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Abstract

If r is a reducibility between sets of numbers, a natural question to ask
about the structure Cr of the r-degrees containing computably enumerable
sets is whether every element not equal to the greatest one is branching
(i.e., the meet of two elements strictly above it). For the commonly studied
reducibilities, the answer to this question is known except for the case of
truth-table (tt) reducibility. In this paper, we answer the question in the
tt case by showing that every tt-incomplete computably enumerable truth-
table degree a is branching in Ctt. The fact that every Turing-incomplete
computably enumerable truth-table degree is branching has been known
for some time. This fact can be shown using a technique of Ambos-Spies
and, as noticed by Nies, also follows from a relativization of a result of
Degtev. We give a proof here using the Ambos-Spies technique because it
has not yet appeared in the literature. The proof uses an infinite injury
argument. Our main result is the proof when a is Turing-complete but
tt-incomplete. Here we are able to exploit the Turing-completeness of a
in a novel way to give a finite injury proof.

1 Introduction

If r is one of the reducibilities between sets of natural numbers studied in com-
putability theory, one can form the structures Dr, Dr(≤ 0′r) and Cr consisting of
all the r-degrees, the r-degrees of sets r-reducible to the 1-complete computably
enumerable set K = {e|{e}(e)↓}, and the r-degrees containing computably enu-
merable sets, respectively. (We write 0′r for the r-degree of K.) These structures
are always partially ordered sets and are usually upper semi-lattices. Among
∗The authors thank André Nies for helpful conversations.
∗∗Partially supported by NSF Grants DMS-9503503 and DMS-9802843 and as a Visiting

Scholar by M.I.T. and Harvard University.
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the many algebraic questions one might ask about these structures, a basic one
is whether every element not equal to the greatest element is branching, where
we call a degree branching if it is meet-reducible, i.e., it is the meet of two
degrees strictly above it. In the case of Cr and the most commonly studied
reducibilities r (namely, many-one (m), truth-table (tt), weak truth-table (wtt)
and Turing (T)) we have the following results. Every incomplete c.e. m-degree
is branching. This can be seen as follows. Given a c.e. m-degree, c < 0′m, by
a result of Denisov [2], there is a c.e. m-degree a with c < a < 0′m. Now, by
a result of Ershov and Lavrov [3], there is a strong minimal cover b of c in
the c.e. m-degrees (that is, c < b and for all c.e. m-degrees d, if d < b, then
d ≤ c) such that b is incomparable with a. The two degrees a and b now have
meet c. (See Odifreddi [8], Exercise X.5.5 for a direct proof of the fact that
every c.e. m-degree is branching.) Every incomplete c.e. wtt-degree is branch-
ing by a result of Cohen [1]. (See Odifreddi [8], Exercise X.6.8.) In the case of
Turing reducibility, the situation is a bit more complicated. There are nonzero
branching c.e. T-degrees and 0 is also branching, but there are also incomplete
c.e. T-degrees that are not branching (Lachlan [6]). In fact, both the branching
(Slaman [9]) and nonbranching (Fejer [4]) c.e. T-degrees are dense in CT . Thus,
among these problems, only the truth-table case has been unresolved. In this
paper, we show that every incomplete c.e. truth-table degree is branching.

We call a c.e. truth-table degree Turing-complete if its members belong
to degT (K). The fact that every Turing-incomplete c.e. truth-table degree is
branching was first shown by an unpublished argument using a technique due to
Ambos-Spies. Later, Nies showed that this fact also follows from a relativization
of a result of Degtev. (Nies’ argument is given in the hint to Exercise X.7.14.c
of Odifreddi [8].) Ambos-Spies’ technique was used by Nies and Shore [7] in
showing a related result. To make this paper more complete, and because the
technique is interesting in its own right, we begin by showing how the result
in [7] can be strengthened slightly in order to get a result that has as a corol-
lary the fact that every Turing-incomplete c.e. truth-table degree is branching.
Then, in the main part of the paper, we show (Theorem 4) that every Turing-
complete, tt-incomplete truth-table degree is branching. In combination with
the result on Turing-incomplete c.e. degrees, this gives the result of the title of
this paper. We conclude the paper by mentioning some related open problems.

Our notation is for the most part standard. (See for example Soare [10].)
For D a set and e a number, the e-section of D, denoted D[e], is the set
{〈e, x〉|〈e, x〉 ∈ D}, where 〈·, ·〉 is a standard pairing function. We use D[<e]

to denote
⋃
{D[e′]|e′ < e}, and similarly for notations such as D[≥e]. Our no-

tation for truth-table reductions is from [5]. In particular, if {e}(x) ↓, then
[e](x) denotes the truth-table with Gödel number {e}(x) and |[e](x)| denotes
the length of this truth table. (Here, as in [5], we take this length to be one
more than the largest number asked about in the truth table.) For any set A,
[e]A(x) is 1 or 0 according to whether or not A satisfies [e](x). We then have
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that for any two sets A and B, A ≤tt B if and only if there is an e with {e}
total such that for all x, [e]B(x) = A(x). Also, we let Fk denote the finite set
with canonical index k.

2 Turing Incomplete Truth-Table Degrees

In this section, we present a slight strengthening of a result from [7] which will
allow us to conclude that every Turing incomplete c.e. truth-table degree is
branching. We first give a slightly modified version of Lemma 3.3 of [7].

Lemma 1 Let (Dn)n∈ω be a uniformly c.e. sequence of sets and let

D = {〈x, n〉|x ∈ Dn}.

Suppose that, for each e, the set D[≤e] is T -incomplete. Then, there exist c.e.
sets B,C such that

(∀n)[Dn ≤tt B,C] (1)

(∀n)[B,C 6≤tt Dn] (2)

(∀Z)[Z ≤tt B,C ⇒ (∃e)[Z ≤tt D[≤e]]] (3)

We say that B,C form an exact pair for the sequence (Dn).

Proof: The difference between this result and Lemma 3.3 of [7] is the addi-
tion of (2). To make (1) hold, we meet the requirements

Pn : D[n] =∗ B[n] =∗ C [n]

for n ∈ ω (where X =∗ Y means that the symmetric difference of X and Y is
finite). To make (3) hold, we have requirements

Qe : Z = [e]B = [e]C → Z ≤tt D[≤e]

for all e ∈ ω. (These requirements are as in [7].) To make (2) hold, we introduce
requirements

RXe,n : X 6= [e]D
[n]

(X = B,C)

for e, n ∈ ω.
The strategies for the Pn and Qe requirements are as in [7]. We briefly review

these strategies here. The strategy for the Pn requirements is the obvious purely
positive one: at stage s, each number in D[n] that is greater than the restraint
on Pn is put into both B and C. For this strategy to succeed, it is necessary
that the liminf of the restraint on Pn be finite and also that only finitely many
numbers be put into B[n] and C [n] by requirements other than Pn.
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To meet Qe, we try to make the antecedent [e]B = [e]C false, that is, we
look for an x and a finite set F such that

[e]B∪F (x) 6= [e]C(x) and F ∩ ω[≤e] = ∅.

Given such x and F , we enumerate F into B and attempt to preserve B and C
on the use of the computations. (The restriction that F ∩ ω[≤e] = ∅ is needed
to prevent action for Qe from injuring higher priority Pn requirements.) If, in
spite of these efforts, [e]B = [e]C = Z, then for every x, Z(x) = [e]C(x) =
[e]B∪ω

[>e]
(x). (If not, then we can begin a successful attack on Qe through x

after B and C have settled down on the use.) Thus, Z ≤tt B[≤e]. Assuming
that higher priority Pn requirements have been met, B[≤e] ≡tt D[≤e], so Qe is
met. Because the Pn requirements are infinitary, it is possible that a given Qe
makes infinitely many attacks and that each attack is later cancelled due to the
action of a higher priority Pn. Thus the Qe requirements can be infinitary and
this causes problems because action of the Qe’s can injure lower priority Pn and
Qe′ requirements. The solution is to use the T -incompleteness of each D[≤e]

in a way suggested by Ambos-Spies. Requirement Qe appoints and cancels
multiple followers xem (m ≥ 0), each with an associated F em. When the follower
is appointed, restraint is put on, and if the restraint is ever violated, the follower
is cancelled. An attack can be made through follower xem only if m ∈ K. We
can now use the T -incompleteness of D[≤e] to show that for some m, xem is
undefined at the end of infinitely many stages. (The least such m is called the
outcome of requirement Qe.) Indeed, suppose Qe has no outcome. Then it
must be that [e]B = [e]C , since otherwise we would stop appointing followers
for Qe. Assuming that D[n] =∗ B[n] =∗ C [n] for each n ≤ e, we argue that
K ≤T D[≤e], a contradiction. Given m, recursively in D[≤e], compute a stage t
such that xem has a value x at the end of stage t and the sets B[≤e] and C [≤e]

have settled down on the use of [e](x) by the end of stage t. Then, m is in K if
and only if m ∈ Kt, because if m appears in K after stage t, then a successful
diagonalization would take place and no more followers would be appointed.

The fact that each Qe has an outcome means that the modified strategy for
Qe still works: if [e]B = [e]C = Z and m is the outcome of Qe and z is the
final value of xem−1, then for all x > z, Z(x) = [e]C(x) = [e]B∪ω

[>e]
(x), since

otherwise xem would get a permanent final value. Although the action taken for
a given Qe can still be infinitary, the action taken for xem′ with m′ less than the
outcome of Qe is finitary. Thus, we put the construction on the tree T = ω<ω.
For each γ ∈ T , Pγ and Qγ are versions of the requirements Pi and Qi, where
i = |γ|. If e < i and β is γ restricted to e, then Pγ , Qγ guess that the outcome
of Qβ is γ(e). When Qβ appoints a follower xβn, the associated set F βn is not
allowed to interfere with any Pγ , Qγ with γ <L β ∗ n. This ensures that the
construction is finitary along the true path.

This completes our review of the strategies in [7]. To handle the RXe,n re-
quirements, we let (Ri)i∈ω be an effective listing of these requirements. For each
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γ in the tree ω<ω, there is a strategy Rγ for Ri, where i = |γ|. The strategy
for Rγ is Sacks coding; that is, if R|γ| is RXe,n, then Rγ codes K into X until
a difference between X and [e]D

[n]
occurs. (This must happen since D[n] is tt-

incomplete.) Because the reduction being diagonalized against is a truth-table
reduction, the action of Rγ is finite.

Now we will describe the construction in detail. We give only the differences
from the construction in [7], so the reader will need to refer to that paper.
Strategies Pγ and Qγ work as in [7], except that Pγ tries to code D[i] into
X [2n(γ)] for X = B,C, instead of into X [n(γ)], where n(γ) is the code number
assigned to γ. Strategy Rγ does its coding into X [2n(γ)+1].

To measure the length of agreement for the Ri requirements, we define

l′(i, s) = max{x|(∀y < x)[X(y) = [e]D
[n]

(y)[s]]},

where Ri = RXe,n. The construction is the same as in [7] except for the following
changes. 1) In Step 1, we consider numbers x = 〈z, 2n(β)〉 instead of x =
〈z, n(β)〉. 2) We add a Step 1.5 (where Rβ codes K) given by

For each x < s, if l′(e, s) ≥ x ≥ R(β, [s, e]) and x = 〈z, 2n(β) + 1〉
for z ∈ Ks, then enumerate x into X, where Re is RXi,n.

3) In Step 3, replace equation (5.9) by

F ∩ (ω[2n(γ)] ∪ ω[2n(γ)+1]) = ∅ for each γ < β ∗m.

In the verification, Lemma 5.1 of [7] is modified by changing X [γ] and
〈z, n(γ)〉 in Part (iv) to X [2n(γ)] and 〈z, 2n(γ)〉, respectively, and by adding
a Part (v) which states

(v) If γ ⊆ α, i = |γ|, and Ri is RXe,n, then X 6= [e]D
[n]

and X [2n(γ)+1] is finite.

The proof of the new Part (v) of the lemma goes as follows. By the inductive
hypothesis, it is only necessary to prove (v) for γ = α. Let Re+1 be RXi,n and
let sα be as in the statement of the lemma. By the argument for Part (iv) of
the lemma given in [7], no Qβ puts a number into X [2n(α)+1] after stage sα.
Suppose that X = [i]D

[n]
. Then, lims l

′(e+ 1, s) =∞. We claim that

X [2n(α)+1] = X [2n(α)+1]
sα ∪ {〈z, 2n(α) + 1〉|〈z, 2n(α) + 1〉 ≥ R(α) ∧ z ∈ K}. (4)

To see the right-to-left inclusion of (4), suppose that x = 〈z, 2n(α) + 1〉 ≥
R(α) and z ∈ K. Take s ≥ sα such that s is an α-stage, z ∈ Ks, s > x
and l′(e + 1, s) ≥ x. Since R(α, [s, e + 1]) = R(α), x is enumerated into X at
stage [s, e+2]. For the other inclusion, suppose that x ∈ X [2n(α)+1]−X [2n(α)+1]

sα .
Then, x did not enter X through the action of any Qβ , so x entered X at Step 1.5
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of Stage [s, e + 2], where s is an α-stage > sα. Since R(α, [s, e + 1]) = R(α),
x ∈ {〈z, 2n(α) + 1〉|〈z, 2n(α) + 1〉 ≥ R(α) ∧ z ∈ K}.

From (4), we now get K ≤tt X [2n(α)+1] ≤tt X ≤tt D[n], contradicting as-
sumption that D[n] is Turing-incomplete.

Thus, X 6= [i]D
[n]

, so l′(e+ 1, s) is bounded as s→∞. This implies that the
set of elements put into X [2n(α)+1] by Rα is finite. As already mentioned, the set
of elements put into X [2n(α)+1] by Qβ requirements is finite. Thus, X [2n(α)+1]

is finite. This completes the proof of Part (v).
There are a few other modifications to the proof of Lemma 3.3 of [7] which

are necessary to prove this lemma, but they are routine and are left to the
reader.

An ideal I of Ctt is called Σ0
3 if {i|degtt(Wi) ∈ I} is Σ0

3.

Theorem 2 Let I be a Σ0
3-ideal of Ctt consisting of only Turing-incomplete

truth-table degrees. Then, I has an exact pair b, c such that neither of b and c
belongs to I.

Proof: This theorem follows from Lemma 1 as Theorem 3.2 follows from
Lemma 3.3 in [7]. Namely, by a theorem of Yates (see [10], page 253) there
exists a uniformly c.e. sequence of sets (Dn)n∈ω such that {We|degtt(We) ∈
I} = {Dn|n ∈ ω}. Apply Lemma 1 and let b = degtt(B) and c = degtt(C).
Then, b, c form an exact pair for I and do not belong to I.

Theorem 3 If a is a Turing-incomplete c.e. tt-degree, then a is branching.

Proof: Let a be a Turing-incomplete c.e. truth-table degree and define I =
{d ∈ Ctt|d ≤ a}. Fix a c.e. set A ∈ a. We have

degtt(Wi) ∈ I⇔ (∃e)(∀x)(∀t)(∃s ≥ t)[{e}s(x)↓ ∧Wi,s(x) = [e]As(x)],

so I is a Σ0
3-ideal. All the members of I are Turing-incomplete. Thus, by

Theorem 2, there is an exact pair b, c for I such that neither b nor c belongs
to I. It follows that a < b, c and that a is the meet of b and c in Ctt, so a is
branching.

3 Turing Complete Truth-Table Degrees

In this section, we present the main result of the paper, namely, that every
Turing-complete tt-incomplete c.e. degree is branching.

Theorem 4 If b is a Turing-complete, tt-incomplete c.e. tt-degree, then b is
branching in Ctt.
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Proof: Let B be a c.e. set in b. We want to construct c.e. sets A0, A1 such
that Ai 6≤tt B for i = 0, 1 and such that degtt(A0 ⊕B) and degtt(A1 ⊕B) have
meet b in Ctt. We will actually meet the following requirements Re,i for e ∈ ω
and i = 0, 1:

Re,i : [e]Ai⊕B 6= A1−i.

These requirements certainly imply Ai 6≤tt B for i = 0, 1 and the meet require-
ments will hold automatically due to the way we achieve the Re,i requirements.

An intuitive and oversimplified description of how we meet requirement Re,i
is the following. Because K 6≤tt B, we know that if we make Ai look like ω
(above higher priority restraint) and we make A1−i look like K (on a row), then
there must be an x such that [e]Ai⊕B(x) 6= A1−i(x). Not only is there such
an x, but K can find it; that is, there is a function f ≤T K such that if Ai
looks like ω up to f(e) (above higher priority restraint) and A1−i looks like K
on a specified row up to f(e), then [e]Ai⊕B 6= A1−i. Since K ≤T B, there is
a j0 with {j0}B = f . Then, for all x, {j0}Bss (x)→ f(x) as s→ ∞. At stage
s of the construction, we will make Ai look like ω up through {j0}Bss (e) and
A1−i look like Ks through the same number (on a row). In fact, if we get a
new computation {j0}Bss (e) at stage s, we make Ai look like ω and A1−i look
like K up through s. Because of the usual convention that {j0}Bss (e) ≤ s, this
suffices to meet Re,i. The reason we put potentially many more numbers than
necessary to meet Re,i into Ai is to ensure that meet requirements hold.

In outline, the argument that degtt(A0 ⊕ B) and degtt(A1 ⊕ B) have meet
degtt(B) = b in Ctt is as follows. It suffices to show that, given e0, e1 with
{e0}, {e1} total, there is an e′ with {e′} total such that for all x, [e′]B(x) is either
[e0]A0⊕B(x) or [e1]A1⊕B(x). Given x, [e′] finds M = max{|[e0](x)|, |[e1](x)|} and
then at stage M finds the highest priority Re,i such that {j0}BMM (e) converges
by an incorrect computation. Then, at some later stage, every number greater
than the current restraint on Re,i and less than M will be dumped into Ai and
no number smaller than the current restraint will be put in Ai. This allows [e′]
to correctly compute [ei]Ai⊕B(x). We will see that this is in fact a truth-table
reduction.

To begin the formal construction, we define

f(〈e,m, k〉) = µy[{e}(〈y,m〉)↑ ∨[e](ω
[≥m]∪Fk)⊕B(〈y,m〉)↓6= K(y)].

Since ω[≥m] ∪ Fk is recursive and K 6≤tt B, f is total. Since B is Turing
complete, f ≤T B, say f = {j0}B . The extra parameters in the definition of
f , compared to the intuitive discussion just given, are to account for the effect
of higher priority requirements. If the requirements of higher priority than Re,i
control the first m rows and Fk is the set of numbers that the higher priority
requirements put into ω[<m], then ω[≥m] ∪Fk is the value Ai would have if Re,i
puts every element it can into Ai.

We make the following assumptions:
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if x = 〈e,m, k〉 and {e}(〈f(x),m〉)↓, then u(B; j0, x) >
|[e](〈f(x),m〉)| and K(f(x)) = Ku(B;j0,x)(f(x)); (5)

{j0}D0 (y)↑ for all D, y; (6)

if {j0}Bss (x) ↓ and Bs |̀u(Bs; j0, x, s) 6= Bs+1 |̀u(Bs; j0, x, s),
then {j0}Bs+1

s+1 (x)↑. (7)

The last of these assumptions is the usual “hat trick”. With these assumptions,
we have the following lemma, which summarizes how we will meet the Re,i
requirements.

Lemma 5 Let {e} be total and let s be such that {j0}Bss (〈e,m, k〉)↓ and

Bs |̀u(Bs; j0, 〈e,m, k〉, s) = B |̀u(Bs; j0, 〈e,m, k〉, s).

If

A
[≥m]
i |̀ s = ω[≥m] |̀ s, (8)

A
[<m]
i = Fk, and (9)

(∀y ≤ s)(〈y,m〉 ∈ A1−i↔ y ∈ Ks) (10)

then Re,i is met.

Proof: Let x = 〈e,m, k〉 and u = u(Bs; j0, x, s). By the usual convention,
s ≥ u, f(x) and by the assumption of the lemma, u = u(B; j0, x). Because {e}
is total, we have, by definition of f , that [e](ω

[≥m]∪Fk)⊕B(〈f(x),m〉)↓6= K(f(x)).
Thus, the lemma will be proven if we can show that [e]Ai⊕B(〈f(x),m〉) =
[e](ω

[≥m]∪Fk)⊕B(〈f(x),m〉) and that K(f(x)) = A1−i(〈f(x),m〉). Towards es-
tablishing the first of these equalities, note that by (5), s ≥ u > |[e](〈f(x),m〉)|.
Thus, (8) and (9) give us the desired equality, since Ai equals ω[≥m]∪Fk up to the
length of the appropriate truth table. For the second equality, we have, by (10),
A1−i(〈f(x),m〉) = Ks(f(x)). Since s ≥ u, (5) gives Ks(f(x)) = K(f(x)),
completing the proof.

Let (Rn)n∈ω be an effective ordering of the Re,i’s. The construction will be
a finite injury one. From time to time during the construction, an attack may
be begun on a requirement Rn. The attack may later be canceled. At most
one attack on a given requirement will be active at a time. When an attack is
made on Rn, two parameters mn and xn will be defined. If the attack is later
canceled, then these values become undefined.

Rn = Re,i requires attention at stage s+ 1 if either

Rn is not under attack at the end of stage s (11)
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or
there is an attack on Rn at the end of stage s, {j0}Bss (xn,s)↓
and {j0}Bs−1

s−1 (xn,s)↑.
(12)

Construction:
Stage 0: Do nothing.
Stage s+1: Find the highest priority requirement Rn that requires atten-

tion. Let Rn = Re,i. Proceed according to which case in the definition of
requires attention holds.

(11) holds: Begin an attack on Rn. Set mn = s and xn = 〈e, s, k〉, where
Fk = A

[<s]
i,s . Put 〈y,mn〉 into Ai for all y ≤ s. For all y ∈ Ks, put 〈y,mn〉 into

A1−i.
(12) holds: Put 〈y, z〉 into Ai for all y, z with mn ≤ z ≤ s and y ≤ s. For

all y ∈ Ks, put 〈y,mn〉 into A1−i.
In either case, cancel all attacks on Rn′ with n′ > n.
End of Construction

Lemma 6 For each n, Rn requires attention only finitely often and an un-
canceled attack is made on Rn.

Proof: Suppose that the result is true for all n′ < n. Take s0 such that no Rn′
with n′ < n requires attention at a stage > s0. If no attack on Rn is in progress
at the end of stage s0, one will be made at stage s0 + 1, so there is an attack in
progress at the end of stage s0 + 1. This attack will never be canceled and Rn
never requires attention via (11) after stage s0 + 1. Let xn,mn be the values
associated with the final attack and take s1 ≥ s0 + 1 such that {j0}

Bs1
s1 (xn)↓

and Bs1 |̀u(Bs1 ; j0, xn, s1) = B |̀u(Bs1 ; j0, xn, s1). Then, Rn does not require
attention via (12) after stage s1 +1, so Rn requires attention only finitely often.

Lemma 7 Each Rn is met.

Proof: Let Rn = Re,i. We may assume that {e} is total, since otherwise
the result is immediate. Suppose that the final attack on Rn is begun at
stage s0 + 1. Then, the final values of mn and xn are s0 and 〈e, s0, k〉 =
〈e,mn, k〉, respectively, where Fk = A

[<s0]
i,s0

. Let s + 1 ≥ s0 + 1 be the last
stage at which Rn requires attention. We will use Lemma 5 applied with
m = mn to show that Rn is met. First, we want to show that {j0}Bss (xn)↓
and Bs |̀u(Bs; j0, xn, s) = B |̀u(Bs; j0, xn, s). Suppose not. Let t > s be the
first stage at which {j0}Btt (xn)↓ by a B-correct computation. Then, by the
“hat trick” (7), {j0}Bt−1

t−1 (xn)↑, so Rn requires attention at stage t+ 1 > s+ 1,
contradicting our assumption.

To show (8), note that if 〈y, z〉 ∈ ω[≥mn] |̀ s, then mn ≤ z ≤ s and y ≤ s.
We may have either (11) or (12) holding at stage s+ 1 (depending on whether
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s = s0 or s > s0), but in either case, 〈y, z〉 is put into Ai at stage s+ 1. Thus,
A

[≥mn]
i |̀ s = ω[≥mn] |̀ s.

Towards showing the last two facts we need in order to apply Lemma 5, note
that by construction, if some Rn′ puts a number y into A0 ∪A1 at stage s′ + 1,
then y ∈ ω[≥mn′,s′ ] ∩ ω[≤s′]. Also, each Rn′ with n′ > n is canceled at stage
s0 +1 and any value assigned to mn′ at a later stage will be > s0. Furthermore,
no Rn′ with n′ < n receives attention at a stage ≥ s0 + 1. It follows from these
facts that Fk = A

[<s0]
i,s0

= A
[<s0]
i = A

[<mn]
i , so (9) holds.

Finally, to establish (10), suppose that y ∈ Ks. Then, 〈y,mn〉 ∈ A1−i,s ⊆
A1−i because Rn receives attention at stage s+1. Conversely, if 〈y,mn〉 ∈ A1−i,
then by the considerations of the previous paragraph, 〈y,mn〉 was put into A1−i
by Rn. Since Rn last acts at stage s + 1, if 〈y,mn〉 ∈ A1−i, then y ∈ Ks.
Thus, (10) holds and by Lemma 5, Rn is met.

Lemma 8 If {e0} and {e1} are both total, then there is an e′ such that {e′}
is total and for all x, either [e′]B(x) = [e0]A0⊕B(x) or [e′]B(x) = [e1]A1⊕B(x).
(So, if [e0]A0⊕B = [e1]A1⊕B = g, then [e′]B = g.)

Proof: Given x, we compute the truth table [e′](x) as follows: Find the truth
tables [e0](x) and [e1](x) and let M = max{|[e0](x)|, |[e1](x)|}. Carry out the
construction through the end of stage s0 = M + 1. Suppose that at the end of
stage s0 there are attacks in progress on requirements R0, . . . , Rn0 . (Note that
by construction, if there is an attack in progress on Rn at the end of a stage
s and n′ < n, then there is an attack in progress on Rn′ at the end of stage
s.) The truth table [e′](x) will have length M and will query all the numbers
0, . . . ,M − 1. Given σ ∈ 2M , find the minimum n ≤ n0, if any, such that either
{j0}

Bs0−1

s0−1 (xn,s0)↑ or {j0}
Bs0−1

s0−1 (xn,s0)↓ and Bs0−1 |̀u(Bs0−1; j0, xn,s0 , s0 − 1) 6=
σ |̀u(Bs0−1; j0, xn,s0 , s0 − 1). (Note that if n ≤ n0 and {j0}

Bs0−1

s0−1 (xn,s0)↓, then
u(Bs0−1; j0, xn,s0 , s0−1) < s0−1 = M = |σ|.) If no such n exists, then [e′]σ(x) is
[e0]A0,s0⊕σ(x). If such a minimal n exists, then let Rn be Re,i. We define [e′]σ(x)

to be [ei]
(A

[<mn,s0 ]
i,s0

∪ω[≥mn,s0 ])⊕σ(x). Then, e′ is certainly a truth table reduction.
We have to show that [e′]B |̀M (x) is either [e0]A0⊕B(x) or [e1]A1⊕B(x).

Suppose first that there is no n ≤ n0 such that either {j0}
Bs0−1

s0−1 (xn,s0)↑
or {j0}

Bs0−1

s0−1 (xn,s0) ↓ and, letting u = u(Bs0−1; j0, xn,s0 , s0 − 1), Bs0−1 |̀u 6=
(B |̀M) |̀u = B |̀u. Then, by induction on s ≥ s0 + 1, it follows that at no
such stage s does any Rn with n ≤ n0 receive attention. Thus, A[<s0]

0,s0
=

A
[≤M ]
0,s0

= A
[≤M ]
0 . It follows that A0,s0 |̀M = A0 |̀M and hence [e′]B |̀M (x) =

[e0]A0,s0⊕(B |̀M)(x) = [e0]A0⊕B(x), as desired.
Now suppose that n is minimal such that n ≤ n0 and either {j0}

Bs0−1

s0−1 (xn,s0)↑
or {j0}

Bs0−1

s0−1 (xn,s0) ↓ and, letting u = u(Bs0−1; j0, xn,s0 , s0 − 1), Bs0−1 |̀u 6=
(B |̀M) |̀u = B |̀u. Then, no Rn′ with n′ < n requires attention at any stage
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s ≥ s0 + 1, so A
[<mn,s0 ]
j,s0

= A
[<mn,s0 ]
j , for j = 0, 1. Let Rn be Re,i. At some

stage t ≥ s0 + 1, Rn will receive attention. At stage t, all numbers 〈y, z〉
with y < t and mn,s0 ≤ z < t are put into Ai. Since t ≥ s0 + 1 > M ,
A

[≥mn,s0 ]
i |̀M = ω[≥mn,s0 ] |̀M . Thus,

Ai |̀M = A
[<mn,s0 ]
i |̀M ∪A[≥mn,s0 ]

i |̀M
= A

[<mn,s0 ]
i,s0

|̀M ∪ ω[≥mn,s0 ] |̀M = (A[<mn,s0 ]
i,s0

∪ ω[≥mn,s0 ]) |̀M .

Hence, [e′]B |̀M (x) = [ei]
(A

[<mn,s0 ]
i,s0

∪ω[≥mn,s0 ])⊕(B |̀M)(x) = [ei]Ai⊕B(x), as de-
sired.

This completes the proof of Theorem 4.

4 Open Problems

We conclude the paper by listing three problems related to the topic of the
paper that we are unable to solve using the methods developed here.

Q1) Does every Σ0
3-ideal I of Ctt, different from Ctt, have an exact pair b, c

such that neither of b and c belongs to I?

(The restriction in (Q1) that b, c do not belong to I is relevant only when I is a
principal ideal. If I is not principal, then neither half of an exact pair for I can
belong to I.) Theorem 2 gives an affirmative answer to (Q1) when I does not
contain any Turing-complete degrees. Theorem 4 gives an affirmative answer
to (Q1) when I is a principal ideal and contains Turing complete degrees. An
affirmative answer to (Q1) for arbitrary I would make it possible to obtain our
result that every tt-incomplete c.e. truth-table degree is branching in Ctt from
a more general uniformity of Ctt. The method of Section 3 does not appear to
give an affirmative answer to (Q1) in the remaining open case, namely, when I
is nonprincipal and contains Turing-complete degrees.

A set A is said to be bounded truth-table (btt) reducible to a set B if there
are numbers e and k such that A = [e]B and for all x, the truth table [e](x)
queries at most k numbers.

Q2) Is every btt-incomplete c.e. bounded truth-table degree branching in Cbtt?

The method of Section 2, unchanged, shows that every Turing-incomplete c.e.
bounded truth-table degree is branching in Cbtt. However, the proof in Section 3
does not show that every Turing-complete btt-incomplete bounded truth-table
degree is branching in Cbtt. This is because in Lemma 8, the truth-table reduc-
tion [e′] is not bounded, even if the reductions [e0] and [e1] are bounded.

So far, when a structural property of Ctt has been shown, it has turned out
to be possible to show the same result, by a more difficult proof, for Dtt(≤ 0′tt)
and then for the structure Dwtt(≤ 0′wtt), where wtt stand for weak truth-table
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reducibility (i.e., Turing reducibility with a recursive bound on the use function).
In fact, no elementary difference is known between these three structures. In
view of the results in this paper, it is natural to ask

Q3) Is every degree in Dtt(≤ 0′tt), other than 0′tt, branching in Dtt(≤ 0′tt)?

A negative answer to this question would be the most interesting, but would
be surprising. We believe that the method from Section 3, with additional
complications, can be used to give an affirmative answer to (Q3) when the
degree is Turing-complete, but the situation for Turing-incomplete degrees is
unknown – the exact pair result from Section 2 is not easily adapted to this
case.
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