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Abstract. We study the problem of the interpretability of arithmetic in the

r.e. degrees in models of fragments of Peano arithmetic. The main result states that

there is an interpretation ϕ 7→ ϕ∗ such that every formula ϕ of Peano arithmetic

corresponds to a formula ϕ∗ in the language of the partial ordering of r.e. degrees

such that for every model N of Σ4-induction, N |= ϕ if and only if RN |= ϕ∗,

whereRN is the structure whose universe is the collection of r.e. degrees inN . This

supplies, for example, statements ϕm about the r.e. degrees which are equivalent

(over IΣ4) to IΣm for every m > 4.

§1. Introduction. A basic goal of reverse mathematics is to deter-
mine the axiom systems needed to prove particular theorems of mathe-
matics by showing that they are equivalent (over a given base theory) to
some specific axiom system. (See [12] for a general introduction to re-
verse mathematics in the setting of second order arithmetic.) In reverse
recursion theory our setting is first order arithmetic and the axiom sys-
tems considered are those that include, in addition to the axioms PA−

of Peano arithmetic (PA) without induction, the various syntactic lev-
els of induction and bounding axioms, IΣn and BΣn, which assert the
induction scheme and bounding principle, respectively, for Σn formulas.
(We refer the reader to [3] or [4] for the basic notions of recursion theory
in fragments of arithmetic, and to a summary of recent results in the
theory.)

The typical goal of reverse recursion theory then is to find recursion
theoretic theorems, usually about the r.e. degrees, that are equivalent
to IΣn over some weaker base theory. Examples include the equivalence
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of the Sacks Splitting Theorem for r.e. degrees with IΣ1 (over BΣ1) [7]
and of a minimal pair of r.e. degrees with IΣ2 (over BΣ2) [2]. Recent
work in [14] supplies a similar example for IΣ3. In this paper, we
show that over the base theory IΣ4 there are sentences ϕm about the
r.e. degrees which are equivalent to IΣm for each m > 4. (Of course,
these sentences are thus all theorems of PA.) Our proof proceeds by
analyzing and extending some of the results of [9] about the definability
of (a copy of) the standard model of arithmetic in the r.e. degrees, so
as to be able to carry out the necessary arguments in IΣ4 to provide an
interpretation in the r.e. degrees not of the standard model itself, but
only its theory. (The interpretation of the model itself seems to require
more induction.) Of course, this suffices for our equivalence results and
more. We begin with some background and an outline of our approach.

Let R denote the collection of recursively enumerable (r.e.) degrees
of the set of natural numbers with the partial ordering induced by Tur-
ing reducibility. In [9], Nies, Shore and Slaman show that there is an
interpretation (in the sense of [5]) of the standard model of arithmetic
in R. As a consequence, true arithmetic can be interpreted in Th(R).
Since there is an obvious interpretation of R in the standard model, it
follows that Th(R) is precisely as complicated as true arithmetic. They
also use this interpretation to establish the definability of the classes
of highn and lown+1 degrees (for n ≥ 1) as well as a weak form of the
bi-interpretability conjecture ([9], [8]), that there is a map f definable
over R with the property that for each a ∈ R, f(a) is the index (in the
code of the standard model in R) of an r.e. set We such that W ′′e has
Turing degree a′′.

This interpretation of the standard model in R is achieved through a
series of coding schemes each of which defines a class of structures in R.
Briefly, a coding scheme S(~p) is prescribed via first order formulas (in
the language of R) ϕ0(x, ~p), ϕ1(~x, ~p), ϕ2(~x, ~p), . . . , ϕk(~x, ~p) and ψ(~p)
where ~p denotes a finite sequence of elements of R, and ϕ0 specifies
the domain of the structure being defined. The formulas ϕi, 0 < i ≤ k,
correspond to functions or relations such as addition and multiplication
or order which are defined on the domain specified by ϕ0 to make it
into the desired type of structure. The formula ψ is a correctness con-
dition which ensures that structures coded by the scheme satisfy certain
properties (for example, that the appropriate formulas define functions
when so required or that, in addition, the structures defined by such a
scheme are models of some finite fragment of Peano arithmetic or even
isomorphic to the standard model). For a given coding scheme S, we
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refer to the structures defined by instances of the parameters ~p that
satisfy the correctness condition ψ as the models coded via S. For more
details and relevant examples see [5] and [9].

We show in this paper that if N is a model of a fragment T of Peano
arithmetic including Σ4-induction and RN is the structure of r.e. de-
grees of N , then there exists an interpretation of Th(N ) in RN , i.e. a
recursive map ϕ 7→ ϕ∗ taking formulas ϕ of Peano arithmetic to ones ϕ∗

in the language of the partial ordering of r.e. degrees, such that N |= ϕ
if and only if RN |= ϕ∗. A consequence of this is that for n > m ≥ 4,
if Nn is a model of Σn-induction, and Nm is a model of Σm-induction
but not of Σn-induction, then the structures RNn and RNm are not el-
ementarily equivalent. More precisely, since we can express the scheme
of IΣm induction by a single formula ψm, there is a formula ψ∗m in
the language of R such that N satisfies IΣm induction if and only if
RN |= ψ∗m. Combining these results with recent ones in [2] and [14], the
only case of the general question of whether the amount of induction
true in N is faithfully reflected in Th(RN ) is when n ≥ 4 and m = 3.
We discuss this further in the next section.

There are essentially two key steps to establishing the interpretabil-
ity of true arithmetic in Th(R). The first involves coding the standard
model in R. A basic technique for achieving this is provided by Sla-
man and Woodin in the construction of what are called SW (Slaman-
Woodin) sets. An SW-set ([9]) is defined from a finite set of param-
eters: Given r.e. degrees b,p,q and r, the Slaman-Woodin set coded
by b,p,q, r is the set of minimal elements of {x|b ≤T x ≤T r & q ≤T
x ∨ p}. If the parameter b is omitted, we take it to be 0. As shown
by Slaman and Woodin, given a recursive partial ordering ≤P one may
construct a uniformly r.e. sequence (an SW-set with b = 0) {gi|i ∈ ω}
of r.e. degrees and an l ∈ R such that i ≤P j if and only if gi ≤T gj ∨ l.
Thus we can define a coding scheme and parameters that determine a
recursive coding of the standard model of arithmetic in R by combin-
ing the Slaman-Woodin coding of partial orderings with the standard
interpretation of an arbitrary theory (here arithmetic) in that of partial
orderings.

The second step is to obtain a first order condition on parameters that
picks out a subclass of models coded in R which are standard. This is
achieved via a Comparison Theorem which identifies, through a coding
scheme, a class of models isomorphic to the standard model. Of course,
identifying a definable class of models isomorphic to the standard one
gives an interpretation of true arithmetic in the theory of R.
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In this paper we are generally guided by this approach in dealing
with the problem at hand. There are, however, some obvious issues and
difficulties which have to be resolved. First, the term ‘standard model’
now carries a different meaning. Since one is considering an arbitrary
model of a first-order theory (a fragment of Peano arithmetic), which
more than likely is itself nonstandard, ‘standard’ has to be understood
in the relative sense, using the given model N as reference. In such
a situation, it is necessary to exercise control on the order type of the
models to be considered so that, in order to apply the Comparison
Theorem, only those which are end-extensions of N matter. Second,
working with limited mathematical induction always poses the challenge
of controlling the complexity of the constructions involved, to ensure
that the coding scheme to be defined stays within manageable level,
i.e. the constraint of Σ4-induction.

In the next section, we present the coding mechanism and the tech-
nical theorems and lemmas needed to make it work. Assuming the
technical recursion theoretic results, we prove (in IΣ4) that the coding
procedures provide an interpretation of the theory of arithmetic in the
r.e. degrees and draw some conclusions about reverse recursion theory
and the relations between the theory of the r.e. degrees in a model N
and the amount of induction that holds in N . The technical theorems
and lemmas are proven in §3.

§2. Coding Schemes Under IΣ4. Let N be a model of IΣ4. We
work towards finding a coding scheme S and a formula Ψ in the language
of the partial ordering of r.e. degrees such that for appropriate degrees
c, any finite set of parameters ~p below c which satisfy Ψ code a model
M of arithmetic lying below c which is also a copy of N (known as
models ‘good for c’). The formula Ψ plays the role of a correctness
condition for the coding scheme to be used for interpreting the theory of
N in RN by picking out a class of coded models which are isomorphic
to N when c is low. (We will then get our desired interpretation of
Th(N ) by quantifying out the parameter c in an appropriate way.)
The development of S and Ψ proceeds in several steps.

We begin with the initial coding scheme from [9]. As described above,
this takes as its parameters degrees b,p,q, r and l such that b,p,q and
r define a Slaman-Woodin set G, and l defines an ordering ≤P on
G which codes a model of a finite fragment of PA sufficient for the
simple facts about arithmetic that we will need (one implying IΣ1 is
more than sufficient) on a subset M of G, using an interpretation of
structures for arithmetic in partial orderings. Much of what we do
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to adapt the codings of [9] will be done to reduce the complexity of
various statements about the coded models so as to reduce the amount
of induction needed in our verifications.

We begin by assuming that the partial ordering P used to code arith-
metic has specific elements s, s0 and s1 such that the elements of the
model of arithmetic coded in P are precisely those below s and the even
and odd ones (in the sense of the model of arithmetic) are those below
s0 and s1 respectively. (In addition, we note that the coding presented
in [9] makes the minimal elements of P be the domain of the coded
model of arithmetic.) Thus the Slaman-Woodin set G has specific el-
ements s, s0 and s1 such that the elements of M are precisely those
x ∈ G satisfying x ≤T s ∨ l and the even (odd) numbers of M are pre-
cisely those x ∈ G satisfying x ≤T s0∨ l (x ≤T s1∨ l). We include these
elements s, s0 and s1 among the parameters of our coding scheme, and
the assertions about their picking out the appropriate sets of numbers
in M as part of our correctness condition.

The next new aspect of our coding scheme that we want to make
explicit is the introduction of another parameter l′ which codes a second
partial order on G that coincides with the ordering of M. To be precise,
we add the parameter l′ and the correctness condition asserting that for
x,y ∈M, x ≤T y ∨ l′ if and only if x ≤M y.

We start our search then with a coding scheme S0 and associated
correctness condition ψ0 with all these properties. All coding schemes
considered from now on are assumed to be extensions of S0. If M is a
model coded by some scheme S, i ∈ N and there is (in the sense of N )
an ith element in the ordering ≤M, then we denote this element by iM.

Now, given a sufficient amount of induction, the Slaman-Woodin con-
struction as given in [9] may be used to show that there are parameters
which, via S0, code a recursive model M in RN that is isomorphic to
N . However, definably picking out copies of N is considerably more
complicated. We continue with a definition that reflects our goal of
determining a subclass of the models coded by a scheme S which are
isomorphic to N .

Definition 2.1. Let C be the class of models of arithmetic coded in
RN by some coding scheme S. Then N ∈ C is N -standard for C if N
is isomorphic to N and the domain of N is isomorphic to an initial
segment of the domain of every M ∈ C.

Our goal is to definably (at least in an appropriate parameter) de-
termine a set of models which are N -standard for some (coded) class
C. The need to restrict the complexity of various definitions, so as to
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reduce the amount of induction needed for verifications, drives us to
a more complicated mechanism than that used in [9] to define a class
of standard models. We use models with ‘effectively generated’ succes-
sor functions, first studied by Shore [10] and used in [9] for their more
delicate results on definability in R.

Definition 2.2. If M is a model of IΣ4 defined by parameters b,p,
q, r, l and l′ via a coding scheme S and e0 , e1, f0, f1 are additional
parameters from RN , we say that M is effectively generated by these
parameters if the even and odd integers of M are generated by e0, e1,
f0, f1. More precisely if, 0M ≤T f0 and

x ≤T (s0 ∨ l)→ (x ∨ e1) ∧ f1 = (x+M1)M and

x ≤T (s1 ∨ l)→ (x ∨ e0) ∧ f0 = (x+M1)M.

One concludes from this definition and trivial facts of arithmetic that
the relation g+ = h saying h is the successor of g is definable in any
effectively generated model as follows:

g+ = h⇔ (∃i ∈ {0, 1})[g �T fi & h = (g ∨ ei) ∧ fi].

This fact will be used implicitly in the sequel.
We will show that N is isomorphic to an initial segment of every

model defined by a coding scheme S1 with extra parameters e0, e1, f0,
f1 and a correctness condition asserting that the models are effectively
generated. The following theorem which is similar to Theorem 6.1 of [9]
will follow from Theorem 3.8 below. It says that there is a recursively
coded effectively generated model.

Theorem 2.3. There exist r.e. degrees b,p,q, r, l, l′, e0, e1, f0 and f1

which effectively generate a coded model N with domain {gi|i ∈ N}
which is isomorphic to N and recursive in the sense that the indices of
the gi and the structures defined on them are uniformly recursive.

Given an r.e. degree c > 0, we say that a coded model M lies below
c if the parameters which code M are all recursive in c. Recall that
a degree is promptly simple if it is not half of a minimal pair. (See
Definition 3.1 and Theorem 3.2.) By a prompt permitting argument,
one may generalize the above theorem as follows:

Theorem 2.4. If c is promptly simple, then there exists a recursive,
effectively generated model Nc which is recursively isomorphic to N and
lies below c.



INTERPRETING ARITHMETIC IN THE R.E. DEGREES UNDER Σ4-INDUCTION 7

This result is also similar to Theorem 6.1 of [9] and will follow from
Theorem 3.8. Let Cc be the class of effectively generated coded models
below c by our scheme S1. We will now prove that any Nc as in Theorem
2.4 is N -standard for Cc. We begin by showing that (under suitable
hypotheses) Nc is isomorphic to an initial segment of each effectively
generated model coded below c.

Lemma 2.5. Let C be an r.e. set of degree c. Assume that IΣC
4 holds

in N and M is a coded model effectively generated by parameters lying
below c in RN . Then for any n in N , nM exists.

Proof. We prove this by induction using IΣC
4 .

Claim 1. For any n ∈ N , there is an N -finite sequence 〈xi : i ≤ n〉
such that

1. x0 = 0M;
2. For all i ≤ n, x ≤T r and (xi ∨ p) ≥T q;
3. For 2i+ 1 ≤ n, x2i+1 ≤T (x2i ∨ e1) and x2i+1 ≤T f1;
4. For 2i+ 2 ≤ n, x2i+2 ≤T (x2i+1 ∨ e0) and x2i+2 ≤T f0.
Denote by ψ(n) the conjunction of the four conditions above. Then

the complexity of ψ(n), upon replacing the Turing reducibility relation
≤T by the reduction relation between (indices of) r.e. sets, is ΣC

3 . Sup-
pose that ψ holds for n = 2k (the argument for n odd is similar). We
first show that the xi are in M. To see this, note that by (2) and (4)
xi 6∈M is equivalent to

∃y(y <T xi and y ∨ p ≥T q)

which is ΣC
4 . Suppose that not all members of the sequence are in M.

By IΣC
4 , which is equivalent to LΠC

4 , there is a least counterexample i.
Then xi 6∈ M but xi−1 ∈ M. Without loss of generality, assume that
xi−1 is an even integer in M. Then its successor h satisfies

h = (xi−1 ∨ e1) ∧ f1 ≥T xi
where the last inequality follows from the fact that xi is below both
xi−1 ∨ e1 and f1. On the other hand xi ∨ p ≥ q, thus xi = h since
h is a minimal solution of the inequality and so xi is in M. Thus by
IΣC

4 -induction xi ∈ M for all i ≤ n. We can now verify Claim 1 for
n+1 by taking xn+1 to be the successor of xn in M. This proves Claim
1.
Claim 2. For any n ∈ N , the sequence 〈xi : i ≤ n〉 defined above is an
initial segment of M. Indeed xi = iM. We first use induction on k ≤ n
to establish the following ΠC

4 statement:

∀x[(x ≤T r,(xk ∨ l) and (x ∨ p) ≥T q)→ (∃i ≤ k)(xi ≤T x)]. (∗)
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Suppose (∗) is true for k. By Claim 1, xk is in M and as shown in the
proof of that Claim, xk+1 is the successor of xk in M. Let x ≤T r be
such that x∨p ≥T q and x ≤T xk+1 ∨ l. Then x is above some h ∈M
and h ≤M xk+1. Thus h ≤M xk or h = xk+1, which is the successor of
xk. Hence (∗) holds.

Furthermore (∗) implies that 〈xi : i ≤ n〉 is an initial segment of
elements in M. To see this, suppose that h ∈M and h ≤M xk. Then if
we substitute h for x in (∗), we get an xi such that xi ≤T h. Since the
members of M form an antichain (with respect to Turing reducibility),
we have h = xi. Thus if h ∈ M satisfies h ≤M xk, then h = xi for
some i ≤ k. 2

Lemma 2.5 allows one to effectively embed Nc into every other ef-
fectively generated model M below c. The next step is to provide a
coding scheme which allows us to compare (via a coding scheme for
maps between coded models) initial segments of effectively generated
models coded below c. An N -standard model for c will then be one
whose initial segments can be embedded into every other effectively gen-
erated model coded below c via the maps defined by the coding scheme
for comparisons. The intuitive argument goes roughly as follows: Sup-
pose M is effectively generated and embeddable into every other coded
model in Cc as an initial segment. Let f : M → Nc be an embedding
that preserves the successor function. Let g : Nc →M be the natural
embedding described in Lemma 2.5. If g(Nc) is a proper initial segment
of M (bounded, say, by m), then fg : Nc → Nc maps an initial seg-
ment [0Nc , nNc ] of Nc properly into itself (where nNc = f(m)). Now
if fg � [0Nc , nNc ] is N -finite, then the pigeon hole principle is violated,
and we have a contradiction. All this works if the instance of the pi-
geon hole principle that we need is sufficiently simple to follow from the
amount of induction that we have in N . Thus we need to produce a
map f as above that is as simple as possible. (Note that g � nNc is N -
finite by Lemma 2.5 as long as we have IΣC

4 .) We begin by describing a
variant of the scheme for comparison maps used in [9] and the technical
lemma needed to prove the existence of parameters as required to make
the scheme work. We will then consider some extensions of the scheme
that allow us to define the map fg as an IΣC

4 relation. Finally, we argue
that we can restrict our attention to low degrees c by an appropriate
quantification. This will allow us to get by with IΣ4. First the techni-
cal lemma which is similar to Theorem 5.1 of [9] and will follow from
Theorem 3.10.
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Lemma 2.6. For any nonzero low degrees q0, . . . ,qm−1, r0 and r1,
there is a recursive model M coded below a low degree such that

(i) M is recursively isomorphic to N ;
(ii) For each i < m, (i)M ≤T qi;
(iii) For i, j < m, if qi �T qj then (i)M

�T qj; and
(iv) For all x ≥M mM, x �T r0, r1.

Notice that we do not require M to be an effectively generated model.
(Indeed, there seems to be an incompatibility with M being effectively
generated and the permitting required in this lemma.)

By the N -part of a coded model M we refer to the union of its initial
segments of the type [0M, nM] where n ∈ N . Given two coded low
models M0 and M1, we want a scheme that (as we vary its parameters)
defines comparison maps giving isomorphisms between their N -parts
piece by piece. This is done for each n via a third model M which
is obtained by applying Lemma 2.6 with m = 2n and q2i = iM0 and
q2i+1 = iM1 for i < n.

More precisely, for N -finite segments [0Mk , nMk ] in Mk (k = 0, 1)
and a coded model M with element n =nM, we define a comparison
map fM,nM from M0 to M1 as follows: fM,nM : x 7→ y if and only if
x ≤M0 n0 = nM0 , y ≤M1 n1 = nM1 and there exists an a ∈ M such
that

(a) a <M n and a ≤T x;
(b) a is even in M;
(c) a+ ≤T y, where a+ is the successor of a in M.

Given that q2i = iM0 and q2i+1 = iM1 , we apply Lemma 2.6 and
see that there is an M such that jM <T qj. Then if x = q2i and
a = (2i)M, we have a+ = (2i + 1)M <T q2i+1 which we can denote
by y. Now by Lemma 2.6 (iii) and (iv) this y is uniquely defined,
showing that fM,nM provides a one-one correspondence between the
integers less than n in M0 and M1. We have thus described a formula
θ̂(x,y, ~p0,n0, ~p1,n1, ~p,n) of degree theory which provides a scheme for
isomorphisms between the N -parts of any two low coded models. In
order to guarantee that the map defined is an isomorphism between
the specified initial segments of M0 and M1 we include a correctness
condition in this scheme which simply says that the relation defined
between the initial segments of Mi below ni is an order preserving
isomorphism. The maps defined by our scheme θ̂ (with this correctness
condition) are now candidates for the function f used in our informal
argument above for defining N -standard models for Cc.
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In particular, if we consider Nc for c low and promptly simple then for
any effectively generated M0 coded below c, the scheme given by θ̂ pro-
vides isomorphisms from every initial segment of Nc onto ones of M0.
We would like to claim that any effectively generated M0 coded below a
low promptly simple c, with the property that θ̂ provides isomorphisms
between each of its initial segments and ones of every effectively gener-
ated M1 coded below c, is isomorphic to N (and so N -standard for Cc
). As we explained before, the problem is that the maps as defined by
θ̂ provide too complicated an instance of the pigeon hole principle to
contradict IΣ4. The problematic part of the definition of θ̂ is member-
ship in M (which is ΠC

4 ) and the definition of the successor function in
M. We solve this problem by adding more parameters to the scheme S0

defining M as well as new correctness conditions that allow us to argue
that there are IΣC

4 definitions of the functions fM,nM given by θ̂. We
add parameters t,u and v and the conditions (v)-(vii) of the following
lemma to the scheme S0 to get a new scheme S2,c defining models of
arithmetic which has c as a parameter as well.

Lemma 2.7. Let c be low and promptly simple, and let Mi (i = 0, 1)
be effectively generated models coded below c and n ∈ N . There is a
model M coded below c and degrees t,u and v (also below c) which
are uniformly defined in terms of the parameters ~pi defining Mi and
the sequences 〈jM0 |j < n〉 and 〈jM1 |j < n〉 such that M satisfies the
conditions (i)-(iv) of Lemma 2.6 substituting n for m, jM0 for q2j and
jM1 for q2j+1, as well as the following conditions:
(v) For any even number h in M, h∨t is above h+, but not above any

other integer in M (except, of course, h). (In particular, there is
a unique odd (resp. even) number k ∈M below h ∨ t.)

(vi) The join of any nontrivial distinct triple of numbers in M with v
computes u, but no join of any pair with v computes u.

(vii) For any even number h ∈M, h ∨ t ∨ v �T u.

This Lemma will follow from Theorem 3.10. We now show that these
conditions suffice to make the maps defined by θ̂ be IΣC

4 .

Lemma 2.8. With the notation of Lemma 2.7 and C an r.e. set of
degree c, the following ΣC

4 formula θ defines the same map as fM,nM0

(assuming, of course, the correctness conditions of θ̂ hold):
θ(x,y, ~p0,n0, ~p1,n1, ~p,n) if and only if x ≤M0 n0,y ≤M1 n1and

there exist w, z such that
(d) w ≤T s0 and z ≤T s1;
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(e) w ≤T x and z ≤T y;
(f) w ∨ p ≥T q and z ∨ p ≥T q;
(g) z ≤T w ∨ t and w ∨ t ∨ v �T u.

Proof. First we verify that θ(x,y, ~p0,n0, ~p1,n1, ~p,n) holds when-
ever y = fM,nM0 (x). Let a be the witness required to show that
fM,nM0 (x) = y. We take w to be a and z to be a+ in the definition
of θ. It is easy to see that (d)—(f) hold and (g) follows from the con-
nection between t,u and v specified in (v) and (vii). For the converse,
suppose θ(x,y, ~p0,n0, ~p1,n1, ~p,n) holds via witnesses w and z. By (f),
w is above some a in M and by (d) a is an even number in M. By
(e) and (iii) and (iv) of Lemma 2.6, a is the unique even element in M
below x as the jM0 ’s form an antichain. We show that a is a witness
that fM,nM0 (x) = y. Clearly (a) and (b) hold. We now prove (c) by
showing that a+ ≤T z, which is sufficient in view of (e). By (g), which
says w ∨ t ∨ v �T u, there are at most two integers in M below w ∨ t.
Now a ≤T w is one and a+ ≤T w∨ t ≤T a∨ t is another by (v). Hence
only a and a+ are below w ∨ t. By (f) and (d), z is above some odd
integer in M. Since z ≤T w ∨ t, that odd integer must be a+. 2

Recall that if c is promptly simple, then Cc denotes the class of ef-
fectively generated coded models below c via S1. Heading toward our
definition of a class of N -standard models for Cc, we define the relation
Θ(~p0, ~p1) to hold if and only if

1. ~p0 and ~p1 code models M0 and M1, respectively, via S1 and
2. (∀x ∈M0)(∃y ∈M1)(∃~p,n)(~p codes a model M via S2,c, n ∈M

and
θ(x,y, ~p0,n0, ~p1,n1, ~p,n)).

That is, every initial segment [0M0 ,x] of M0 is isomorphic to one
[0M0 ,y] of M1 by a map defined by θ through a third model M coded
by ~p via S2,c and an n ∈M.

We will now show that Ψ(~p0, c) ≡ (∀~p1)(~p1 codes a model below c
via S1 → Θ(~p0, ~p1)) is the required correctness condition for a coding
scheme that guarantees that M0 is N -standard for Cc.

Lemma 2.9. Assume that C is promptly simple and that IΣC
4 holds.

Let M0 be an effectively generated model coded by ~p0 below c. Suppose
that Ψ(~p0, c) holds. Then M0 is isomorphic to N.

Proof. By Theorem 2.4 there is a coded model Nc = M1 below c which
is a recursive copy of N . By Lemma 2.5 there is an order-preserving
one-to-one map g from M1 to M0 which is closed downwards so that M0

is an end-extension of M1. Moreover, g restricted to any initial segment
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of M1 is N -finite. We show that this map is onto. Suppose for the sake
of a contradiction that there is an x ∈M0 which is not in the range
of g. Then, as guaranteed by Θ, there is an M and an n ∈M which
provide an order-preserving isomorphism from [0M0 ,x] to some initial
segment [0M1 ,y] of M1. By Lemma 2.8 this map f is ΣC

4 . The N -
finite function g � [0M1 ,y] maps this interval one-to-one and onto some
[0M0 ,x′] in M0 and x′ <M0 x by our choice of x. Thus fg � [0M1 ,y]
is one-one, ΣC

4 and maps some [0M1 ,y] which is recursively isomorphic
to some interval [0, n] in N into a proper subset of itself. As this map
is ΣC

4 it is actually N -finite by IΣC
4 induction, and so contradicts the

pigeon hole principle. 2

Our analysis so far shows that the next definition may be formalized
in the language of RN .

Definition 2.10. M0 is good for c if M0 is an effectively generated
model coded below c by the parameters ~p0 and Ψ(~p0, c) holds.

Summarizing the results obtained thus far, and noticing that for C
low IΣC

4 is equivalent to IΣ4, we have the following.

Theorem 2.11. If N |= IΣ4 and c is promptly simple and low, then
1. there is an M0 which is good for c, and
2. any M0 good for c is isomorphic to N .

We are now ready to provide an interpretation of the theory of N
in RN . Theorem 2.11 says that the theory of N may be interpreted
below any low, promptly simple degree c whenever N satisfies IΣ4. We
can define the class PS of promptly simple degrees in RN as the ones
which are not half of a minimal pair by [1]. (See Theorems 3.2.) The
problem is that we do not have a first-order degree-theoretic definition
for the low degrees. However, we can get the same effect in terms of
interpreting the theory of N (although not of N itself) by quantifying
over promptly simple degrees in the way used by Slaman and Woodin in
their (unpublished) proof that there is an interpretation of the theory
of N in R.

Definition 2.12. We define a translation ∗ taking a sentence ϕ in
the language of Peano arithmetic to a ϕ∗ in the language of R. First
let ϕ′(~p) be the corresponding sentence of RN asserting that ϕ holds in
the model coded by the parameters ~p (using the translation provided by
the scheme S0). Then let ϕ∗ be

(∀d ∈ PS)(∃c ∈ PS)(∃M0)(c ≤Td, M0 is good for c and M0 |= ϕ′).
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Theorem 2.13. For every formula ϕ of arithmetic, if N |= IΣ4, then

N |= ϕ⇔ RN |= ϕ∗.

Proof. Suppose that N |= ϕ and d is promptly simple. By Theorem
3.6 (taken from [6]) we can choose a degree c ≤ d which is promptly
simple and low. Let M0 be a the recursive copy ofN as given by Lemma
2.4. Clearly M |= ϕ′ as it is isomorphic to N . It remains to check that
M0 is good for c, which can be done as carried out before under IΣC

4 ,
and this is equivalent to IΣ4 since c is low. For the converse, suppose
that RN |= ϕ∗. Choose d low and promptly simple. Fix c and M0 as
in the hypothesis. Then by the lowness of c and Theorem 2.11, IΣ4

shows that M0 is isomorphic to N . Since M0 |= ϕ′, we get N |= ϕ. 2

We now draw some consequences of our work which illustrate the
extent to which the theory of RN depends on, and reflects, the amount
of induction that holds in N . First, in terms of reverse mathematics
we see that we have equivalents for IΣn for each n > 4 over the base
theory IΣ4.

Corollary 2.14. For each n > 4 there is a theorem ψn about the
r.e. degrees such that ψn is equivalent to IΣn over the base theory IΣ4.

Proof. For each n > 1 there is a sentence ϕn of arithmetic that is
equivalent to IΣn over IΣ1. Let ψn be ϕ∗n. For n > 4, our results show
that N |= ϕn ⇔ RN |= ϕ∗n for every model N of IΣ4. Thus ϕ∗n is the
desired formula ψn. 2

Another way of looking at our results and other older ones is in terms
of the r.e. degree theory of various fragments of arithmetic. If T is a
theory of arithmetic, the r.e. degree theory of T is the set of all first-
order sentences (without parameters) in the language of the r.e. degrees
which are true in every model of T . For example, consider the theory
IΣ+

n which is PA− + IΣn together with a sentence which asserts the
failure of Σn+1-induction. We call this theory strict IΣn. Our results
here show that the r.e. degree theories of IΣ+

n are not complete for
n ≥ 4 as the theories IΣn are themselves not complete. On the other
hand, results such as those on the existence of minimal pairs [2] and
on the density of branching r.e. degrees [14] show that the r.e. degree
theories of IΣ+

1 and IΣ+
2 are incomplete as well.

We now give some other corollaries.

Corollary 2.15. For n > m ≥ 4, the r.e. degree theories of IΣ+
n

and IΣ+
m are different.

Proof. If Nm is a model of IΣ+
m, it satisfies the sentence ϕ which states

that IΣm+1 fails. Hence ϕ∗ holds in RNm . Now ϕ∗ is parameter free
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and true in the r.e. degree theory of IΣ+
m. On the other hand, ϕ is

false in every model Nn of IΣ+
n , so that ϕ∗ is false in the r.e. theory of

degrees for IΣ+
n . 2

Corollary 2.16. The r.e. degree theory of IΣ+
1 is different from the

r.e. degree theory of IΣ+
n for n ≥ 2.

Proof. It is shown in [2] that the existence of a minimal pair of r.e. de-
grees is equivalent to IΣ2 over the base theory BΣ2. Since there exist
models satisfying BΣ2 (hence IΣ1) but not IΣ2, we have a sentence
that differentiates between the r.e. degree theories of IΣ+

1 and IΣ+
n for

n ≥ 2. 2

Yang [14] has recently shown that over PA−+BΣ3, Slaman’s theorem
that branching r.e. degrees are dense is equivalent to Σ3-induction. This
gives an example of the equivalence of IΣ3 with a 0′′′ priority argument.
It also gives a difference between the r.e. degree theories of IΣ+

2 and
IΣ+

3 . We believe that Corollary 2.15 holds for all n > m ≥ 1. The
only case left open is when n > m = 3. A recursion-theoretic statement
whose proof requires a 0′′′′ priority argument would be a good candidate
to establish this.

In terms of reverse mathematics, the natural question along these
lines is whether Corollary 2.14 can be improved by weakening the base
theory to IΣ1 (or any IΣk for k < 4) and establishing equivalences
for all n > 1 (or n > k). Another question to ask is the extent to
which Theorem 2.13, whose proof uses IΣ4 in an essential way, can be
strengthened. More specifically, for 1 ≤ k ≤ 3, is there an interpretation
∗ (a recursive map from sentences in the language of Peano arithmetic
to sentences in the language of partial ordering for r.e. degrees) such
that for all models M of IΣk and all sentences ϕ, M |= ϕ if and only
if RM |= ϕ∗?

§3. Recursion-theoretic Constructions. Throughout this section,
we fix N to be a model of IΣ4. All r.e. degrees are members of RN .
We need to argue that all the facts about the RN used in the previous
section can be proven in IΣ4. An examination of our arguments shows
that four Theorems 3.2, 3.6, 3.7 and 3.9 suffice. Some of the arguments
merely require reading proofs in the literature and noticing that IΣ4

suffices to carry them out. Others are new results about the r.e. degrees
which are extensions and elaborations of results in [9]. We assume fa-
miliarity with that paper as well as [6] and [1] or the presentation of
that material in Ch. XIII of [13] and with tree arguments as in, for
example, Ch. XIV of [13]. For our purposes we may take the promptly
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simple degree theorem of [6] as a definition of PS, the class of promptly
simple degrees.

Definition 3.1. An r.e. degree a is promptly simple if there is an
A ∈ a with an enumeration As and a recursive function p such that for
all s, p(s) ≥ s and for all e

We infinite ⇒ (∃x)(∃s)[x ∈We,at s &As � x 6= Ap(s) � x].

Theorem 3.2. (Ambos-Spies et al. [1]) The promptly simple degrees
c are precisely those which are not halves of minimal pairs, i.e. (∀x > 0)
(∃y > 0) (y ≤T x, c).

The proof that no promptly simple c is half of a minimal pair is
Theorem 1.11 of [6]. In terms of Definition 3.1, it appears as Theo-
rem XIII.2.1 in [13]. Its proof is easily seen to work in far less than
IΣ4. The other direction is Theorem 1.13 of [1] (and XIII.2.2 of [13]).
Unfortunately there is a gap in these write ups of this result. It will
be corrected in the new edition of [13] but we take this opportunity
to present a different presentation based on a gap-cogap tree argument
taken from [11].

We are given a nonrecursive r.e. set B and wish to build an r.e. A and
various candidates pα such that either some pα is a witness to B’s being
of promptly simple degree or A > 0 and A ∧ B = 0. The requirements
are as follows:
Ne: Φe(A) = Φe(B) = he ⇒ he ≤T 0 (in fact we will define partial

recursive functions ψe,i such that he = ψe,i for some i).
Pe: Φe 6= A
Re: There is a recursive pe such that ∀i[Wi infinite ⇒ ∃x, s(x ∈

Wi,at s &Bs � x 6= Bp(s) � x)].
The requirements Ne, Pe and Re are assigned to nodes α with length

3e, 3e+ 2 and 3e+ 1, respectively. Thus our tree construction will, for
some α with |α| = 3e + 1, build a recursive pα as in Re or guarantee
that Ne and Pe are satisfied for all e.

To understand the module for one requirement Re or Ne consider first
the problem of just trying to build A for any given B following the usual
minimal pair construction on a tree. The problem is that once we get
a new length of agreement, if we allow A to change later on the use, we
cannot preserve the B-computations. (And so, in fact, not every b is
half of a minimal pair.) Our plan then is to allow A to change only at
those stages (inside a gap) at which a B change would get us closer to
satisfying Re,i for some new i: If we have an x ∈ We,at s and if B � x
changes “promptly”, i.e. before pe(s), we would satisfy Re,i. At those
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stages (inside the cogap) at which we would get no advantage from a B
change (after pe(s)) we must preserve the A-computations to keep the
minimal pair argument working.

To be more precise if Φe(A) = Φe(B) = he we will define pe and
ψe,i such that if i is least such that pe does not satisfy Re,i then ψe,i =
he so as to meet Ne. At a stage s + 1 at which the usual length of
agreement function `(e, s) has reached a new maximum we may open
an Re,i gap for the least i such that Re,i is not yet satisfied and for
which we have an x ∈ Wi,at s and a y /∈ domψe,i,s with y < `(e, s)
such that ∀z ≤ y[φe(B; z)[s] < x]. We now set ψe,i(z) = Φe(B; z)[s]
for z ≤ y, z /∈ domψe,i,s. The idea is that we need not restrain A as
long as the gap is open since any change in B below the use (at some
y′ ≤ y) would give us a win on Re,i. For this threat to be credible we
must, however, eventually define pe(s). We wait for the first stage t at
which `(e, t) > `(e, s). We then set pe(s) = t and close the gap. The
point now is that we no longer get any advantage from a B change on
the use (for y′ ≤ y) and must now impose restraint on the use from A
during the cogap , i.e. until the next gap is opened.

Note that we really need to deal with Re only if `(e, s) → ∞. The
positive requirements have, as usual, disjoint, infinite, recursive sets Qα
assigned to them with x ∈ Qα → x > α. The interactions among the
various strategies (in particular different Re) is now handled by a tree
construction.
The priority tree: We specify the assignment of requirements and
their outcomes:

a) |α| = 3e is assigned to Ne and the possible outcomes are i (if
`(α, s) → ∞) and n ∈ ω (the last stage at which `(α, s) reached a
maximum).

b) |α| = 3e + 1 is assigned to Re. If the outcome of Ne is not i at
the immediate predecessor of α, then that of Re at α is 0 (no action
is needed for Re). Otherwise, the outcome can be gn or dn(n > 0,
n ∈ ω). The idea here is first that gn (gap) represents the possibility
that Φe(B) is total and n is least such that Re,n fails, i.e. we open
an Re,n gap infinitely often at α. In this case we will claim that, if he
is defined then it equals ψα,n. The outcomes dn (divergent) represent
the possibility that Φe(B; yn) ↑ where we define yn at the last stage we
go through gn (i.e. the last time we open or close an Re,n gap). The
outcomes are ordered by 0 <L g1 <L d1 <L g2 <L d2 <L · · · .

c) |α| = 3e + 2 is assigned to Pe. The outcomes here are s if ∃x ∈
Qα[Φe(x) = 0 &x ∈ A] and w otherwise. Of course w <L s.
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The Construction:

The accessible nodes at stage t: The sequence δt of length ≤ t
of nodes accessible at stage t is defined by induction beginning with
∅ which is always accessible. Say α ⊆ δt, |α| < t. We let ue(y, t) =
max{φe(B; z)[t]|z ≤ y}.
|α| = 3e: αˆi ⊆ δt if `(α, t) > `(α, r) for every r < t such that α ⊂ δr.
Otherwise αˆr ⊆ δt where r is the last stage at which αˆi ⊆ δ or 0 if
there is no such stage.
|α| = 3e+ 1: If δt(3e) 6= i, δt(3e+ 1) = 0. Otherwise we go through the
following steps to define δt(3e+ 1):

1. Let r < t be the last stage at which α ⊆ δr. (If there is no such r,
δt(3e+1) = 0.) If we opened an Re,n gap for α at r we now close it,
set δt(3e+ 1) = gn and terminate the definition of δt. Otherwise,

2. We find the least n for which
(a) we can open an Re,n gap (for α) at t, i.e.

(i) Re,n is not satisfied for p = pα which is given by pα(r) =
(µs > r)(α ⊆ δs and we closed an Re,n gap at s) and

(ii) ∃x ∈Wn,t −Wn,r such that ue(yn, t) < x; or
(b) domψα,n,r = dom ψα,n,t = yn and ue(yn, t) > ue(yn, v) for all

v < t with α ⊆ δv.
Now, if we can open a gap for Re,n (2a), then we set δt(3e+1) =

gn, and ψα,n(yn) = Φe,s(Bs; yn). (Note that we will automatically
have yn < `(α, t) as we only extend domψα,n at stages at which
`(α, s) is above the value it had when we last extended domψα,n).
If we cannot open a gap but satisfy (2b) then we set δt(3e+1) = dn
and continue.

3. If there is no n as required in (2) we terminate the definition of δt.

|α| = 3e + 2: αˆs ⊆ δt if ∃x ∈ Qα[ Φe,t(x) = 0 &x ∈ At]. Otherwise
αˆw ⊆ δt.

The action at stage t: Find the shortest α ⊆ δt such that δt(|α|) =
w and ∃x ∈ Qα[Φe,t(x) = 0 & x > r for every r < t at which δr <L α]
and put the least such x into A. If there is no such α go on to the next
stage. This finishes the construction.

The Verifications:

The basic situation here is a bit more complicated than in many usual
tree arguments. As we might go through gn (and dn) successively there
needn’t be a leftmost infinite path through the tree that is accessible
infinitely often. In this case, however, we show that B ∈ PS.
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Lemma 3.3. If B /∈ PS then there is an infinite leftmost path f . (We
take this assertion as shorthand for the existence, for each n, of an α
of length n which is accessible infinitely often such that no β to the left
of α is accessible infinitely often. We denote this property by α ⊆ f .)

Proof. We proceed by induction on n = |α|. If |α| = 3e or 3e+2 then if
α ⊂ δt for infinitely many t then αˆx ⊂ δt for some outcome x and so for
a leftmost one as there are only finitely many outcomes. If |α| = 3e+ 1
and some immediate successor x is accessible infinitely often then there
is again a leftmost one as there are only finitely many outcomes to the
left of x. If no successor node is accessible infinitely often, we claim that
pα is a witness to B being of promptly simple degree. If not let Wn be
the least counterexample. Note first that α(3e) = i for otherwise we
would eventually have αˆ0 ⊆ δt for all t with α ⊂ δt. Thus `(α, t)→∞.
As no successor gm or dm is traversed infinitely often we may choose
t0 such that ∀t ≥ t0(αˆgm " δt &αˆdm " δt) for m ≤ n. As we never
again go through αˆgn, ψa,n,t is fixed, say as ψα,n, for t ≥ t0 and we
can set yn = domψα,n. As we never again go through αˆdn, ue(yn, t) is
bounded for t with α ⊆ δt say by u. As Wn is infinite we eventually get
a t > t0 with an x ∈Wn,at t and x > u. Now at the next stage s > t at
which α ⊂ δs we would, by the definition of being able to open an Re,n
gap, have αˆgn ⊆ δt unless Re,n were already satisfied for our desired
contradiction. 2

We now assume that f is the leftmost infinite path.

Lemma 3.4. Each Pe is satisfied.

Proof. Say |α| = 3e+ 2 and α ⊂ f . If αˆs ⊂ f we are done so suppose
αˆw ⊂ f but Φe = A. Thus Qα ∩ A = ∅ and there is an x ∈ Qα with
x > t for every t with δt <L α and an s with Φe,s(x) = 0 for which
α ⊂ δs. We would now, by our action at s, put such an x into A unless
Pe were already satisfied and so αˆs ⊂ f after all. 2

Note now that if α ⊂ f and αˆdn ⊂ f then Φe(B) is not total and so
to finish the proof of the theorem it suffices to prove the following:

Lemma 3.5. If Φe(A) = Φe(B) = he, |α| = 3e+2 and αˆgn ⊂ f then
ψα,n = he.

Proof. Let t0 be such that ∀t > t0(δt 6<L αˆgn). We argue by induction
from one stage t > t0 at which αˆgn ⊆ δt and at which we open an Re,n
gap to the next such t′ that if ψα,n,t(y) ↓ then for every r, t ≤ r ≤ t′

ψα,n,r(y) = Φe,r(Ar; y) or Φe,r(Br; y).
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Now at the first stage t at which ψα,n,t(y) ↓ its value is Φe,t(Bt; y) by
definition. As we never satisfy Re,n, B cannot change on ue(y, t) until
the next stage r at which αˆgn ⊆ δr at which we close the Re,n gap.
At this stage Φe,r(Ar; y) = Φe,r(Br; y) = Φe,t(Bt; y) and no element
enters A. (The part to notice here is that δr = αˆgn as its definition
is terminated at this level. Thus no Pe′ for e′ ≥ e can put an element
into A. On the other hand no Pe′ for e′ < e can put one in since
that would cause a shift in outcome for P ′e from w to s contradicting
α ⊂ f . From now until t′, however, we are never to the left of αˆgn as
t > t0 and so no elements can be put into A below r > ue(y, t) until
t′. Thus Φe,t′(At′ ; y) = Φe,r(Ar; y) = Φe,t(At; y). We now simply note
that if we define ψα,n(y′) at t′ then y′ > y, ue(y′) > ue(y) and so we
can continue the induction by seeing that again B cannot change on
ue(y′, t′) > ue(y, t) until we next close the Re,n gap. 2

This completes the proof of Theorem 3.2 (in ordinary mathematics).
As an aside we point out that this proof shows that the definition of
promptly simple degree is independent of both the r.e. member of the
degree considered and its enumeration. All we have to do now is check
that we did not need anything more than IΣ4. The most complicated
use of induction is the proof of Lemma 3.3. The statement being proved
by induction on n is that there is an α of length n which is accessible
infinitely often and such that there is a bound on the stages at which
any (α � i)ˆx is accessible for i < n and x <L α(i). This sentence is
Σ3 and so our induction can be carried out in the model N of IΣ4.
Everything else used in the proof is easily seen to be simpler yet.

Theorem 3.6. (Maass, Shore and Stob [6]) For every promptly sim-
ple d there is a low promptly simple c ≤T d.

Proof. This is simply the special case of Theorem 1.5 of [6] with A = B.
The proof is routine (once one knows about prompt permitting) and
clearly needs far less induction than Σ4. 2

Our next theorem was originally stated as Theorem 2.4.

Theorem 3.7. For every promptly simple c there is an effectively
generated recursive model M isomorphic to N with all its parameters
below c.

For this Theorem and Theorem 3.9, we use the notation of [9], as-
sume the reader is familiar with its constructions and verifications, and
describe only the changes needed to get the construction satisfying The-
orems 3.7 and 3.9. Our starting point for Theorem 3.7 is Theorem 6.1
of [9] to which we must add requirements (8 and 9 below) to take care of
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the only new aspect of our theorem, namely the addition of the second
partial order coded by l′ that coincides with ≤M on M. The following
Theorem is then the technical result needed to verify Theorem 3.7.

Theorem 3.8. Given any 0 <T A ≤T U with U promptly simple,
and given recursive partial ordering P = 〈ω,�〉 with a specified infinite
recursive set H = {hi|i ∈ ω} of minimal elements, there are r.e. sets
E0, E1, F0, F1, B, P,Q,R and Gi (for i ∈ ω) with R = ⊕Gi, F0 = ⊕Gh2i

,

F1 = ⊕Gh2i+1
and B = G

[0]
i (for each i ∈ ω) such that P,Q ≤T U , all

the other sets constructed are recursive in A and
1. (T ) : Gi ⊕ P ≥T Q.
2. (D) : Gi �T Gj for i 6= j.
3. (M) : If B is recursive in an r.e. W which is recursive in R and
W ⊕ P ≥T Q, then there is a j ∈ ω such that Gj ≤T W .

4. (K) : R⊕ P is low.
5. (O) : i � j ⇒ Gi ⊕ L ≥T Gj.
6. (N) : i � j ⇒ Gi ⊕ L �T Gj.
7. (Y ) : For each i ∈ ω, deg (Gh2i

⊕ E1)∧deg(F1) = deg(Gh2i+1
) and

deg
(
Gh2i+1

⊕ E0

)
∧ deg(F0) = deg(Gh2i+2

).
8. (O′) : i ≥ j ⇒ Ghi ⊕ L′ ≥T Ghj .
9. (N ′) : i � j ⇒ Ghi ⊕ L′ �T Ghj .

For the purposes of Theorem 3.7, we can take A = U ∈ c. Also note
that our coding of a model M of arithmetic in the partial order P makes
the domain of M the minimal elements of P which we take to be H
listed in the order of M.

As a first approximation, requirements O′ and N ′ should be treated
exactly as were O and N . The plan for O′ then would be that whenever
a number x enters some Ghj it must also be put either into L′ or into
every Ghk with k > j. Similarly, requirements N ′ would be treated
exactly as are the ones for N . If we were constructing a coded model
via S0 (and so without the lattice structure required by S1 and effective
generation), we could do this without any difficulty. One only needs to
check that no new conflicts are introduced. For O and O′, we consider
any x targeted for some G. It is a follower of some requirement Di,j ,
Ni,j,e or N ′i,j,e and so we must preserve the corresponding computation
from Gi, Gi ⊕ L or Ghi ⊕ L′, respectively. In the first case, when we
put x into Gj we can put x into L and L′ as well without injuring the
computation from Gi. In the second case, when we put x into Gj we can
put x into L′ and every Gk with k � j without injuring the computation
from Gi ⊕ L since i � j. In the third case, when we put x into Ghj
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we can put it into L and every Ghk for k > j without injuring the
computation from Ghi ⊕ L′ as i � j. Thus no essential changes to the
basic constructions in [9] through §4.4 would be necessary to construct,
for example, a recursive coded model isomorphic to N via our scheme
S0 by omitting requirements Y in Theorem 3.8 but including O′ and
N ′.

The new problem in proving Theorem 3.8 comes from the need to
satisfy the infima requirements Y in the associated pinball construction.
This construction does not allow us to put numbers simultaneously into
distinct Ghj and Ghk (as they appear as components of both sides of the
computations at single gates). (There is no problem putting numbers
simultaneously into any Gj and all Gi with i � j as the only Gk involved
in the infima requirements are ones minimal with respect to�.) To solve
this problem, we first change the nature of the coding procedure for O′k,j
to compute Ghj from Ghk ⊕ L′. To decide if x ∈ Ghj we ask if x ∈ Ghk
or x ∈ L′. If not, x /∈ Ghj . If so, we find the stage s at which it entered.
If x entered at s we will set up a sequence of coding markers targeted
for L′ in the standard fashion. We appoint a new large one t > s at s
and may change it to a larger number when it or some smaller number
enters L′. Eventually, either x enters Ghj (perhaps already at s) or we
appoint a marker targeted for L′ which never enters L′. The full solution
to our problem also involves weakening even this coding procedure for
requirements O′ so that they work for all but finitely many x’s. We also
have to add an appropriate sequence of balls to the entourage for any
x which is a follower of some N ′i,j,e.

As in the basic construction without the infima requirements, D and
N requirements only need to preserve computations from Gi and L.
When one of their followers x enters Ghj we can simply put x into L′ to
maintain the codings for all O′ requirements. (We can also put it into
Gk for all k � hj as well to maintain the O codings.) Similarly, any ball
x appointed as a trace in the pinball construction is too large to injure
the computation realizing the follower to whose entourage it belongs
and so when it enters its target Ghk we can put it into both L and L′ to
satisfy all the codings requirements for O and O′. Thus our only worries
are for followers x of some N ′i,j,e requirement that we wish to target for
Ghj . We place x in the hole for this requirement which we assume is
the nth requirement on our master list of all the requirements. Our
plan is to also put in the hole balls labelled 〈x, i, j, e, k〉, say, targeted
for Ghk for j < k ≤ n. When the ball 〈x, i, j, e, k〉 leaves the permitting
bin of the pinball machine (i.e. it first reaches the bin and then x is
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permitted by A) we put x into Ghk . Of course, each such ball is provided
with an appropriate sequence of traces at all stages before it leaves the
machine. The balls 〈x, i, j, e, k〉 (with their traces) are arranged in the
hole in order (of k) so that the first one to roll out and stop at a gate
is 〈x, i, j, e, n〉 (preceded, as usual, by its sequence of traces).

The appointment of traces and movement of balls down the pinball
machine is now as in [9]. When the first of these new balls in x’s
entourage, 〈x, i, j, e, n〉, leaves the permitting bin, say at stage sn, we
put x into Ghn but not into any other Ghk . We also appoint tn > sn
as the coding marker for the reduction associated with O′n,k at x for
k < n. This marker is targeted for L′. This action does not injure the
computation that realized x for N ′i,j,e as i < j ≤ n. It does, however,
violate our coding requirements O′k,n for k > n but such violations will
happen only finitely often. When the next ball 〈x, i, j, e, n − 1〉 leaves
the permitting bin, say at stage sn−1, we put x into Ghn−1 and so violate
the coding requirements O′k,n−1 for k > n but for k = n we can put
tn into L′ (and so make the reduction described above for computing
Ghn−1 from Ghn correct at x) without injuring the computation that
realized x for N ′i,j,e. Of course, we now redefine the coding markers for x
targeted for L′ for O′n,k and O′n−1,k for k < n−1 to be tn−1 > sn−1. We
continue on with this procedure putting x into each Ghk in turn until we
get to put x into Ghj as desired. At this point we injure O′k,j for k > n

but can put the large marker tj+1 for each O′k,j for j < k ≤ n into L′

and so make these reductions correct. Thus we see that the reduction
described above for computing an arbitrary Ghj from Ghm ⊕ L′ with
m > j is violated only when we act for a requirement N ′ which appears
on our list of requirements before position m. As these requirements
will act only finitely often, we will satisfy the requirement O′m,j .

The other changes needed in the construction are minor and straight-
forward given our plans for satisfying the O′ requirements. For example,
we placeN ′i,j,e immediately afterNi,j,e in our master list of requirements.
Suppose it is in position n. The function giving the number of permis-
sions need to get a particular follower x into Ghj is then (n − j + 1)
times that for Ni,j,e (g(i, j, e)) as we must get all the balls 〈x, i, j, e, k〉
for j < k ≤ n as well as x through the permitting bin. The restraint
imposed to preserve the suitability of the follower x of N ′i,j,e in the
Slaman-Woodin part of the construction is now calculated so as to also
preserve the suitability of x entering Ghk for j ≤ k ≤ n. This then con-
cludes our description of the (changes in the) construction (from that
for Theorem 6.1 of [9]).
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We must now say a word or two about the amount of induction needed
for the verifications. The global structure of the Slaman-Woodin con-
struction (requirements T,D,M and K) has finitary action by all the
requirements except M and so the induction statement of the outcomes
for these requirements is Σ2. The M requirements are like the minimal
pair requirements in Ch. IX of [13]. The essential point here is that for
each Mi there are either finitely many expansionary stages or infinitely
many. In the first case, the action by M is finitary. In the second, we ar-
gue that the restraint is eventually constant on the expansionary stages.
In either case, the positive action is finitary. Thus the statements needed
here are clearly no worse than Σ3. We also need to know that the sub-
sets of any initial segment of M requirements that fall into each case
is N -finite and then that the total restraint is bounded. Again IΣ3 is
sufficient. Except for the interactions with the pinball machine require-
ments N and N ′ are like D. The coding requirements can be ignored
at this stage as they impose no restraint and act whenever they want
to. So all that remains at the global level is the pinball construction.
Here the situation is again like the minimal pair argument. We must
know the subset of gates within any initial segment that open infinitely
often. Then we must argue that there is a bound on the stages at which
those (in any initial segment) that are permanently occupied have been
occupied by their permanent residents and that after that stage every
ball that reaches the beginning of this sequence of gates gets through
to the end. Again IΣ3 clearly suffices. The inductive assumptions for
the diagonalization and preservation requirements are again just that
the outcomes are finitary. This brings us to the consideration of the
inductive steps of the argument. For the basic construction, all except
the M requirements are essentially immediate. The arguments for M
involve a few Lemmas (4.2–4.6 of [9]) which at worst are of the form
that if something happens infinitely often (e.g. some functional ∆i,j be-
ing constructed gives the wrong answer at infinitely many x) then there
are infinitely many x with some additional property. These are proved
by induction on n by showing that under the assumed hypotheses there
are at least n many x’s as required. As the required properties are Π0

1,
these inductions are Σ2. The other type of inductions used are on j as
it is shown that each ∆i,j (j ≤ ni) are total. This looks like a Π3 induc-
tion as the functionals ∆i,j are computed relative to arbitrary r.e. sets
We. Although this would not be a problem in IΣ4, we note that as all
the sets We considered are below the set R that we are constructing to
be low, we can actually convert this into a Π2 induction.
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With the pinball construction added in, the difficult part of the proof
is actually showing that the action for the D,N and N ′ requirements
is finitary. The inductive assumptions about the actions of the gates
described above, however, are sufficient along with IΣ3. The argu-
ment for the success of infima requirements is now the standard pinball
construction argument that, recursively in the infimum, finds a certain
type of stage at which we have a computation at a given x and then
argues by induction that the computation remains correct (on one side
or the other of the pair being considered) at every later stage. Once
again the amount of induction needed is small. The arguments for the
success of the finitary requirements are straightforward given the induc-
tive assumptions about the actions of the requirements and involve just
standard (and prompt) permitting arguments that show that if we get
infinitely many candidates we eventually put one in (at an expansionary
stage). The arguments for the success of the reductions constructed is
a simple induction showing that they are correct at every stage (with
at most finitely many exceptions for each one which are bounded by
the actions of higher priority requirements). Thus the verifications for
Theorem 3.8 can be carried out in IΣ3.

The following theorem combines Lemmas 2.6 and 2.7.

Theorem 3.9. For every low promptly simple degree c and degrees
q0, . . . ,qm−1, r0, r1 ≤T c there is a recursive model M coded below c
and degrees t,u and v also below c such that

(i) M is recursively isomorphic to N ;
(ii) For each i < m, (i)M ≤T qi;
(iii) For i, j < m, if qi �T qj then (i)M

�T qj; and
(iv) For all x ≥M mM, x � r0, r1.

(v) For any even number h in M, h∨t is above h+, but not above any
other integer in M (except, of course, h). (In particular, there is
a unique odd (respectively, even) number from M below h ∨ t.)

(vi) The join of any nontrivial distinct triple of numbers in M with v
computes u, but no join of any pair with v computes u.

(vii) For any even number h ∈M, h ∨ t ∨ v � u.

Our starting point here is Theorem 5.1 of [9] to which we add require-
ments to take care of the new aspects of our theorem: (9) and (10) for
l′ to code the second partial order that coincides with ≤M on M, and
(11)–(15) for t, u and v as described above. The following Theorem is
then the technical result needed to verify Theorem 3.9. Note that we
still have a coding of a model M of arithmetic in the partial order P
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that makes the domain of M the minimal elements of P which we take
below to be H listed in the order of M. We may assume that all the
sets Ui and Vi,j of Theorem 5.1 of [9] are uniformly below C ∈ c (and so
uniformly low as in [9]) but we must also add in ordinary and prompt
permitting by C to get all the sets constructed recursive in C.

Theorem 3.10. Suppose C ∈ c is low and promptly simple; P =
〈ω,�〉 is a recursive partial order; H is a recursive set of minimal ele-
ments of P; 〈Ui, Vi,j〉i∈H is a uniformly r.e. array of pairs of sets such
that the Ui and Vi,j are uniformly recursive in C (and so we can re-
cursively in i, j calculate an index for computing V ′i,j from ∅′); and,
for every i ∈ H, Ui �T Vi,j (and so in particular Ui > 0 for i ∈ H).
Then there are r.e. sets L,L′, P,Q,R, T, U, V and Gi (for i ∈ ω) with
R = ⊕Gi all uniformly recursive in C such that

1. (T ) : Gi ⊕ P ≥T Q.
2. (D) : Gi �T Gj for i 6= j.
3. (M) : If W is r.e., recursive in R and W ⊕ P ≥T Q, then there is

a j ∈ ω such that Gj ≤T W .
4. (K) : R⊕ P is low.
5. (O) : i � j ⇒ Gi ⊕ L ≥T Gj.
6. (N) : i � j ⇒ Gi ⊕ L �T Gj.
7. (Z) : Gi �T Vi,j for i ∈ H.
8. (Q) : Gi ≤T Ui for i ∈ H.
9. (O1) : i ≥ j ⇒ Ghi ⊕ L′ ≥T Ghj .

10. (N1) : i � j ⇒ Ghi ⊕ L′T �T Ghj .
11. (O2) : Gh2j

⊕ T ≥T Gh2j+1
.

12. (N2) : Gh2i
⊕ T �T Ghj for j 6= 2i+ 1.

13. (O3) : Ghi ⊕Ghj ⊕Ghk ⊕ V ≥T U for i, j, k all distinct.
14. (N3) : Ghi ⊕Ghj ⊕ V �T U .
15. (N4) : Gh2i

⊕ T ⊕ V �T U .

Once again we have the problem of not being able to put numbers
simultaneously into Ghi and Ghj as they have to be permitted by Uhi
and Uhj , respectively. Thus we need generalized reduction procedures
for the O1, O2 and O3 type requirements like those used for O′ in
Theorem 3.8. We include the rules for the O requirements in our list
as well because of their interactions with other requirements. Again
these rules will be satisfied except for finitely many numbers x. Note
that the only numbers put into any of the sets Gi or U are followers
of various requirements. Thus we restrict our attention in computing
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reductions to such numbers (which form an infinite coinfinite recursive
set by convention).

• (O) : As in [9], for i � j, to decide if x ∈ Gj , see if x ∈ L or x ∈
Gi. If not, x /∈ Gj . If so, let s be the stage at which x L or Gi.
At s we appointed a new large number ts targeted for L and we
proceed until either x enters Gj or the sequence of markers that
we appointed beginning with ts comes to a marker that is not in
L. (A new marker t′ can be appointed in this sequence only when
the previous one t enters L).
• (O1) : As in Theorem 3.8, for i > j, to decide if x ∈ Ghj , see if
x ∈ L′ or x ∈ Ghi . If not, x /∈ Ghj . If so, let s be the stage at
which x entered. At s we appointed a new large number ts targeted
for L′ and we proceed until either x enters Ghj or the sequence of
markers that we appointed beginning with ts comes to a marker
that is not in L′.
• (O2) : For any j ∈ ω, to decide if x ∈ Gh2j+1

, see if x ∈ T or
x ∈ Gh2j

. If not, x /∈ Gh2j+1
. If so, let s be the stage at which

x entered. At s we appointed a new large number ts targeted for
T and we proceed until either x enters Gh2j+1

or the sequence of
markers that we appointed beginning with ts comes to a marker
that is not in T .
• (O3) : For any distinct i, j and k, to decide if x ∈ U , see if x ∈ V

or x ∈ Ghm for m ∈ {i, j, k}. If not x /∈ U . If so, let s be the
stage at which x entered. At s we appointed a new large number
ts targeted for V and we proceed until either x enters U or the
sequence of markers that we appointed beginning with ts comes to
a marker that is not in T .

Now we list the diagonalization requirements and explain how they
can be satisfied by putting numbers into the target sets (but at most
one Ghi at a time) while preserving the sets needed in the computations
producing the desired diagonalizations and still obeying all the rules for
the above reductions.

• (D) : We can put x into Gj (when permitted by the associated
Uj if j ∈ H and by C otherwise) and preserve Gi (for i 6= j) and
satisfy all the O type requirements by putting x into L, L′ and T .
• (Z) : We can put x into Gi (when permitted by the associated Ui

if i ∈ H and by C otherwise) and also put it into L, L′ and T .
• (N) : When we want to put x into Gj (when permitted by the

associated Uj if j ∈ H and by C otherwise) and preserve Gi ⊕ L
with i � j, we put x into Gk for k � j, L′ and T . (No permissions



INTERPRETING ARITHMETIC IN THE R.E. DEGREES UNDER Σ4-INDUCTION 27

are needed for Gk with k /∈ H and if k � j then k /∈ H as the
elements of H are all minimal elements with respect to �.)
• (N1) : When we want to put x into Ghj and preserve Ghi⊕L′ with
i � j, we first try to put x into each Ghk for each k with j < k ≤ n
in reverse order where n is the index of the requirements we are
considering on our master list. So our first step is to put x into
Ghn , L and T when permitted by Uhn at sn and choose a new large
marker tn targeted for L′, L and T . We then proceed in turn to
try to put x into each Ghk for j < k < n when permitted by Uhk .
When we get to do so at stage sk we put tk+1 into L′, L and T and
choose a new large marker tk. Finally, when we have put x into
Ghj+1

we wait for permission from Uj to put x into Ghj .When we
get this permission we put x into Ghj and tj+1 into L′, L and T .
• (N2) : When we want to put x into Ghj and preserve Ghi⊕T with
j 6= 2i+1, we first try to put x into Gh2k

for j−1 ≤ 2k ≤ n (again
n is the number of the requirement we are considering) in reverse
order and appoint markers targeted for T , L′ and L. We begin with
the largest such k. When permitted by Uh2k

we put x into Gh2k
, L

and L′ and appoint a marker t2k targeted for T , L and L′. When
we are permitted to put x into Gh2k+1

by Uh2k+1
we put it in and t2k

into L, L′ and T and appoint t2k−1. We then turn to 2(k− 1) and
repeat the process getting (if permitted) x first into Gh2(k−1)

and
t2k−1 into L, L′ and T while appointing t2(k−1) and then getting
x into Gh2k−1

, t2(k−1) into L, L′ and T while appointing t2(k−2).
Finally, if we get all the required permissions, we will put x into
Ghj and the last marker appointed in this sequence into T , L and
L′.
• (N3) : When we want to put x into U and preserve Ghi , Ghj and
V , we first try to put x into each Ghk for each k 6= i, j with k ≤ n in
reverse order (n as before). We proceed as for N1 but first putting
x into Ghn and L, L′ and T and appointing a marker tn targeted
for V as well as L, L′ and T . At each successive step we put x into
Ghk for k 6= i, j in turn in reverse order when permitted by Uhkand
the last marker appointed into L, L′, T and V and appoint a new
marker until we get x into the least k ≤ n not equal to i or j at
which point we also put it into U (and the final marker into L, L′,
T and V ).
• (N4) : When we want to put x into U and preserve Gh2i

, T and
V note that we also need to preserve Gh2i+1

(for O2). Our plan is
to put x into all Ghk for k ≤ n and k 6= 2i, 2i+ 1 and appropriate
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markers into various sets. Our order is like that for N2. We begin
with the largest k such that 2k ≤ n and k 6= i (without loss of
generality n ≥ 2). When permitted by U2k we put x into Gh2k

, L
and L′ and appoint a marker t2k. When x is permitted by U2k+1

we put x into Gh2k+1
, t2k into L, L′, T and V and appoint a new

marker t2k+1. We then move on to 2(k − 1). Note that we skip 2i
and 2i+ 1 moving instead to 2i− 2 and 2i− 1 when we reach that
point. At the end we put x into U and the last marker into L, L′,
T and V .

It is clear that these procedures preserve the required sets for each
diagonalization requirement. It is slightly complicated but reasonably
straightforward to check that they also make all the desired reductions
correct. For example, consider numbers put into U by action for some
requirement of type N3 and the reduction procedure for O3

i,j,k. Once
all action by requirements of priority higher than (i.e. occurring on the
master list before) max{i, j, k} have finished their positive actions, any
number x put into U by an N3 requirement for which it is a follower
must first enter one of Ghi , Ghj or Ghk since it enters every Ghm for m ≤
max{i, j, k} other than the two being preserved for the computation
realizing the N3 requirement. Once it enters one Ghn for n ∈ {i, j, k},
we have a sequence of markers appointed targeted for V by construction.
As required by the reduction procedure, x enters U only if all of these
markers enter V . Similarly, if x is a follower of some N4 requirement
of priority less than max{i, j, k}, it must enter every Ghm for m ≤
max{i, j, k} except for the two being preserved for the computation
needed by N4 (i.e. 2n and 2n+ 1 if the requirement we are considering
is N4

n). As another example consider O2
j and an x which is a follower

of some diagonalization requirement of priority less than 2j + 1. We
argue by cases according to the type of requirement for which x is a
follower. If x follows a requirement of type D, Z or N the argument is
trivial since if x enters any set it enters its target for the requirement
and at the same stage enters T . For the other requirements x may enter
sets not mentioned in the requirement it follows but for requirements
of type N1 and N3 once it enters any set, it enters T and a sequence of
followers is set up as required. For N2 and N4 type requirements each
time x enters a Ghn we appoint a marker targeted for T and following
the markers until either x enters the set associated with the N2 or N4

requirement completely determines which sets x enters. The other cases
are similar.
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Thus no further essential changes to the basic constructions in [9]
for Theorem 5.1 are necessary. (As before the P restraint associated
with any diagonalization requirement witness (targeted for Gj) is the
restraint needed to maintain suitability for the witness to enter all of
the sets Gi it might yet have to enter as the above procedure is carried
out. The prompt permitting works for the M requirements as in Theo-
rem 3.8 to get P,Q ≤T C. Otherwise, we see that every number going
into any other set is associated with some particular diagonalization
requirements as a follower or marker. We can recursively tell which re-
quirement any given number is associated with by the usual conventions
of assigning witnesses and markers for the action of each requirement
form some fixed infinite recursive set. Once the requirement is identi-
fied all the action for it putting numbers into any set is controlled by
permitting the follower by members of some fixed finite set of Ui’s and
C and so can be entirely determined recursively in C. Other aspects of
the construction and verification are either like those for Theorem 3.8
or standard such as multiple permitting of a single number x by a finite
sequence of nonrecursive sets Ui.

Finally, we conclude with a word about the verifications from the
viewpoint of the amount of induction needed. The global structure of
the verification is like that of Theorem 3.8. The diagonalization re-
quirements are finitary and the others are like those for the minimal
pair argument. Thus the global inductions are at worst IΣ3. The ar-
guments for the inductive steps for each requirement are simpler. One
new item is the use of guessing to approximate some computation from
a low oracle using the recursion theorem as well. Another, mentioned
above, is the requirements needing successive permissions form a se-
quence of finite nonrecursive sets to succeed. Neither of these present
any difficulties. Thus, once again IΣ3 would be sufficient to verify that
the constructions succeed.
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