
Splitting Theorems and the Jump Operator

R. G. Downey∗

Department of Mathematics
Victoria University of Wellington

P. O. Box 600
Wellington

New Zealand

Richard A. Shore§

Department of Mathematics
White Hall

Cornell University
Ithaca NY 14853

USA

Abstract

We investigate the relationship of (jumps of) the degrees of split-
tings of a computably enumerable set and the degree of the set. We
prove that there is a high computably enumerable set whose only
proper splittings are low2.

∗Research partially supported by the U.S. ARO through ACSyAM at the Mathematical
Sciences Institute of Cornell University Contract DAAL03-91-C-0027, the IGC of Victoria
University and the Marsden Fund for Basic Science under grant VIC-509.
§Research partially supported by NSF Grant DMS-9503503 and the U.S. ARO through

ACSyAM at the Mathematical Sciences Institute of Cornell University Contract DAAL03-
91-C-0027.

1

1 Introduction

All sets and degrees will be computably enumerable unless otherwise stated.
We say that A1 and A2 split A, written A = A1 t A2, if A1 ∪ A2 = A
and A1 ∩ A2 = ∅. Such a splitting is called proper if both A1 and A2 are
noncomputable. Ever since Friedberg [6] proved that any noncomputable
set has a proper splitting, splitting theorems have been intimately related
to the development of classical computability theory. We refer the reader to
Downey and Stob [5] for a survey.

The present paper is concerned with a question of Remmel who asked
if a high set could always be properly split into two sets one of which is
high. This question is related to earlier work of Ladner [8] on mitotic sets
(see also Downey-Slaman [4]), and later work of Lerman and Remmel [9] and
Ambos-Spies and Fejer [2] on the universal splitting property. Recall that a
set A is called mitotic if it has a splitting A1tA2 = A with A1 ≡T A2 ≡T A,
and A has the universal splitting property if for all C ≤T A, there is a
splitting A1tA2 = A with A1 ≡T C. Ladner proved that not all computably
enumerable sets are mitotic, and, indeed, 0′ contains a nonmitotic set.

Ambos-Spies [1] proved that mitoticity could fail quite dramatically by
constructing a complete A such that for any splitting A1 t A2 = A, one
of A1 or A2 is low. On the other hand, Ambos-Spies’s construction could
not be used to solve Remmel’s question since his set A, being complete, is
of promptly simple degree while Downey and Stob [5] proved that if A has
promptly simple degree then there is a splitting A1 t A2 = A such that
A1 ≡T A. Ingrassia and Lempp [7] provided a counterexample to a stronger
version of Remmel’s question by constructing a computably enumerable set
A such that for all nontrivial splittings A1 t A2 = A, A′1, A

′
2 <T A

′.

The goal of the present paper is to prove the following theorem.

Theorem 1.1 There is a high computably enumerable set A such that if
A1 t A2 = A is a proper splitting of A, then both A1 and A2 are low2.

Corollary 1.2 There is a high computably enumerable set A such that for

2

all n ≥ 1, if A1 tA2 is a proper splitting of A then A
(n)
i <T A

(n) for i = 1, 2.

We remark that Cooper, Lachlan and Slaman have claimed (personal
communication) that for all nonlow computably enumerable sets A, there is
a proper splitting A1 t A2 = A with A1 nonlow. Given this result, ours is
the strongest possible negative answer to Remmel’s question. Moreover, our
result together with that of Cooper et. al. completely answers all possible
versions of Remmel’s question in terms of the jump classes.

Our notation is standard and follows Soare [11]. As usual all computa-
tions etc. are bounded by the stage number and uses are monotone in both
the argument and stage number. A number in brackets at the end of an
expression such as ΦWe

i (y) [s] indicates that all computations and approxi-
mations to sets are to be understood as defined at stage s.

2 The Requirements and Construction

2.1 The Requirements and Intuition

We build a set A and a reduction Γ in stages to satisfy the following require-
ments:

Re : lim
s

ΓA(e, s) = Tot(e).

Ne : We t Ve = A→ (We low2. ∨ .Ve ≡ ∅).

Here of course, Tot denotes the Π0
2-complete index set {e : ϕe total}. We

decompose the negative requirements Ne into further subrequirements of the
form

Ne,i : We t Ve = A→ (Ve ≡T ∅. ∨ .[`(τ, s)→∞→ ΦWe
i is total]).

Here `(τ, s) denotes the length of convergence

max{x : ∀y ≤ x(We,s t Ve,s = As � y ∧ ΦWe
i (y) ↓ [s])}

3

measured at the node τ on the true path devoted to Ne,i. Note that this will
make We low2 if Ve is noncomputable since, as usual for an infinite injury
argument, the true path, TP , is recursive in 0′′ and hence we can answer the
question “Is ΦWe

i total?” recursively in 0′′.

The priority tree will have 3 types of nodes :

• β nodes for the sake of Re with outcomes ∞ <L f .

• τ nodes for the sake of Ne,i with outcomes ∞ <L f .

• α nodes living below τ ̂∞ also devoted to Ne,i via subrequirements
Ne,i,j. Such an α will be trying to preserve a computation of the form
ΦWe
i (j) or to demonstrate that Ve ≡T ∅. These nodes have outcomes

s <L g. The unique τ node associated with α will be denoted by τ(α).

The action of a β node is as usual. We must build a ∆A
2 approximation

to Tot via Γ. We may as well assume that ϕe(x) ↑ [0] for all x. At stage 0,
we will define γA(e, x)[0] = 〈e, x, 0〉. As with the standard thickness lemma,
the basic idea is that when we see ϕe(y) ↓ for all y ≤ x, we will enumerate
some g ≤ γ(e, x) into A[s] allowing us to redefine ΓA(e, x) = 1. This will be
the only reason we will change the value of ΓA(e, x)[s]. (But not the only
reason we might change γ(e, x)[s].) If we succeed for almost all x then

ϕe is total iff lim
x

ΓA(e, x) = 1.

Thus A will be high as ∅′′ will be ∆A
2 . In the construction to follow, γ(e, x)[s]

can also be changed for the sake of the Nf,j,k of lower priority (which are
defined precisely below). However, this action will be controlled by τ(α)),
and we will certainly ensure that lims γ(e, x)[s] exists.

Below the infinite outcome of a τ node there will be a tree of α nodes
each devoted to some k, that is some subrequirement Ne,i,k of Ne,i. These
nodes will be devoted to requirements of the form

Ve ≡T ∅ ∨ ΦWe
i (k) ↓ .

4

The infinite outcome for an α node is the g outcome which corresponds to
a global win for τ(α) in the sense that it will witness the fact that Ve(α) is
computable. Naturally, below the infinite outcome of an α node we will have
no nodes devoted to Ne.

Associated with α will be a marker m(α, s) which represents an attempt
to compute an initial segment of Ve based on the assumption that (α is on TP
and) we fail to force convergence of ΦWe

i (k). There are two types of actions
associated with α corresponding to the two types of positive requirements it
must deal with.

A typical situation is the following. We have a node τ devoted to Ne,i.
Naturally, it is able to guess at the behavior of higher priority Rf nodes, and
will only use correspondingly τ -correct computations. However, if `(τ, s) →
∞ we need to ensure either that We is low2 or that Ve is computable. Thus
we will need to deal with various β-nodes between τ ̂∞ and α as well as β
nodes below α. So suppose that we have

τ ̂∞ ⊂ β1̂∞ ⊂ β2̂f ⊂ β3̂∞ ⊂ α.

The way that α deals with these β-nodes between it and τ is the following.
We reach τ (i. e. s is a τ stage) and it is expansionary with `(τ, s) > k. We
also assume that `(τ, s) > m(α, s) + 1 via τ -correct computations. What α
would now like to do is to preserve its computation from We,

ΦWe
i (k) ↓ [s].

But it cannot really stop the βi from putting their numbers (which may well
be below the use ϕi(k)[s]) into A. What α tries to do is to lift the relevant βi-
uses above ϕi(k)[s], or to increase m(α, s) thereby increasing the likelihood
that Ve is computable.

Initially, m(α, 0) = k. Now as above we reach τ and each of the βi with
τ ̂∞ ⊆ βî∞ ⊆ α (in our case i = 1, 3) indicate that they desire to change
ΓA(e(βi), x(βi))[s] for some least x(βi). (This is the main idea.) What α
does is

• lift m(α, s+ 1) = m(α, s) + 1,

5

• request that a single number z ≤ γ(e(βi), x(βi))[s] enter A[s], and

• lift γ(e(βi), x
′) above s for all x′ greater than x(βi). (Here we assume

that all the ΓA(e(βi), x
′′) for x′′ < x(βi) have been dealt with and are

either permanently restrained or set to 1.)

Now, since the entry of z allows us to correct ΓA(e(βi), x(βi)) = 1[s]. β1

and β3 are happy. Notice that since we lifted all the γ(e(βi), x
′) above s

for all x′ greater than x(βi), after stage s, the only numbers β1 and β3 will
wish to put in will be numbers bigger than s = m(α, s). The relevance of
this comes at the next τ ̂∞ stage s′. The single number z has entered A
below ϕi(m(α, s))[s] between stages s and s′. Since We and Ve are disjoint,
z has either entered We or Ve but not both. If z entered Ve then α can now
successfully restrain the ΦWe

i (k) ↓ [s′] computation since it is identical to the
ΦWe
i (k) ↓ [s] computation. Now α can put finite restraint on the β′ of lower

priority, and the β of higher priority now only want to put numbers above
m(α, s) into A. (The β above τ were taken care of by the fact that we were
dealing with τ -correct computations and `(τ, s) > k; β between τ ̂∞ and α
have had their γ(e(βi), x

′) lifted above s.) Then the next time we hit α we
simply play outcome s defining a restraint r(α, s) = ϕi(k)[s].

On the other hand, it is possible that z went into We. In this case, when
we reach α we play outcome g. Now we note that the only numbers that
can be put into A by nodes β above α are bigger than m(α, s+ 1). The only
numbers below m(α, s+ 1) which enter A after stage s must therefore come
from nodes ν below α and can, like z above, only enter at stages at which
we lift m(α, t) and hence as the single small number that enters between
successive α stages. Assuming that g is the correct outcome, this single small
number must enter We each time. If we assume that m(α, s) → ∞ then we
can compute Ve � p by simply waiting for a τ ̂∞ stage with `(τ, s) > m(α, s)
and m(α, s) > p.

The final point we need to notice is that it does not really matter what
number z ≤ γ(e(βi), x(βi))[s] is used. We could equally well use some number
requested by some β′ below α̂g. In this way we also get to meet the Rf of
priority lower than α in case α̂g ⊂ TP .

6

We now turn to the formal construction.

2.2 The Priority Tree

Define the priority tree as follows. If ν is on the priority tree and |ν| = 3e, ν
is devoted to Re. Put ν̂∞ and ν̂f on the priority tree. ν is a β-node and
e(ν) = e.

Otherwise, we use two lists L1 and L2 to assign requirements to nodes.
As usual the lists L1(λ) = L2(λ) = ω. We use the convention that we do
not change lists as we pass to the outcomes of a node unless specifically so
instructed.

If |ν| ≡ 1 mod 3 assign Ne,i to ν where 〈e, i〉 is the least member of
L1(ν). Put ν̂∞ and ν̂f on the priority tree. Let L1(ν̂∞) = L1(ν̂f) =
L1(ν) − {〈e, i〉}. Let L2(ν̂f) = L2 − {〈e, i, k〉 : k ∈ ω}. ν is a τ node,
e(ν) = e and i(ν) = i.

Finally, if |ν| ≡ 2 mod 3, find the least 〈e, i, k〉 in L2(ν) such that 〈e, i〉 6∈
L1(ν). Assign Ne,i,k to α. Put ν̂s and ν̂g on the priority tree. Let
L2(ν̂s) = L2(ν)− {〈e, i, k〉}. Let L2(ν̂g) = L2(ν)− {〈e, i′, k′〉 : i′, k′ ∈ ω}.
Let L1(ν̂g) = L1(ν) − {〈e, i′〉 : i′ ∈ ω}. ν is an α-node, e(ν) = e, i(ν) = i
and k(ν) = k.

2.3 The Construction

Step 1.

At each stage of the construction, we put at most one number into A. We
determine this number by approximating TP by TPs as follows. We begin
at λ and say that s is a λ-stage. Suppose that s is a ν-stage. And suppose
that t is the maximum of 0 and the last ν-stage. There are 3 cases.

Case 1. ν is a β-node.

7

If |max{q : ϕe(ν)(q
′) ↓ [s] for all q′ ≤ q}| > |max{q : ϕe(ν)(q

′) ↓ [t] for all
q′ ≤ q ∧ t a ν stage}|, declare that s is a ν̂∞ stage and that ν desires the
largest number less than or equal to all γν(e(ν), x), if any, with γν(e(ν), x) >
max{r(δ, s) : δ < ν}, and ϕe(ν)(x

′) ↓ for all x′ ≤ x, but ΓA(e(ν), x) = 0 to
enter A.

Otherwise say that s is a ν̂f stage.

Case 2. ν is a τ -node.

Let e = e(ν). Determine the ν-correct length of convergence. `(ν, s) =
max{x : ∀y ≤ x(We,stVe,s = As � y∧ΦWe

i (y) ↓ [s])} where the computations
are ν-correct. That is, for all β̂∞ ⊆ ν, with |β| ≡ 0 mod 3, and any x, if
(i) γ(e(β), x) < u(ΦWe

i (y))
(ii) γ(e(β), x) > max{r(δ, s) : δ < β},
(iii) ϕe(β)(x

′) ↓ for all x′ ≤ x,
then ΓA(e(β), x) = 1.

If the stage is ν-expansionary we say that s is a ν̂∞-stage. We require
that the kth expansionary stage have ν-correct length of agreement exceeding

• max{m(α, s) + 1 : α ⊇ ν̂∞, such that e(α) = e, i(α) = i and α is
devoted to Ne,i,k′ for some k′ ≤ k}.

If s is not ν-expansionary, we say that s is a ν̂f stage. Let r(τ ̂f, s) be
the last τ ̂∞-stage (or 0 if there is no such stage).

Case 3. ν is an α-node.

Let e = e(α), i = i(α), k = k(α), and τ = τ(α). If `(τ, s) ≤ m(ν, s), set
TPs = ν. Otherwise, see if for all β̂∞ ⊆ ν, with |β| ≡ 0 mod 3, and any x,
if
(i) γ(e(β), x) < u(ΦWe

i (k′)) for k′ ≤ k,
(ii) γ(e(β), x) > max{r(δ, s) : δ < β},
(iii) ϕe(β)(x

′) ↓ for all x′ ≤ x,
then ΓA(e(β), x) = 1,

8

If so, let r(ν, s) = u(ΦWe
i (k)). Declare s to be a ν̂s-stage.

If not then declare s to be a ν̂g-stage, and reset m(ν, s+1) = m(ν, s)+1.

Step 2.

Having determined TPs, we initialize all α-nodes σ to the right of TPs.
This entails returning m(σ, s+ 1) to m(σ, 0), and setting r(σ, s+ 1) = 0.

Step 3.

Finally, put into A the smallest number z, if any, that any β node σ (such
that s is a σ-stage) desires to put into A. For β ⊂ TPs, reset γ(e(β), x)[s+1]
for all e(β), x with γ(e(β), x)[s] > z, and some Γ(e(β), x′)[s] with x′ ≤ x
causes β to desire a number to enter A at stage s. For such e(β), x, set
ΓA(e(β), x) = 1[s+ 1] if {ϕe(β)(x

′) ↓: for all x′ ≤ x}.

Step 4.

For each τ -node µ with µ̂∞ ⊆ TPs, set r(µ̂f, s + 1) = s+ 1. For each
α-node µ with µ̂g ⊆ TPs, set r(µ̂g, s+ 1) = s+ 1.

End of Construction.

3 The Verification

We verify the following by simultaneous induction on ν ⊂ TP :

(i) lim{s:s is a ν-stage} r(ν
′, s) <∞ exists for all ν ′ ≤ ν.

(ii) If ν is a β-node, then limx ΓA(e, x) = Tot(e). Moreover, ν̂∞ ⊆ TP
iff Tot(e) = 1.

(iii) If ν is a τ -node, then ν̂∞ ⊂ TP iff there are infinitely many τ -
correct τ -expansionary stages and hence ν̂∞ ⊆ TP iff We t Ve = A and

Φ
We(ν)

i(ν) is total.

9

(iv) If ν is an α node then ν̂g ⊂ TP implies that Ve(ν) is computable. If

ν̂s ⊂ TP then Φ
We(ν)

i(ν) (k(ν)) ↓

We assume (i)-(iv) for all σ ⊂ ν. Let s0 be a stage at which the hypotheses
apply to all such σ and we are never again to the left of ν. There are 3 cases
to consider.

Case 1. ν is a β-node. Then there is no restraint associated with ν and
hence (i) holds and (iii) and (iv) are irrelevant. Let e = e(ν). To see that
(ii) holds suppose first that Tot(e) = 0. Then, after some stage, ν will
stop desiring to put numbers into A in accordance with the first case of
the construction. Hence ν̂f ⊂ TP . Next, suppose that Tot(e) = 1. In
this case, infinitely often when we reach ν there will have been a change in
Tot(e)[s] since the last ν-stage t (i. e. |max{q : ϕe(ν)(q

′) ↓ [s] for all q′ ≤
q}| > |max{q : ϕe(ν)(q

′) ↓ [t] for all q′ ≤ q∧ t a ν stage}|). According to case
1 of the construction, all such stages will be ν̂∞ stages. Furthermore, since
the higher priority restraints come to a limit, for sufficiently large x, if s is a
ν̂∞ stage and ν desires a number below γν(e(ν), x), for some e(ν), x to enter
A since γν(e(ν), x) > max{r(δ) : δ < ν}, and ϕe(ν)(x

′) ↓ for all x′ ≤ x, but
ΓA(e(ν), x) = 0, then this desire cannot be restrained by any σ. Therefore
at step 3 of the construction, either γν(e(ν), x) itself, or some z < γν(e(ν), x)
will be enumerated into A. Finally, to see that the γ(e(ν), x)[s] come to a
limit, note that we only gratuitously change γ(e(ν), x)[s] in step 3 of the
construction when ν desires to correct Γe(ν) on some x′ ≤ x. But each time
such a change is desired and made for some x′, we will set ΓA(e(ν), x′) = 1
during that stage. Of course, this can happen only finitely often.

Case 2. ν is a τ node. Straightforward.

Case 3. ν is a α-node. Let e = e(ν), i = i(ν), and k = k(ν). By the con-
struction of the priority tree, we can suppose that for all ν-nodes ν ′ ⊂ TP ,
devoted to Ne,i,k′ for k′ < k, ν ′̂s ⊂ ν. It follows that after some stage
s1 > s0 each time we have a τ(ν)̂∞-stage, we must have the τ -correct
length of agreement above m(ν, s). We argue as in the intuitive discussion.
First, suppose that at some stage s2 after s1, ν imposes restraint. Now we
see that s2 must be an ν-stage at which, for all β̂∞ ⊆ ν with |β| ≡ 0 mod 3
and for any x, if

10

(i) γ(e(β), x) < u(ΦWe(k′)) for k′ ≤ k,
(ii) γ(e(β), x) > max{r(δ, s) : δ < β},
(iii) ϕe(β)(x

′) ↓ for all x′ ≤ x,
then ΓA(e(β), x) = 1. It follows that no number of higher priority can in-
jure the ΦWe

i (k)[s2]-computation. By ν’s restraint and the step 3 initializa-
tion, no δ of lower priority can injure the ΦWe(k)[s2]-computation. Therefore
ΦWe
i (k)[s2] ↓= ΦWe

i (k)[s2] m(ν, s2) = m(ν), and r(ν, s2) = r(ν).

Thus we can suppose that there is no stage s2 after s1 where restraint is
imposed by ν. In this case, we claim that Ve is computable. We reason by
induction on stages after s1. Suppose that no number below m(ν, s) will ever
again enter Ve. And that s is some τ ̂∞ stage after s2. Now the computation
up to `(τ, s) is τ -correct and we know that the length of agreement exceeds
m(ν, s)+1 τ -correctly. We will not reset m(ν, s′) until a stage s′ ≥ s at which
we visit ν. Suppose that s′ is such a stage. At stage s′ we will increment
m(ν, s′ + 1) to be m(ν, s) + 1. At stage s′, at most one number will enter A
and, by construction, every β with β̂∞ ⊆ ν desires to put a number into A.

The action of putting z into A in case 3 will clearly lift all the γ(e(β), x)
for β̂∞ ⊆ ν which are not permanently restrained and have γ(e(β), x) <
m(ν, s′) above m(ν, s′)+1. Therefore no β with β̂∞ ⊆ ν can ever later desire
to put a number below m(ν, s′+1) into Ve. Furthermore no δ ≥L ν can put a
number below m(ν, s′+ 1) by ν restraint. Finally, at most one number below
m(ν, s′ + 1) can enter A from nodes below ν̂g, and since no later stage is
a ν̂s stage, this small number must enter We and not Ve. Therefore, Ve is
now fixed on m(ν, s′) + 1 and hence by induction, Ve is computable. 2

11

References

[1] K. Ambos-Spies, Antimitotic recursively enumerable sets, Z. Math.
Logik Grundlagen Math. 31 (1985), 461-467.

[2] K. Ambos-Spies and P. A. Fejer, Degree theoretical splitting properties
of recursively enumerable sets, J. Symbolic Logic 53 (1988), 1110-1137.

[3] R. G. Downey, Localization of a theorem of Ambos-Spies and the strong
antisplitting property, Archiv math. Logik Grundlag. 26 (1987), 127-
136.

[4] R. G. Downey and T. A. Slaman, Completely mitotic r.e. degrees, Ann.
Pure Appl. Logic 41 (1989), 119-152.

[5] R. G. Downey and M. Stob, Splitting theorems in recursion theory, Ann.
Pure Appl. Logic 65 (1993), 1-106.

[6] R. Friedberg, Three theorems on recursive enumeration, J. Symbolic
Logic, 23 (1958), 308-316.

[7] M. Ingrassia and S. Lempp, Jumps of nontrivial splittings of r.e. sets, Z
math. Logic. Grundlagen Math., 36 (1990), 285-292.

[8] R. Ladner, Mitotic recursively enumerable sets, J. Symbolic Logic, 38
(1973), 199-211.

[9] M. Lerman and J. B. Remmel, The universal splitting property, II, J.
Symbolic Logic 49 (1984), 137-150.

[10] P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam,
1990.

[11] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag,
New York, 1987.

12

