the Ryll-Nardzewski Theorem
that if the theory of an arbitrary structure A is countably categorical then
so is the theory of any expansion of A by finitely many constants. It is the
analogous situation in effective model theory that we wish to consider. Millar
[13] proved that a small amount of decidability is enough to guarantee that
categoricity is preserved under such expansions:

Theorem 9 [13] If a structure A is computably categorical and its existen-
tial theory is decidable (i.e., the set of existential sentences (with constants
for each element of A) true in A is computable), then the expansion of A by
finitely many constants is also computably categorical.

4



Without this partial decidability assumption the problem has remained
open. It is presented as the Ash–Goncharov problem in [2]:

[2] Is the expansion of every computably categorical structure by finitely
many constants computably categorical?

We solve this problem negatively, indeed, we show that the dimension of
a structure can be increased from 1 (computable categoricity) to k ∈ ω by
the addition of even a single constant naming any element of the structure.
Thus our main theorem is as following:

Theorem 4.4 For each k ∈ ω there is a computably categorical structure
A such that the expansion of A gotten by adding on a constant naming any
element of A has dimension k.

We would like to add that this theorem does not answer the case when k =
ω. We do not know whether there exists a computably categorical structure
whose expansion by a finite number of constants has ω many computable
isomorphism types.

The structures required to establish the theorem are constructed by cod-
ing certain (uniformly) computably enumerable families of k-tuples of sets.
We now present the basic notions about such families needed when k = 2.
The model theoretic coding of the appropriate families is presented in §2.
We give the constructions of the required family itself in §3. Finally, in §4
we explain how to generalize the notions and constructions to establish the
full result for all k ∈ ω.

Definition 10 We use r and l as the right and left projections from pairs,
i.e., l((A,B)) = A and r((A,B)) = B.

Definition 11 Let S be a family of pairs (A,B) of nonempty sets. S is
symmetric if (A,B) ∈ S implies that (B,A) ∈ S. S is a computably enu-
merable family if there is a mapping f : ω → S such that {(i, x, y)|x ∈
lf(i), y ∈ rf(i)} is computably enumerable. We then call f a (computable)
enumeration of S. If f is one-to-one we say it is a one-to-one enumera-
tion of S. We also say that i is an f index for f(i) = (Ai, Bi).
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We wish to consider a preordering on the computable enumerations of a
family S that naturally induces an equivalence relation that corresponds to
computable isomorphism:

Definition 12 Let f and g be computable enumerations of a family S. We
say that f is reducible to g, f ≤ g, if there is a computable Φ such that
f = gΦ. In this case, we say that f is reducible to g via Φ. If f ≤ g and
g ≤ f then we say that f and g are equivalent and denote this relation by
f ∼ g.

Note that if f is a one-to-one enumeration of S and g ≤ f then Φ must
be a permutation of ω and so f ≤ g. Thus the equivalence classes of one-
to-one enumerations are minimal elements in the induced partial ordering.
These are the enumerations that we need to consider to define the family
that supplies the model required for our theorem. Informally, computable
categoricity corresponds to there being a single such equivalence class and
dimension corresponds to the number of such classes.

Now if f is a one-to-one computable enumeration of a symmetric family S
of pairs of sets then there is one other natural computable enumeration f̃ of
S: If f(i) = (Ai, Bi) then f̃(i) = (Bi, Ai). Thus we can phrase the required
notion of dimension in the case of interest as follows:

Definition 13 If f is a one-to-one computable enumeration of a symmetric
family S of pairs of sets, we say that S has dimension 2 if f and f̃ are not
equivalent and every computable one-to-one enumeration of S is equivalent
to either f or f̃ .

The crucial ingredient in the construction of the structures we need is
precisely such a family.

Theorem 3.1 There exists a computably enumerable symmetric family of
dimension 2.

§3 is devoted to a proof of this theorem. In §2 we show how to use such
a family to build the desired structure to prove the case k = 2 of our main
theorem. We mention that in [4] and [7] Goncharov and Harizanov used
similar coding ideas.

6



2 Structures of Dimension 2

In this section we show how to use a family of dimension 2 (as provided by
Theorem 3.1) to prove the main theorem for k = 2.

Theorem 14 There exists a computably categorical model A such that for
each a ∈ A the expanded model (A, a) has dimension 2.

Proof. Let S be a symmetric family of dimension 2 and let f be a one-
to-one computable enumeration of S. Based on the enumeration f , we will
construct a computable structure Af = (ω

⋃
{uf , vf}, Pf ), where uf and vf

are symbols not belonging to ω and Pf is a computable binary predicate
on ω

⋃
{uf , vf}. When defining the predicate Pf in our structure, we abuse

notation and write Pf (a) = b instead of Pf (a, b).
Consider uniformly computably enumerable, possibly finite, sequences

ai,0, ai,1, ai,2, . . . and bi,0, bi,1, bi,2, . . .

without repetitions such that for each i ∈ ω

lf(i) = {ai,0, ai,1, ai,2, . . .} and rf(i) = {bi,0, bi,1, bi,2, . . .}.

For each i ∈ ω, we can consider the computable structure Gfi on a com-
putable subset of ω plus two additional symbols uf and vf with one binary

relation P f
i determined by the following procedure: We begin by setting

P f
i (0) = uf , P f

i (1) = vf , P f
i (0) = 1, P f

i (1) = 0,

and for all m ∈ ω

P f
i (4(m+ 1)) = 4m, P f

i (4(m+ 1) + 1) = 4m+ 1,

P f
i (4m+ 2) = 4m+ 2, P f

i (4m+ 3) = 4m+ 3.

When some element ai,m is enumerated at stage s we set P f
i (4s + 2) =

4(ai,m+1) and when bi,m is enumerated at s we set P f
i (4s+3) = 4(bi,m+1)+1.

(We enumerate at most one number at each stage.) The domain of Gfi is the
domain of the relation P f

i and is clearly computable.
A picture of a fragment of this structure is in Figure 1 in the case when

1 is enumerated in lf(i) at stage 1 and 3 at stage 4, while 2 is enumerated in
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Figure 1:

rf(i) at stage 5. In this picture a→ b means that P f
i (a) = b, or equivalently

P f
i (a, b) holds. For example, P f

i (6) = 8 as well as P f
i (18) = 16.

The structure Gfi is computable and satisfies the following properties:
1. For every number t, t belongs to lf(i) if and only if there exist pairwise

distinct elements y, z, x0, x1, . . . , xt+1 of the structure Gf
i such that P f

i (y) =
x0 &P f

i (z) = x0 and the formula

P f
i (x0) = x1 & . . .&P f

i (xt) = xt+1 &P f
i (xt+1) 6= xt & P f

i (xt+1) = uf

holds in the structure Gfi .
2. For every number t, t belongs to rf(i) if and only if there exist pairwise

distinct elements y, z, x0, x1, . . . , xt+1 of the structure Gf
i such that P f

i (y) =
x0 &P f

i (z) = x0 and the formula

P f
i (x0) = x1 & . . .&P f

i (xt) = xt+1 &P f
i (xt+1) 6= xt & P f

i (xt+1) = vf

holds in the structure Gfi .
Informally, the structure Gfi codes the pair f(i). By the uniformity in the

construction of Gfi and the computability of f , we can conclude (by relabeling
the computable sets involved as necessary) that there exists a computable
sequence

Af0 = (Af0 , P0),Af1 = (Af1 , P1),Af2 = (Af2 , P2), . . .

of computable structures such that:
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1. For each i the structure Afi is isomorphic to the structure Gfi ,

2. For all i 6= j, Afi
⋂
Afj = {uf , vf},

3. ω
⋃
{uf , vf} =

⋃
iA

f
i ,

4. The relation Pf =
⋃
i Pi is computable,

5. The structures Afi and Afj are isomorphic if and only if ĩ = j or i = j.

Consider the computable structure

Af = (ω
⋃
{uf , vf}, Pf ).

The next lemma shows that the structure Af provides the example needed
to prove Theorem 2.1.

Lemma 15 The structure Af satisfies the following conditions.

1. If g is a one-to-one computable enumeration of S, then Af is isomor-
phic to Ag.

2. There exists only one nontrivial automorphism α of the structure Af
and α(uf ) = vf .

3. The expanded structures (Af , uf ) and (Af , vf ) are isomorphic but not
computably isomorphic.

4. The dimension of the expanded structure (Af , uf ) is 2.

5. The structure Af is computably categorical.

Proof. Let g be a one-to-one computable enumeration of S. Then for each
i there exists exactly one j such that g(i) = f(j). Therefore, the structures
Ggi and Gfj are isomorphic. It follows that the structures Af and Ag are also
isomorphic. The second part of the lemma follows from the construction
of Af and the fact that S is a symmetric family. To prove the third part
notice that the structures (Af , uf ) and (Af , vf ) are isomorphic by Part 2. If
these structures were computably isomorphic, then the enumerations f and
f̃ would be equivalent. This would be a contradiction. To prove the fourth
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part, suppose that (B, b) is a computable presentation of (Af , uf ). Having
the structure (B, b), one can effectively construct a one-to-one enumeration g
such that (B, b) and (Ag, ug) are computably isomorphic. Since the dimension
of S is two, the enumeration g is equivalent to either f or f̃ . If g is equivalent
to f , then (Af , uf ) is computably isomorphic to (Ag, ug). Otherwise (Ag, ug)
is computably isomorphic to (Af , vf ). By Part 3, the dimension of (Af , uf )
is 2. To prove the last part of the lemma suppose that B is a computable
presentation of Af . Let b be such that (B, b) is isomorphic to (Af , uf ). By
the previous part, the structure (B, b) is either computably isomorphic to
(Af , uf ) or to (Af , vf ). Hence B is computably isomorphic to Af . 2

To complete the proof of Theorem 2.1 from Lemma 2.2, take any a ∈ Af .
Consider the structure (Af , a). Let α be the nontrivial automorphism of Af .
The expanded structure (Af , a) is isomorphic to the structure (Af , α(a)).
Repeating the proof of the lemma with respect to the expanded structure
(Af , a), we see that the dimension of (Af , a) is 2. 2

3 Symmetric Families of Dimension 2

Our goal in this section is to prove the following:

Theorem 16 There exists a computably enumerable symmetric family of
dimension 2.

Let Φj, j ∈ ω, be a standard enumeration of all partial computable
functions. Let gj, j ∈ ω, be a standard enumeration of all computable enu-
merations of families of pairs of computably enumerable sets. To construct
the desired one-to-one computable enumeration f of a symmetric family S,
we need to satisfy the following requirements:

Qj : f is not reducible to f̃ via Φe,

and

Rj : (gj ∼ f)
∨

(gj ∼ f̃)
∨

gj is not a one-to-one enumeration of S.

The U-operation defined below is important in our construction. An
ordered finite sequence

Xk, . . . , X1, Y1, . . . , Yk
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of pairs of sets is symmetric if X̃i = Yi for each i. A pair (A,B) is selfsy-
metric if A = B.

Definition 17 Let Xk, . . . , X1, Y1, . . . , Yk be a symmetric sequence of pairs
of sets. The U-operation applied to this sequence gives the sequence

Zk, . . . , Z1, T1, . . . , Tk

where
Zk = Xk

⋃
Xk−1, . . . , Z1 = X1

⋃
Y1,

T1 = Y1

⋃
Y2, . . . , Tk−1 = Yk−1

⋃
Yk, Tk = Xk

⋃
Yk.

We also say that the pairs of sets Xk, . . . , X1, Y1, . . . , Yk participated in
the U-operation. (The union operation on pairs is defined componentwise:
(A1, B1)

⋃
(A2, B2) = (A1 ∪ A2, B1 ∪B2). )

Note that if, in the above definition, Xi = (Ai, Bi), then Yi = (Bi, Ai)
and so, for example, Zk = (Ak ∪ Ak−1, Bk ∪Bk−1), Z2 = (A2 ∪ A1, B2 ∪B1),
Z1 = (A1∪B1, B1∪A1), T1 = (B1∪B2, A1∪A2), Tk−1 = (Bk−1∪Bk, Ak−1, Ak)
and Tk = (Ak ∪ Bk, Bk ∪ Ak). The following lemma describes the main
properties of this operation. The proof of the lemma follows easily from the
definitions.

Lemma 18 Let Xk, . . . , X1, Y1, . . . , Yk be a symmetric sequence of pairs of
sets. The sequence Zk, . . . , Z1, T1, . . . , Tk obtained via the U-operation has
the following properties:

1. The pairs Z1 and Tk are selfsymmetric.

2. For each i, where 1 ≤ i < k, Ti is symmetric to Zi+1. 2

Before we present a general construction, we would like to show how to
satisfy a single Rj requirement R. Remarks in double brackets [[such as this
one]] are explanatory and not part of the formal construction. Parameters
indexed by the stage number t, such as a1,t,that are not explicitly redefined
at stage t+ 1 remain the same.

How to satisfy one R and all Qj. We set g = gj. For t, n ∈ ω and
n ≤ t, let gt(n) be the pair of finite sets whose elements have been enumerated
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by stage t in a fixed approximation to g(n) (which is a pair of computably
enumerable sets).

Let χ ∈ {f, f̃}. Our construction proceeds by stages. We use the fol-
lowing notions and terminology in which the subscript t indicates the stage
number.

1. Enumerations ft and f̃t. These are approximations to the enumer-
ations f and f̃ that the construction is building. That is, for each i ∈ ω, we
will have

f(i) =
⋃
t

ft(i) and f̃(i) =
⋃
t

f̃t(i).

As the enumeration f̃ is uniquely determined by f , we will usually only
specify f . Warning: For notational convenience, we will define f(i) only
for some computable set of i’ s and make sure that f(i) 6= f(j) for i 6= j in
the domain of f . Correspondingly, we construct reductions defined on this
domain. Of course, formally we then could relabel the domain so as to make
it all of ω to make f a one-to-one enumeration (on all of ω) but we omit this
detail in our constructions and proofs.

2. The Family St. The functions ft and f̃t enumerate the same sym-
metric family denoted by St.

3. Diagonalization Witnesses. To each partial computable func-
tion Φj, we assign pairwise distinct witness numbers cj, dj, xj, yj and cor-
responding distinct finite sets Cj, Dj, Xj and Yj, called witnesses, such
that D = {cj, dj, xj, yj|j ∈ ω} is a coinfinite computable set and we set
f0(cj) = (Cj, Dj), f0(dj) = (Dj, Cj), f0(xj) = (Xj, Yj), f0(yj) = (Yj, Xj).
One of the goals of the construction is to diagonalize against the potential
reduction Φj at cj.

4. Potential Reduction Functions rft , r
f̃
t . Each rχt (for χ ∈ {f, f̃}) is

a function which potentially reduces χt to gt at stage t. In the construction

we call the functions rft , rf̃t (potential) reduction functions. At each

stage one of these (potential) reductions will be the designated (potential)
reduction for the construction. The function rχt may extend the previous
designated reduction rχt−1. If rχt does not extend the previous designated
reduction, then we say that the construction changes its (designated)
reduction.
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5. Uniqueness. Let i ∈ dom(χt). The construction will guarantee that

lχt(i) \
⋃
{ lχt(j) | j 6= i& j ∈ dom(χt)} 6= ∅

and
rχt(i) \

⋃
{ rχt(j) | j 6= i& j ∈ dom(χt)} 6= ∅

Thus at stage t, each coordinate of every pair in ft possesses an element which
does not belong to any set in the same coordinate of any other pair in the
enumeration ft. Moreover, the same will be true of the final enumerations
χ. The purpose of this property is to ensure that f will be a one-to-one
enumeration.

6. A Special g–Pair. The construction needs to pick a pair g(sg) in the
enumeration g which is called a special g–pair. If there exist infinitely many
stages at which the construction changes its reduction, then the pair g(sg)
becomes infinite, all pairs in f contained in g(sg) are finite, and therefore g is
not a one-to-one enumeration of S. On the other hand, if after some stage the
construction never changes its reduction and g is a one-to-one enumeration
of the family S, then g will be equivalent to either f or f̃ .

7. Special Numbers sft , s̃ft , sf̃t , s̃f̃t . The construction uses these
numbers so that

sft = s̃f̃t , s
f̃
t = s̃ft , r

f
t (sft ) = sg, r

f
t (s̃ft ) = s̃g, r

f̃
t (sf̃t ) = sg, r

f̃
t (s̃f̃t ) = s̃g.

Thus ft(s
f
t ) and f̃t(s

f̃
t ) are the pairs of sets in ft and f̃t, respectively, which, at

stage t, correspond to g(sg). Therefore ft(s̃
f
t ) and f̃t(s̃

f̃
t ) are the pairs of sets

in ft and f̃t respectively which, at stage t, correspond to g(s̃g). Moreover,
if g recovers at stage t (as defined below), then these numbers satisfy the
following properties.

1. If the construction does not change its previously designated reduction
from χ to χ̃ at stage t, then sχt+1 = sχt and, if sχt participated in a
U-operation at the last recovery stage, s̃χt+1 6= s̃χt .

2. If the construction changes its reduction from χ to χ̃ at stage t, then
sχt participated in a U-operation at the last recovery stage, sχt+1 6= sχt
and s̃χt+1 = sχ̃t+1 = s̃χt .
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3. If, after some stage, the construction never changes its reduction, recov-
ers infinitely often, and g is a one-to-one enumeration of the family S,
then the construction guarantees that the pair χ(limn→∞s

χ
n) is infinite

and selfsymmetric.

8. Marking with 2w and Recovery. If, for a χt–index x, there
exists a y ≤ t such that gt(y) ⊂ χt(x) and, for all z 6= x, the pair gt(y)
is not contained in χt(z), then we say that gt(y) is covered by χt(x), or
equivalently, χt(x) covers gt(y). During the construction some χt–indices
will be marked with a special symbol 2w called a mark. We say that the
enumeration g recovers at stage t, or equivalently that stage t is a recovery
stage, if for each χt–index x marked with a 2w, there exists a unique y such
that χt(x) covers gt(y). We use the notion of recovery to show that if g is a
one-to-one enumeration of the family S, then g is equivalent to either f or
f̃ . The idea is the following. Suppose that g is a one-to-one enumeration of
S. By construction, each pair ft(x) marked with a 2w waits to cover a pair
in g. As soon as g recovers at a stage t1 ≥ t and a unique gt1–index y is
found such that χt(x) covers gt1(y), the construction defines rχt1(x) = y and
then attempts to guarantee that g(y) = χ(x). If the enumeration does not
recover at stage t, then we say that g is in the waiting state. If g is always
in the waiting state after t, then, by construction, g will not be a one-to-one
enumeration of S.

Now we will describe the construction for satisfying all Qj and one R.

Construction:

Stage 0. Let dom(f0) = D
⋃
{s, s̃, a1,0, b1,0, a2,0, b2,0}, where s, s̃, a1,0,

b1,0, a2,0, b2,0 are new numbers not in D (where D is defined in (3) above).
Let pi, qi for 0 ≤ i ≤ 2 also be new numbers. We set f0(s) = ({p0}, {q0})
and f0(ai,0) = ({pi}, {qi}) for i = 1, 2 and let s̃, b1,0, b2,0 be the indices of the
corresponding symmetric pairs. Put a mark 2w on each of these six numbers.

Let the reductions rf0 and rf̃0 be empty and declare rf to be the construction’s
designated reduction. Put g into the waiting state. When we first have a
recovery stage we will define sg so that rf (s) = sg and rf̃ (s̃) = sg and so

have sf = s and sf̃ = s̃. [[sg will never change.]]

Stage t + 1: Define the reductions rft+1 and rf̃t+1 on the indices marked

with a 2w as follows: Put rft+1(x) = y if and only if gt(y) is covered by ft(x)
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and not by ft(z) for any z 6= x. Similarly, put rf̃t+1(x) = y if and only if gt(y)

is covered by f̃t(x) and not by f̃t(z) for any z 6= x. If this is not a recovery
stage, i.e., rft+1 is not defined for some x marked with a 2w, we see if there

is a j such that cj, dj, xj and yj are not in the domain of rft+1, Φj,t+1(cj) = dj
and we have not yet acted for Qj. If there is no such j, go on to stage t+ 2.
If there is one, let j be the least such. Act to satisfy Qj by performing a
U-operation on the pairs ft(xj), ft(cj), ft(dj), ft(yj) to define ft+1. Now go
on to stage t+ 2.

If this is a recovery stage, we have two cases:
Case 1. Suppose that rχt+1 extends the previous designated reduction rχt .

In this case, set sχt+1 = sχt . This defines the number s̃χt+1 with respect to
the enumeration χt+1. [[Note that if we performed a U-operation at the last
recovery stage, s̃χt+1 6= s̃χt by Claim 2 below.]]

Case 2. Suppose that rχt+1 does not extend the previous designated re-
duction rχt . In this case the construction changes its designated reduction to
rχ̃t+1. Set sχ̃t+1 = s̃χt . This defines the number s̃χ̃t+1 = sχt+1 with respect to the
enumeration χ̃t+1. [[Note that sχt+1 6= sχt .]]

In either case, we see if there is a j such that cj, dj, xj and yj are in the

domain of rft+1, Φj,t+1(cj) = dj and we have not yet acted for Qj. If so let j
be the least such number and act for Qj by performing a U-operation on the
following pairs:

ft(b1,t), ft(s
χ
t+1), ft(b2,t), ft(xj), ft(cj),

ft(dj), ft(yj), ft(a2,t), ft(s
χ̃
t+1), ft(a1,t).

[[Note that all these indices are marked with 2w and so are in the domain of
rχ.]]

Now extend l(ft(s
χ
t+1)) by adding on the least number in r(ft(s

χ
t+1)) which

does not belong to l(ft(s
χ
t+1)) and vice versa. Of course, the dual actions are

performed on ft(s̃
χ
t+1). Also add new numbers to both the left and right sides

of these pairs so as to prevent them from being selfsymmetric. If necessary,
add new numbers to the pairs that participated in the U-operation so as
to guarantee (5) above while preserving the symmetries existing after the
operation was performed. Next, take new numbers a1,t+1, b1,t+1, a2,t+1, b2,t+1

to which we assign symmetric pairs of new numbers in the enumeration ft+1.
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This finishes the definition of ft+1. Finally, put marks 2w on the new numbers
a1,t+1, b1,t+1, a2,t+1, b2,t+1.

Whether we found such a j and performed a U-operation or not, we now
put a mark 2w on the least number not having one and go on to stage t+ 2.
This concludes the description of the construction.

Verifications:

For each i ∈ ω, define f(i) =
⋃
t ft(i). Define the family S by

S = {f(i)|i ∈ ω}.

Now we verify the following claims about the construction.

Claim 1. For all t ∈ ω and i ∈ dom(ft)

lft(i) \
⋃
{ lft(j) | j 6= i& j ∈ dom(ft)} 6= ∅

and
rft(i) \

⋃
{ rft(j) | j 6= i& j ∈ dom(ft)} 6= ∅.

Proof of Claim 1. This is clear from the construction by induction.

Claim 2. The construction meets all the requirements Qj. Moreover, if at
some stage the enumeration g enters the waiting state and never recovers,
then g is not a one-to-one enumeration of S.

Proof of Claim 2. Suppose first that at a stage t′, the enumeration g
enters the waiting state and never recovers. From stage t′ on no new marks
2w are placed on any numbers and the pairs so marked never change. There
is now clearly a j0 such that for every j > j0 for which Φj(cj) = dj there is a
stage t′ such that at all stages t > t′ the construction satisfies the conditions
considered at nonrecovery stages via j. Therefore f and f̃ are guaranteed
not to be equivalent via Φj by our action at stage t. (f(c) has become
selfsymmetric and remains so as it is never used in a U-operation again and
so never changes. Thus f(c) = f̃(c) and so any Φ reducing f to f̃ (or vice
versa) would have to have Φ(c) = c.) Of course, if Φj(cj) 6= dj then Qj is
met automatically and meeting requirements Qj for j > j0 is equivalent to
meeting every Qj. Finally, if g were a one-to-one enumeration of S then each
of the finitely many marked pairs would be finite and would eventually cover
some unique pair in the enumeration g by Claim 1, and so there would be a
recovery stage for the desired contradiction.
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Next, suppose that g recovers at infinitely many stages. Let j be the
smallest number for which Qj is not met. Let t1 be such that for all j′ < j,
all action for the requirements Qj′ is finished before stage t1. (Clearly we
act at most once for each Qj.) Then there exists a stage t + 1 at which
Φj,t+1(cj) = dj and all the indices required to be in the domain of rχ are
marked and in the domain as we mark the least unmarked number at each
recovery stage. It follows that at stage t + 1, the construction must act for
and so meet requirement Qj. This is again a contradiction.2

Claim 3. Suppose that at stage t+ 1 the designated reduction is rχt+1 and a
U-operation is applied to the pairs

ft(b1,t), ft(s
χ
t+1), ft(b2,t), ft(xj), ft(cj),

ft(dj), ft(yj), ft(a2,t), ft(s
χ̃
t+1), ft(a1,t).

and that t′ is the next recovery stage after t + 1. There are then two possi-
bilities at t′:

1. rχt′(s
χ
t+1

) = rχt+1(sχt+1) = sg. In this case, rχt′ remains the designated
reduction and extends rχt+1, sχt′ = sχt+1 which is already marked with
2w by induction and s̃χt′ = a2,t which was marked with 2w at t+ 1.

2. rχt′(s
χ
t+1

) 6= rχt+1(sχt+1). In this case, the construction changes its desig-

nated reduction from χ to χ̃; sχ̃t′ = sχ̃t+1 = s̃χt+1 which is already marked

with 2w by induction and s̃χ̃t′ = sχt+1 = b1,t which was marked with 2w

at t+ 1. Also rχ̃t′(s
χ̃
t′) = sg.

Proof of Claim 3.
The only markings and changes that occur to marked pairs between t+ 1

and t′ occur at t + 1. It is clear that the only possible pairs that can cover
gt′(sg) at t′ are ft+1(sχt+1) or ft+1(b1,t) . If it is the second, then rχt+1(sχt+1) = sg
but rχt′(b1,t) = sg and so we are in the second case of the claim as rχt′ is one-
to-one. Thus we change the designated reduction to χ̃ by construction. As
rχt′(b1,t) = sg, r

χ̃
t′(s

χ̃
t+1) = sg by symmetry and Lemma 18 and so sχ̃t′ = sχ̃t+1 as

required.
If, on the other hand, it is ft+1(sχt+1) that covers gt′(sg) at t′, then we

claim that rχt′ extends rχt+1. Now the only marked pairs that have changed
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are the ones participating in the U-operation so we need only argue that
rχt′ remains the same on these pairs. It is clear form the definition of the
U-operation that the only possible values for rχt′ at each number z in the
sequence b1,t, s

χ
t+1, b2,t, xj, cj, dj, yj, a2,t, s

χ̃
t+1, a1,t is either rχt+1(z) or rχt+1(w)

where w is the number immediately to the left of z in the sequence (with
the understanding that a1,t is immediately to the left of b1,t). As rχt′ must be
one-to-one, if rχt′(s

χ
t+1

) = rχt+1(sχt+1) as we are assuming, then rχt′(z) = rχt+1(z)
for every z in the sequence as required.

The assertions about which numbers are marked follow immediately from
the construction. 2

Claim 4. Suppose that g recovers at infinitely many stages. If the construc-
tion never changes its potential reduction rχt for all t > t′, then the following
hold:

1. For each t > t′, sχt = sχt+1. Therefore limt→∞s
χ
t exists.

2. Let t′ < t1 < t2 < . . . be the sequence of recovery stages immediately
following the ones at which a U-operation is performed. Then the
elements of the sequence s̃χt1 , s̃

χ
t2 , . . . are pairwise distinct.

3. If there are infinitely many recovery stages at which we perform U-
operations, the pair χ(sχt ) is selfsymmetric and is infinite.

4. For each x 6= sχt , the pair χ(x) is finite.

5. For all i ∈ dom(f), lf(i) \
⋃
{ lf(j) | j 6= i& j ∈ dom(f)} 6= ∅ and

rf(i) \
⋃
{ rf(j) | j 6= i& j ∈ dom(f)} 6= ∅ and so, in particular, f is

a one-to-one enumeration of S.

6. If g is a one-to-one enumeration of S, then either f ∼ g or f̃ ∼ g.

Proof of Claim 4. The first part of this Claim follows from the definition
of sχt at stage t and the assumption. The second part of the Claim follows
from Claim 3. To prove the third part note that at each recovery stage at
which we perform a U-operation we put some new numbers into χ(sχt ) and
put the least number in r(χ(sχt )) into l(χ(sχt )) and vice versa. To prove the
fourth part note that if x 6= sχt , then there exists a stage t > t′ such that
after this stage the pair χt(x) will never be used. Therefore χ(x) = χt(x).
It follows that χt(x) is finite. The fifth part now follows from Claim 1. To
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prove the last part of the Claim we argue that rχ =
⋃
t>t′ r

χ
t is the desired

reduction of χ to g. As there are infinitely many recovery stages, each x in
the domain of χ is eventually marked with a 2w and so is in the domain of
rχ. Thus χ(x) covers g(rχ(x)) and so if g is a one-to-one enumerations of S,
χ(x) = g(rχ(x)) as required by parts 3, 4 and 5 of this Claim. 2

Claim 5. If the construction changes its reduction at infinitely many stages,
then the pair g(sg) is infinite and all pairs in f are finite.

Proof of Claim 5. For each number x, if x 6= sχt and x 6= s̃χt = sχ̃t for all t,
then it is immediate that χ(x) is finite. Therefore it is enough to prove that
the pairs χ(sχt ) and χ(s̃χt ) are finite for all t and χ ∈ {f, f̃}. Let t1, t2, . . .
be the sequence of stages at which the construction changes its designated
reduction. We can suppose that at stage t1 the construction changes its
reduction from f to f̃ . Consider sft1 . We have sft1 6= sft1−1 and s̃ft1−1 = s̃ft1 . At

stage t2, we have s̃ft2 6= s̃ft1 and sft2 = sft1 . Continuing this procedure, we see
that in the sequences

sft1 , s
f
t2 , . . . and s̃ft1 , s̃

f
t2 , . . .

each number can appear at most twice. Therefore neither f nor f̃ contains
an infinite set. 2

The above claims prove the correctness of the construction with respect
to one R and all Qj. 2

General Construction. We will construct an enumeration f of a symmet-
ric family S by stages ft such that (Lemma 26) the sets lft(n) are all distinct
for distinct n as are each of rft(n), lf(n) and rf(n), respectively. As the
enumeration f̃ is uniquely determined by f , we will usually not describe it
explicitly. We will satisfy all the requirement Qj and Rj. As we only need to
worry about families Gj enumerated by functions gj which enumerate fami-
lies isomorphic to S, we may assume that the sets lgt(n) are all distinct for
distinct n as are the rgt(n) and that for, every t and n, gt(n) ⊆ ft(m) for
some m. (If there are pairs partially enumerated, do not allow any extensions
until it is once again possible to make all the pairs distinct in the required
way. This can be done so as to add any single desired element to any one of
the pairs in G if it has the required form.)

We now describe some preliminary notions for the construction. Consider
the alphabet {c, d,∞, f, f̃ , w} with the ordering c < d < ∞ < f < f̃ < w.
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The priority tree T over this alphabet is defined as follows. If α ∈ T
and the length of α is even, then αˆ∞, αˆf , αˆf̃ , and αˆw belong to T .
If α ∈ T and the length of α is odd, then αˆc and αˆd belong to T . The
induced lexicographical ordering ≤L on the tree T coincides with the usual
priority ordering on T .

For every α ∈ T of length 2j + 1, we will define an α–strategy to meet
the requirement Qj. At stage t, to each node α ∈ T of length 2j+ 1 the con-
struction attaches some witness numbers c, d and witness pairs (C,D),
(D,C) such that C and D are finite pairwise disjoint sets and ft(c) =
(C,D), ft(d) = (D,C). One of the goals of the construction is to diagonalize
against the potential reduction Φj at c. The strategy to meet the require-
ment Qj is based on the U -operation. Such a node α of length 2j + 1 ≤ t
can have one of two outcomes at stage t. Its outcome is c if the construction
has acted to satisfy the requirement Qj at this or any previous stage since α
was last initialized. Otherwise it is d.

For every α ∈ T of length 2j, we will define an α–strategy to meet the
requirement Rj. The strategy to meet the requirement Rj is based on a

stagewise definition of potential reduction functions rfα,t and rf̃α,t which try

to reduce the enumerations f and f̃ , respectively, to gj. At each stage that
they are defined one of these reductions will be the construction’s designated
reduction. At stage t, such a node α of length 2j ≤ t can have one of four
outcomes: The outcome is w if α is in the waiting state. Otherwise, we
say that t is an α-recovery stage at which there are three possible outcomes.
The outcome is χ if the reduction rχ extends the previous designated one
for χ and so, in particular, the construction does not change its designated
reduction. Otherwise, the outcome is ∞ and construction changes its desig-
nated reduction from rχα,t to rχ̃α,t. Associated with this node and procedure is
an α-special pair with index sα,t in the enumeration gj and corresponding
indices in the enumerations f and f̃ .

We will define the accessible nodes of the priority tree at stage t by
induction on their length. The empty sequence ∅ of length 0 is the root of
the priority tree and is accessible at every stage t. If β is accessible at stage
t and o is the outcome of β at t, then βˆo is accessible at t.

Suppose that the length of α is 2j + 1. To initialize α at stage t means
to cancel all the numbers and pairs attached to α and all prohibitions on
the placement of marks issued by α. Any number n, and therefore the pairs
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ft(n) and f̃t(n), cancelled at stage t, are no longer attached to any node and
will never be used at later stages in any U -operations. Therefore f(n) will
be equal to ft(n). Suppose that the length of α is 2j. To initialize α at
stage t means to cancel the numbers and pairs attached to α as well as the α-
special pair with index sα,t−1 and the previous reduction functions rfα,t−1 and

rf̃α,t−1and to define rfα,t and rf̃α,t to have the empty domain and declare rfα,t
to be the construction’s designated reduction for α. Again, as f uniquely
determines f̃ , we usually only describe the enumeration of f and the earlier
warning about only defining f on a computable domain apply here as well.
Remarks in double brackets are again only explanatory.

Now we describe the general construction.

Construction:

Stage 0. Initialize all requirements α.

Stage t > 0. We proceed to act for each accessible node α in turn until
we reach a node of length t when we terminate the stage. As a node α is
declared accessible we initialize all nodes γ to the right of α, i.e., α <L γ but
α * γ. Let u be the stage at which α was last initialized and s be the last
stage after u at which α was accessible (s = u if there is no such stage).

Case 1: |α| = 2j + 1. If we have acted to satisfy α at some stage since
u, the outcome of α is still c. If not, and there are no numbers attached to α,
choose new numbers c, d, x and y and new finite pairwise disjoint sets C, D,
X and Y , let ft(c) = (C,D), ft(d) = (D,C), ft(x) = (X, Y ), ft(y) = (Y,X)
and attach these witness numbers and witness pairs to α with c and d
being the numbers on which we intend to meet Qj. In any case, let c, d, x
and y be the witness numbers now attached to α. Now see if Φj,t(c) = d.
If not, the outcome of α is d. If so, we let α1, . . . αl be the nodes β ⊂ α
such that |β| is even and βˆw * α listed in order of increasing length. (It
may be that l = 0, i.e., there is no such β. In this case, the corresponding
conditions below are simply empty.) If there are no other numbers attached
to α, we choose new numbers a1, b1, . . . , a2l, b2l and corresponding new pairs
(with ai and bi being indices for symmetric pairs) which we attach to α. Our
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actions will now be directed towards working with the following sequence of
numbers (and the corresponding pairs) possibly with replacements put for
some of them:

b1, s
χ
α1,t, b2 . . . , b2i−1, s

χ
αi,t, b2i, . . . , b2l−1, s

χ
αl,t
, b2l, y, c,

d, x, a2l, s̃
χ
αl,t
, a2l−1, . . . , a2i, s̃

χ
αi,t, a2i−1, . . . , a2, s̃

χ
α1,t, a1.

For i ≤ l, we put marks 2αi
w on all the numbers in this sequence that are

between s̃χαi,t and sχαi,t and issue a prohibition on any other marks being put
on the numbers in this sequence which are attached to α. This prohibition
will be lifted when we act to satisfy α or the number is cancelled. In this
case the outcome of α is d. If there are already such numbers attached to
α [[which we shall show are all in the range of the appropriate rχαi ]], we
perform a U-operation on the following symmetric finite sequence of pairs
which corresponds to the above sequence of numbers:

f(b1), f(sχα1,t), f(b2) . . . , f(b2i−1), f(sχαi,t), f(b2i), . . . , f(b2l−1), f(sχαl,t),

f(b2l), f(y), f(c), f(d), f(x), f(a2l), f(s̃χαl,t), f(a2l−1), . . . ,

f(a2i), f(s̃χαi,t), f(a2i−1), . . . , f(a2), f(s̃χα1,t), f(a1).

For each i ≤ l, we now also extend the set l(ft(s
χ
αi,t)) in such a way that it

contains the least element from r(ft(s
χ
αi,t)) which did not previously belong

to l(ft(s
χ
αki ,t

)) and vice versa for r(ft(s
χ
αi,t)). We also add new numbers to

insure that this pair does not become selfsymmetric. We, of course, extend
the set ft(s̃

χ
αi,t) so as to preserve the symmetry between these pairs. Next,

as necessary, we put into the pairs that participated in the U-operation new
pairwise distinct pairs of numbers not changing the symmetry between the
appropriate pairs so as to insure (5) above. The prohibitions on marking
numbers issued by α are now lifted and, for i ≤ l, we mark the numbers
b2i−1 and a2i−1 in the sequence with 2αi

w . We have now satisfied Qj and the
outcome of α is c.

Case 2: |α| = 2j. If there are no special numbers and pairs attached to
α we choose new numbers s and s̃ on which we put marks 2α

w. These are the
special numbers for α and are designated by sfα,t and s̃fα,t, respectively. We
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also choose a corresponding new pair of sets (P,Q) and extend the family by
letting f(s) = (P,Q) and f(s̃) = (Q,P ). We attach these numbers and pairs

to α. The potential reductions rfα,t and rf̃α,t (of f and f̃ , respectively, to gj)

are defined to be empty and rfα,t is declared the construction’s designated
potential reduction. In this case, the outcome of α is w. Otherwise, we

define the potential reductions rfα,t and rf̃α,t on the numbers marked with 2α
w

by rfα,t(i) = k if and only if gj,t(k) is covered by ft(j) and by no f̃t(i) with

i 6= j and rf̃α,t(i) = k if and only if gj,t(k) is covered by f̃t(j) and by no f̃t(i)
with i 6= j. If these functions are not defined on all numbers marked with
2α
w, the outcome of α is w and this is a waiting stage for α. Otherwise, t

is an α-recovery stage. At the first α-recovery stage v after u, the number
x such that rfα,t(s

f
α,t) = x is declared the index of the α-special set for gj

and is denoted by sα,v. It remains fixed until α is initialized. [[We will see
that the numbers sχα,z for later stages z are determined by the requirement
that rχα,z(s

χ
α,z) = sα,z.]]

If t is an α-recovery stage, we see if rχα,t extends the previous designated
reduction rχα,s. If so, set sχα,t = sχα,s. This defines the number s̃χα,t with respect
to the enumeration χt. [[Note that if sχα,s participated in a U-operation then
s̃χα,t 6= s̃α,s.]] In this case the outcome of α is χ. If rχα,t does not extend the
previous reduction rχα,s, the construction changes its (designated) reduc-

tion from rχα,s to rχ̃α,t. Set sχ̃α,t = s̃χα,t = s̃χα,s = s̃χα,s = sχ̃α,s. This defines the

number s̃χ̃α,t = sχα,t with respect to the enumeration χ̃t. [[Note that if sχα,s
participated in a U-operation then s̃χ̃α,t = sχα,t 6= sχα,s = s̃χ̃α,s.]] In this case
the outcome of α is ∞. In every case of an α recovery, attach the numbers
sχα,t = s̃χ̃α,t and sχ̃α,t = s̃χα,t and the corresponding pairs to α and put marks
2α
w on all numbers in the domain of ft that do not have them and are not

attached to nodes of higher priority or prohibited from getting them. [[We
will see that sχα,t and s̃χα,t are already so marked.]]

At the end of stage t we see if there are numbers b2i−1, b2i, a2i, a2i−1 at-
tached to some α for which we have not acted at stage t. If the corresponding
node αi ⊆ α recovers at t, we cancel these numbers (and the corresponding
pairs) and appoint new ones b′i, c

′
i attached to α and associate marks and

prohibitions with them as had been done with bi and ci.
This concludes the description of the construction.

Verifications:
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For each i ∈ ω, define f(i) =
⋃
t ft(i). Define the family S by

S = {f(i)|i ∈ ω}.

The following two lemmas state several obvious basic facts about the
construction.

Lemma 19 The following properties holds of the construction:

1. For all n, t ∈ ω, at stage t the pair χt(n) participates in a U-operation
if and only if the pair χ̃t(n) participates in the same U-operation.

2. For any pair χt(n), if n is cancelled at stage t, then the construction
never uses the pairs χt(n) or χ̃t(n) in any U-operation after stage t.
Therefore χ(n) = χt(n) and χ̃(n) = χ̃t(n).

3. The pair f(n) is infinite if and only if the set {t| at stage t the set ft(n)
participated in a U -operation} is infinite. 2

Lemma 20 Suppose that at a stage t a U-operation is applied by α to the
sequences of pairs corresponding to

b1, s
χ
α1,t, b2 . . . , b2i−1, s

χ
αi,t, b2i, . . . , b2l−1, s

χ
αl,t
, b2l, y, c,

d, x, a2l, s̃
χ
αl,t
, a2l−1, . . . , a2i, s̃

χ
αi,t, a2i−1, . . . , a2, s̃

χ
α1,t, a1.

If there exists a stage t′ > t at which a node to the left of αi is accessible,
then the pairs corresponding to numbers between s̃fαi,t and sfαi,t (inclusively)
never participate in any U-operation at any t′′ > t′, and are therefore finite.
2

Now to prove the correctness of the construction, we need to consider the
true path P on the tree T , that is the leftmost path on T whose nodes are
accessible infinitely often. Thus, α is on the true path if there are infinitely
many stages at which α is accessible and there exists a stage t after which
no β to the left of α is accessible. It is clear that there is a unique true path
P on T .

Lemma 21 The enumerations f and f̃ are not equivalent.
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Proof. Suppose that f is reducible to f̃ via Φj. Consider the requirement
Qj and the node α of length 2j + 1 on the true path corresponding to Qj.
Let t be the first stage at which α is accessible but after which no β left to α
is ever accessible again. Let c and d be the witness numbers attached to the
node α at stage t on which we intend to meet the requirement Qj. Then ft(c)
is symmetric to ft(d). If there is no v > t such that Φj,v(c) = d, we clearly
satisfy the requirement. Otherwise, we eventually attach the appropriate
sequence of numbers (and pairs) to α and assure that there are always such
numbers attached at every later α-stage. We then eventually return to α
without it being initialized in between by our choice of α and t. At such a
stage we perform the U-operation which guarantees that Φj cannot reduce f
to f̃ . (f(c) has become selfsymmetric and remains so as it is never used in
a U-operation again and so never changes. Thus f(c) = f̃(c) and so any Φ
reducing f to f̃ (or vice versa) would have to have Φ(c) = c.) 2

To prove that we also satisfy the requirements Rj, we analyze what can
happen between stages at which the requirement α of length 2j on P is
accessible. Let u be the last stage at which α is initialized and let t0, . . . , tn, . . .
be the sequence of stages after u at which α is accessible. At t0 we attach
special numbers s and s̃ (and the corresponding pairs) to α and mark the
numbers with 2α

w. The outcome of α is w. Let v be the first α-recovery stage
and sα = sα,v be the index of the α-special set for gj defined at v. We now
consider what can happen in the interval of stages [tn, tn+1].

Lemma 22 1. If tn is a waiting stage for α, then no change can take
place in any pair whose index is in the domain of rχα nor in the values

of sfα,t, s
f̃
α,t and no new marks 2α

w are put on new numbers.

2. If tn is a recovery stage then the only change that can take place at tn
is generated by at most a single application of a U-operation by some
β ⊃ α. (So if no U-operation is applied, no change occurs.)

3. In any case, no such changes can occur, nor marks be added, between
tn and tn+1.

Proof. The first claim is clear from the construction as the only way a pair
can get new elements once started is by participating in a U-operation but
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no pair marked with a 2α
w can participate in such an operation performed

by a node to the right of α. As for the second, note that no U-operation
can be performed for any β ⊆ α as then βˆc would become accessible for the
first time since β was last initialized and so tn could not be an α-recovery
stage. When we perform a U-operation for some β ⊇ α, βˆc and so all its
extensions becomes accessible for the first time since it was last initialized.
Thus none of them can perform a U-operation by construction. The third
claim is clear from the fact that only nodes to the right of α can perform a
U-operation when α is neither accessible nor initialized. 2

Lemma 23 Suppose that tn is an α-recovery stage with designated reduction
rχα,tn, some β ⊃ α performed a U-operation (on a sequence as described in
the construction with α = αi for some i) at tn and tm is the next α-recovery
stage. Note that, by induction, when the U-operation is performed all the
numbers between sχα and s̃χα, inclusively, and no others in the sequence are
marked with 2α

w (and so in the domain of rχα,tn) while at the end of stage tn
both b2i−1 and a2i−1 are also so marked and so all are in the domain of rχα,tm.
There are then two possibilities for what happens at tm:

1. rχα,tm(sχtn) = rχα,tn(sχtn) = sα. In this case, rχα,tm remains the designated
reduction and extends rχα,tn, sχα,tn+1

= sχα,tn which is already marked with
2α
w by induction and s̃χα,tn+1

= a2i which was marked with 2α
w at tn and

the outcome of α is χ.

2. rχα,tm(sχtn) 6= rχα,tn(sχtn). In this case, the construction changes its des-

ignated reduction from χ to χ̃; sχ̃α,tm = sχ̃α,tn = s̃χα,tn which is already

marked with 2α
w by induction and s̃χ̃α,tn+1

= sχα,tm = b2i−1 which was

marked with 2α
w at tn. Also rχ̃α,tm(b2i−1) = sα.

Proof. Given the previous Lemma, the proof of this Lemma is essentially
the same as that of Claim 3 above. 2

Lemma 24 Consider f(n), n ∈ ω. The following conditions are equivalent:

1. The pair f(n) is infinite.

2. The pair f(n) is infinite and there exists a unique α ∈ P such that
n = limts

f
α,t or n = limts̃

f
α,t.
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3. The pair f(n) is infinite and selfsymmetric.

Proof. By Lemma 19, the only way f(n) can become infinite (1) is by
participating in a U-operation infinitely often. It is clear from the list of sets
to which U-operations are applied that the only candidates for such indices
n are sχα,t and s̃χα,t for α on P . Thus, by Lemma 23, for any single one to
become infinite αˆχ must be on P and n must be limts

χ
α,t (2). In this case,

f(n) becomes selfsymmetric (3) by our action of extending ft(s
χ
α,t) by adding

on the least element of lft(s
χ
α,t) not in rft(s

χ
α,t) and vice versa each time sχα,t

participated in a U-operation. Of course, (3) implies (1) trivially. 2

Lemma 25 The family S of pairs of computably enumerable sets is symmet-
ric.

Proof. As St is symmetric for every t by construction, (Q,P ) ∈ S for every
finite (P,Q) ∈ S and so the Lemma follows from Lemma 24. 2

Lemma 26 For all t, n ∈ ω there is an x ∈ lft(n) and a y ∈ rft(n) such
that x /∈ lft(m) and y /∈ rft(m) for any n 6= m. Moreover, for all n ∈ ω,
there is an x ∈ lf(n) and a y ∈ rf(n) such that x /∈ lf(m) and y /∈ rf(m)
for any n 6= m. Thus the enumeration f is one-to-one.

Proof. The first claim is clearly true by induction on the stages of the
construction. The second follows from the first when one of f(n) and f(m)
is finite and from Lemma 24 and the fact that, when each sα,v is first defined,
it has in each set of the corresponding pair numbers that never appear in
any sβ,z for β 6= α when both are infinite. The third claim is an immediate
consequence of the second. 2

Lemma 27 All requirements Rj are satisfied.

Proof. We consider the node α of length 2j on the true path P . Assume,
possibly for the sake of a contradiction, that gj is a one-to-one enumera-
tion of the family S. Let u be the last stage at which α is initialized and
t0, t1, . . . , tn, . . . be the sequence of stages after u at which α is accessible.
We have the following three cases.
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Case 1. Suppose that αˆw ∈ P . It follows that there exists an n such
that αˆw is accessible at every tm for m ≥ n. There are only finitely many
numbers (and so corresponding pairs in Stn) marked with 2α

w at stage tn and
no new ones are ever marked by Lemma 23. Thus there is an m > n such
that each one of these pairs has an isomorphic copy in the family enumerated
by gj,tm . By Lemma 26 and our conventions about the enumeration gj, tm
would be a recovery stage for α for the desired contradiction.

Case 2. Suppose that αˆχ ∈ P , where χ ∈ {f, f̃}. In this case, there is
an n such that αˆχ or αˆw is accessible at every tm for m ≥ n. (The point
here is that, once αˆχ is accessible, αˆχ̃ can become accessible only if αˆ∞
is first accessible but if that happened infinitely often it would contradict
our assumption that αˆχ ∈ P .) By Lemma 23, nothing happens to rχα,t at
stages tm at which αˆw is accessible or between stages tm and tm+1. Thus
rχα,tm ⊆ rχα,tm+1 for every m ≥ n. We let rχα = ∪{rχα,tm|m ≥ n} and claim
that, on its domain, it is the desired reduction of χ to gj. It is clear from the
construction and the proof of Lemma 21 and from Lemma 23 that the only
numbers that never get a mark 2α

w are limt s
χ
β,t for βˆχ ⊆ α and the finitely

many numbers permanently attached to or prohibited from getting marks by
nodes γ of higher priority than α. Thus rχα is defined on all but finitely many
indices in the family S enumerated by χ. As gj is a one-to-one enumeration
of S, this map is the desired computable reduction on its domain by the
definition of covering and Lemma 26. It can be computably extended to one
on all of the domain of χ since there are only finitely many indices omitted
from its domain.

Case 3. Suppose that αˆ∞ ∈ P . Consider the pairs χ(sχα,t) and χ(s̃χα,t)

for χ ∈ {f, f̃}. Let v1 < v2 < . . . be the sequence of stages after u at which
αˆ∞ is accessible. Without loss of generality, suppose that at stage v1 the
designated reduction is rfα,v1

. Consider sfα,v1
. By Lemma 23, sfα,v1

6= sfα,v2
and

s̃fα,v1
= s̃fα,v2

. At stage v3, we have s̃fα,v2
6= s̃fα,v3

and sfα,v2
= sfα,v3

. Continuing
this way, we see that in the sequences

sfα,v1
, sfα,v2

, . . . and s̃fα,v1
, s̃fα,v2

, . . .

each number appears at most twice. Therefore, by the construction, all
pairs f(sα,vi) are finite. Consider the corresponding special pair gj(sα) in
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the enumeration gj (sα = sα,v1 and it never changes). Note that the pair
gj(sα) is infinite. Suppose that there exists an x such that f(x) = gj(sα).
Thus f(x) is an infinite set and, by Lemma 24, f(x) is selfsymmetric and
equal to limts

χ
β,t for some βˆχ on the true path P . Suppose that β ⊃ α or

β ⊂ α. By Lemma 26, β is unique and the pair f(x) has an element which
does not belong to gj(sα). Therefore f(x) 6= gj(sα) which is a contradiction

and so α = β. It follows that x = limts
f
α,t or x = limts̃

f
α,t. However, as we

noted above, neither of the limits limts
f
α,t and limts̃

f
α,t exist for the desired

contradiction. 2

4 Families and Structures of Dimension k

In this section we will briefly explain the basic ideas for producing a com-
putably categorical structure which has exactly k computable isomorphism
types, k ∈ ω, when expanded by any finite number of constants. The first
natural step is to consider families of k-tuples of computably enumerable
sets and define an appropriate notion of symmetry. The second natural step
is to generalize the notion of U -operation which was a crucial mechanism
in meeting diagonalization requirements Qe. We will also need to have an
appropriate priority tree for the generalization of our construction. Another
technical consideration is to define the special k-tuple of sets for the potential
enumerations of the family we would like to build. For example, in the proof
of Theorem 3.1, depending on stage t and a node α, the construction needed
to have a special g–pair of sets g(sα,t) for each potential enumeration g. As
we will explain below, in the general case, for each potential enumeration g
the construction will need to have exactly (k − 1) many special k–tuples of
sets which depend on stage t and the nodes of the priority tree. It turns out
that the generalization of the U -operation requires several technical consid-
erations. We will present these considerations below. A simpler proof of the
theorem, however, will appear with more details in a work on degree spectra
of relations on computable structures [10].

Let X = (X1, . . . , Xk) be a k–tuple of sets. Define pX to be equal to
(Xk, X1, . . . , Xk−1). Thus p is a map defined on the set of all k–tuples of
sets. A family S of k-tuples of sets is symmetric if X = (X1, . . . , Xk) ∈ S
implies that pX = (Xk, X1, . . . , Xk−1) ∈ S, that is, if S is closed under p.
We call the sequence X, pX, p2X, . . ., pk−1X the orbit of X and denote it
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by o(X). It is obvious that pkX = X. We let p0X = X as well.
Suppose that S is a symmetric family of k-tuples. Suppose that f is a

one-to-one computable enumeration of S. For each i ≤ k − 1, we define the
enumeration fi by setting fi(n) = pif(n) for all n ∈ ω. In particular, we see
from this definition that f0 is f .

Definition 28 A symmetric family of k-tuples of computably enumerable
sets has dimension k if there exists a one-to-one computable enumeration
f of S with the following two properties:

1. The enumerations f, f1, . . . , fk−1 are pairwise inequivalent.

2. Each computable one-to-one enumeration of S is equivalent to one of
the enumerations f , f1, . . ., fk−1.

The U -operation defined in §3 on symmetric sequences of pairs was im-
portant in our construction of symmetric family of dimension 2. To motivate
the analogous operation for sequences of k-tuples of sets, we rephrase the
description of the U -operation as follows: For each i ≤ n, consider a pair
Xi, pXi of pairs of sets. Thus, we have X̃i = pXi. Picture a sequence of pairs
arranged as follows:

X0, pX0, X1, pX1, . . . , Xn−1, pXn−1, Xn, pXn.

We perform the operation by putting (coordinatewise) all elements of Xi

into Xi+1 for i < n, all elements of pXi into pXi−1 for i > 0, all elements
of Xn into pXn and all elements of pX0 into X0. This produces a sequence
of sets Wj for j ≤ 2n + 1 such that W0 and W2n+1 are selfsymmetric and
W̃2i+1 = W2i+2 for i < n. Informally, one can imagine the original line of
sets X1, pX1, . . . , Xn−1, pXn−1, Xn, pXn without the first pair as the single
spoke of a wheel with center X0, pX0. Thus, in the general case, when we
deal with k–tuples of sets, by a spoke we mean a finite sequence

o(X1), . . . , o(Xn)

of orbits of k–tuples of sets X1, . . ., Xn. The number n is the length of the
orbit. Similarly, a wheel with center o(C) is a sequence

V1, . . . , Vk−1
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Figure 2:

of spokes of the same length such that each Vi begins with the same orbit
o(C). Note that each wheel has exactly k − 1 spokes.

Let o(X1), . . . , o(Xn) be a spoke. Fix an m such that 1 < m ≤ k. Call
the sequence pmXn, . . . , p

mX1 a designated array. Starting with the orbit
X1, . . . , p

k−1X1 we put (coordinatewise) all elements of pi(Xj) into piXj+1

for i 6= m. Starting with the last orbit Xn, . . . p
k−1Xn we put all elements

of pmXi into pmXi−1 for i > 0. We also put all elements of pjX1 into X1

and all elements of pjXn into pmXn for j < k − 1. We call this operation a
U(m)-operation. The affect of the U(m)-operation is that the first k–tuple
X1 has become selfsymmetric (all components are equal) and at the end of
the spoke the k–tuple pmXn has become self symmetric.

Definition 29 Let V1, . . . , Vk−1 be a wheel with center o(C). The general-
ized U-operation applied to this wheel is defined by performing a U(m)-
operation on the spoke Vm for each m with 1 ≤ m ≤ k − 1.

In Figure 2 we show graphically an example of a generalized U–operation
applied to a wheel when k = 3 and n = 5. In this picture C, pC, p2C is the
center, V1 is the spoke on the right side of the center with pX1, pX2, pX3, pX4

being the designated array, and V2 is the spoke on the left side of the center
with p2Y1, p

2Y2, p
2Y3, p

2Y4 being the designated array. In this picture X → Y
means that we put coordinatewise all elements in X into Y . The affect of
this U -operation in Figure 2 is that the 3–tuples C, pX4, and p2Y4 have
become selfsymmetric. Now using the above definitions one can prove the
next lemma which is the analog of Lemma 3.3.
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Lemma 30 The generalized U-operation applied to any wheel produces a
symmetric family of k-tuples with k many selfsymmetric sets. 2

Let gi, i ∈ ω, be a standard enumeration of all computable enumerations
of families of k–tuples of computably enumerable sets. To construct a family
S of dimension k we need to build a one-to-one enumeration f of S such that
the following requirements are met:

Qe,i : f is not equivalent to fi via Φe,

where i = 1, . . . , k − 1 and

Ri : gi ∼ f0

∨
. . .
∨
gi ∼ fk−1 or gi is not a one-to-one enumeration of S.

The priority tree T over the alphabet A = {c, d,∞, f0, f1, . . . , fk−1, w}
with the ordering c < d < ∞ < f0 < f1 < . . . < fk−1 < w is defined
as follows. If α ∈ T and the length of α is even, then αˆ∞, αˆfi for all
i = 0, . . . , k − 1 and αˆw belong to T . If α ∈ T and the length of α is odd,
then αˆc and αˆd belong to T .

At stage t of the construction, we use the following objects and terminol-
ogy.

1. Enumerations fi,t, i = 0, . . . , k − 1, and Families St. fi,t is the
approximation to fi that the construction is building. That is, for each s ∈ ω,
we have

fi(s) =
⋃
t

fi,t(s), i = 0, . . . k − 1.

Each of the functions f0,t, . . . , fk−1,t enumerates the same symmetric family
which we denote by St.

2. Functions rfiα,t, i = 0, . . . k−1. Each rχα,t, where χ ∈ {f0, . . . , fk−1}, is
the function which reduces χt to gt at stage t. The function rχα,t can extend the
previous reduction. If rχα,t does not extend the previous designated reduction,
then we say that the construction changes its (designated) reduction.

3. Diagonalization Witnesses. To each partial computable function
Φe and i, i = 0, . . . , k−1, the construction assigns an orbit C which depends
on stage t and a node of the priority tree. One of the goals of the construction
is to diagonalize against the potential reduction Φe on this orbit. The strategy
to meet the requirement Qe,i is based on the generalized U -operation. More
precisely, suppose Φe is a potential function which reduces f to fi. Let
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o(C) = f0,t(l0), . . . , f0,t(li), . . . f0,t(lk−1) be an orbit assigned to meet Qe,i.
Suppose that Φe(l0) = li. Then to meet Qe,i, the construction takes a wheel
with center C and performs a generalized U -operation on this wheel. This
action diagonalizes against Φe and meets the requirement Qe,i.

4. g–Special k–Tuples. For each potential enumeration g and node α
devoted to it, the construction picks (k−1) many k-tuples g(sα,1), . . . , g(sα,k−1)
called α–special k–tuples. The construction will satisfy the following prop-
erty. If there exist infinitely many stages at which the construction changes
its reduction, then there will be a k–tuple among g(sα,1), . . . , g(sα,k−1) which
becomes infinite, while all k-tuples in f0 contained in the infinite k–tuple are
finite, and therefore g is not a one-to-one enumeration of S. If after some
stage the construction never changes its reduction and g is a one-to-one enu-
meration of the family S, then g is equivalent to one of f0, . . . , fk−1.

5. Special Numbers sfiα,t, i = 0, . . . , k − 1. The construction uses

these numbers so that rfiα,t(s
fi
α,t) = sα,i for all i = 0, . . . , k − 1. Thus ft(s

fi
α,t)

is the k–tuple in fi,t which corresponds to g(sα,i) at stage t. The construc-

tion guarantees that the orbits of the k-tuples ft(s
f0
α,t), . . ., ft(s

fk−1

α,t ) do not
intersect. In addition, the construction also guarantees that if the k–tuples
corresponding to these numbers participate in performing a generalized U -
operation on a wheel, then these k–tuples appear in the different spokes of
the wheel. In addition, each of these k–tuples will be in the designated arrays
of the corresponding spoke. Moreover, if t is an α-recovery stage, then these
numbers satisfy the following important properties which are the analogs of

those of the special numbers (pairs) sfα,t and sf̃α,t in the construction of a
symmetric family of dimension 2.

1. If the construction does not change its reduction, then these special
numbers do not change.

2. If the construction changes its reduction, then one of these special
numbers will change, that is will be different from the all previous
ones.

3. If, after some stage, the construction never changes its reduction, recov-
ers infinitely often and g is a one-to-one enumeration of the family S,
then the construction guarantees that the set χ(limn→∞s

χ
α,n) becomes

selfsymmetric and infinite.
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Now the reader can see that the construction of a symmetric family of
dimension k is similar to the construction of Theorem 3.1. Given a symmetric
family S of dimension k, we can code a such family into a structure (as we
did in the proof of Theorem 2.1) and so prove our main result:

Theorem 31 For any natural number k there exists a computably categor-
ical structure A such that for each element a ∈ A the expanded structure
(A, a) has dimension k. 2
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