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Abstract. We study low level nonde�nability in the Turing degrees. We prove a
variety of results, including for example, that being array nonrecursive is not de�nable
by a �1 or �1 formula in the language (�; REA) where REA stands for the �r.e. in
and above� predicate. In contrast, this property is de�nable by a �2 formula in this
language. We also show that the �1-theory of (D;�; REA) is decidable.

1. Introduction

A major focus of recent research on the Turing degrees, D, has been de�nability,
which is also a major focus of mathematical logic in general. We discuss a topic that
has received almost no attention but certainly deserves some: nonde�nability in the
Turing degrees.
This work was motivated by the suggestion of Miller and Martin [MM] that one could

prove that the classes HI and HIF of hyperimmune and hyperimmune-free degrees,
respectively, are not simply de�nable. (A degree x 2 HIF if and only if every f �T X
is dominated by a recursive function. The classHI consists of the degrees not inHIF.)
In addition to the basic language (�), they suggest two extensions augmenting it by
either the jump operator 0 or the relation RE for �recursively enumerable in.� They
also allow parameters �c for any speci�c degrees in all their languages. They prove that
HI is not de�nable by a quanti�er free formula in the language (�;�c) (for any degrees
�c) and conjecture that this is also true for the language with jump, (�;0 ;�c). We a¢rm
their conjecture and prove other similar theorems about these and other sets of, and
relations on, degrees.
In particular, we are interested in another complementary pair of sets of degrees

related to domination properties: the array nonrecursive degrees, ANR, that compute
a function not dominated by the modulus function for 00, and the complementary class
AR of array recursive degrees. In place of the relation RE, we instead study the relation
REA, �recursively enumerable in and above�. Note that while REA is clearly de�nable
from RE by a quanti�er free formula, we show in §6 that the reverse is not true even
by a one quanti�er formula (without parameters). In addition, our intuitions about
relativizing the relation RE really apply to REA and all the examples we know using
RE actually only use REA. Most striking among these is the two quanti�er de�nition
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in this language (without parameters) of ANR as fxj(8y � x)(9z < y)(y REA z)g
([CS]; [C2]).
In studying these low level nonde�nability results, we can also push the quanti�er

bound up in searching for possible de�nitions of these degree classes. For example, we
still do not know whetherHI is de�nable inD (even augmented with the REA predicate
and parameters), and our results show that to de�ne HI we need at least a two-
quanti�er formula with parameters or a three-quanti�er formula without parameters.
One might hope then that the obstacles we meet in proving that HI is not de�nable
by formulae of a certain complexity can help suggest possible de�nitions of HI.
The de�nability of the predicates RE and REA is also a major open question in the

�eld. In particular, we want to see how these two predicates are related to the partial
order (Turing reducibility). Our work on the REA relation (Lemma 3.3 and Theorem
4.2) suggests that the characterization of this relation as given by the modulus lemma
(recalled in the proof of Lemma 3.3 below) is an important technique in studying it.
While some of our results allow parameters, most do not. Including parameters

makes many more classes of degrees easily de�nable. Classic examples include the
degrees of the productive sets: fxjx � 00g; the immune sets: fxjx � 0g; the functions
dominating every recursive function: fxjx0� 000g and the degrees of arithmetic sets (by
the Exact Pair Theorem [Sp]). However, unbridled use of parameters makes everything
possible de�nable as by Slaman and Woodin [SW, Corollary 5.6], the biinterpretability
conjecture holds for D with parameters and so every relation on D de�nable in second
order arithmetic is de�nable from parameters (although their proof does not produce
any simple de�nitions). In fact, they show that there is a single degree c such that
every relation de�nable in second order arithmetic is de�nable from c.
The table below summarizes our current results listing classes and relations not

de�nable by formulas in speci�c classes in one of the three languages indicated with or
without parameters (�c).

Class/Relation Not de�ned by formula in Language see Section(s)
HI �0 (�;0 ;�c) 7
HI �1 (�;�c) 8
HI �2;�2 (�) 9
ANR �0 (�;0 ;�c) 7
ANR �1 (�;�c) 8
ANR �1; �1 (�; REA) 5, 3
ANR �2 (�) 9
HIF �1 (�; REA;�c) 3
AR �1 (�; REA;�c) 3
Jump �1 (�; REA) 5
RE �1; �1 (�; REA) 6
Arith �1; �1 (�; REA) 5
Arith �1; �1 (�;0 ) 9
Arith �2; �2 (�) 9

An anonymous referee has pointed out that our construction in Section 3 actually
leads to a stronger result that the classes AR and HIF are not �1 de�nable in the
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language (�;0 ; REA;�c), and so results in Section 7 follows as corollaries. See details
in the end of Section 3.
We note the particularly tight instances from this table. ANR is de�nable (as noted

above) by a two quanti�er formula in (�; REA) but not by any one quanti�er one. It
is also not de�nable by a �2 formula in just (�). The relation y = x

0 is de�nable
in (�; REA) by a �1 formula (y REA x ^ 8z(z REA x! z � y)) but not by a �1
formula in this language. Arith, the class of degrees of arithmetic sets, is de�nable by
a �3 formula in the language with just �. Rewrite [JS, Theorem 3.3] to eliminate the
join:

Arith = fxj(9y � x)(8zjy 8w(w � z;y! 9u(w > u > z))g.

On the other hand, it does not have a �2 or �2 de�nition in this language.
With REA added to the language, Arith is �2 de�nable as

fxj[8a;b(8c;d((c < a;b) ^ (d REA c)! (d < a;b))! x < a;b)]g.

However, it is not 1-quanti�er de�nable even with REA in the language. In (�;0 ), a
similar formula saying that Arith is the least ideal closed under jump shows that it is
�2 de�nable but again it is not 1-quanti�er de�nable.
All the analyses proceed by �rst �nding an appropriate syntactic normal form for

formulas of the class being analyzed. Typically a second step is to simplify the form
by �nding degrees in the class of degrees being considered with special properties such
as avoiding cones determined by the parameters, being minimal or perhaps also r.e. in
some other degree (or not). Then one needs to do a construction to show that whatever
diagram provided by the witnesses that the special degrees are in the class can be
duplicated with corresponding degrees outside it. This then shows that the formula
cannot de�ne the class being considered. The techniques for the two quanti�er results
with just � depend on standard initial segment and extension of embedding results
and follow similar ones for other classes in Lerman and Shore [LS] and Shore [S]. The
constructions not involving REA are at the moment mostly ad hoc exploiting various
forcing constructions and special facts. Most of our results involving REA depend on
variations on a basic theorem providing a decision procedure for one quanti�er formulas
in the language (�; REA) (see Section 4 and Theorem 4.2).
The �rst half of this paper focuses on the nonde�nability results related to lan-

guages with the REA predicate, and the second half consists of miscellaneous results
on languages without it. We �nish with some remarks and open questions.

2. Basic Notions

Our notions of sets, functions, strings and trees are standard.
In the proofs below we follow the same type of argument for several �1 level non-

de�nability results. For example, to show that AR is not de�nable by a �1 formula
9 �d�(x; �d; �c) (where the c�s are parameters), we assume that there is such a de�nition
and derive a contradiction. First, we construct an AR degree x (with some extra prop-
erties) and, by the assumed de�nition, have degrees �d which are witness for the given
�1 formula. Now we produce an ANR degree y and some �d� such that they satisfy the
same atomic diagram with the parameters �c as do x and �d. This gives us the desired



4 MINGZHONG CAI AND RICHARD A. SHORE

contradiction. (The details are provided in the constructions below). We call the given
degrees originals and the new ones photocopies of the corresponding originals. We also
use the following notation: for each original degree z, z� denotes the photocopy of z
(for example, x� = y in the above setting).
In our constructions involving REA, we use the following limit-modulus characteri-

zation of being REA. It is the relativization of the standard modulus lemma (see [So,
Corollary III.3.4]) and is important in our analyses of the REA relation.

Lemma 2.1. For A �T B, the degree of A is REA the degree of B if and only if
A(x) has a limit approximation g(x; s) �T B with modulus function m(x) �T A, i.e.,
lims g(x; s) exists and equals A(x) and the approximation stops changing by s = m(x).

3. AR;HIF =2 �1(�; REA;�c)

We begin with the easier case of HIF not being de�nable by a �1(�; REA;�c) for-
mula.

Theorem 3.1. HIF is not de�nable by a �1(�; REA;�c) formula.

Proof. Suppose, for the sake of a contradiction, that HIF is de�nable by 9 �d�(x; �d; �c),
i.e., a degree x is HIF if and only if there are degrees d0;d1; : : : ;dn such that �(x; �c; �d)
holds (where �c is a �xed sequence of degrees corresponding to the constant symbols
�c). (For technical convenience we assume that one of the �c is 0.) Now we write � in
disjunctive normal form as  0_ 1_� � �_ k. We can assume that each  i is a complete
diagram in all the degrees involved. For any particular HIF x, one of these disjuncts
is satis�ed and we will consider it for an x of our choosing. Our plan is to construct
a y and some d��s that satisfy the same atomic diagram with the parameters c�s as x
and the d�s do. For convenience we let X be the set of degrees consisting of x and the
d�s and c�s.
We de�ne the required photocopies by constructing a generic g and joining g with

x to get y = x _ g and g with some of the di�s to get d
�
i ; other di�s remain the same.

Now let us think about which of the di�s need modi�cation. Of course, we need to
join the generic g to the di�s above x. We can choose our original x minimal (as there
are minimal degrees in HIF, see [Le, Chapter V]) and so we will not have to worry
about degrees below x. It is possible that some dj above x is REA dk while dk � x.
We also need to add g to dk in this case. Now we must iterate this process. Let Z � X
be the subset of degrees generated from x which is closed upwards and closed under
the REA relation (if z 2 Z and w � z or zREAw, then w is also in Z). This Z is the
set of degrees we need to change.
Of course, we want to make sure that no parameter c is in Z (since we are not able

to change them). By analyzing the de�nition of Z, it is easy to see that if some c is
in Z then x is arithmetic in c (i.e., recursive in c(n) for some n 2 !). So we need to
choose our original x not arithmetic in any of the parameters c. Again we can do this
since there are continuum many minimal HIF degrees.
So we start with a minimal HIF degree x (minimality here is only to guarantee that

x is not REA in any degree below it) which is not arithmetic in any of the c�s and so
no c is in Z. Let di be the witnesses for the �1 de�nition of x 2 HIF. Now we build
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a generic G and let g = deg(G). De�ne y = x _ g and

di
� =

�

di _ g; if di 2 Z;
di; otherwise.

Now we must show that (y; �d�; �c) satisfy the same atomic diagram as do (x; �d; �c). It
is easy to see that all positive relations are preserved by the construction. So we only
need to take care of the negative relations. We need two lemmas.

Lemma 3.2. If g is 1-generic in a_b and a � b, then a � b_g (and so a_g � b_g.)

Proof. This is a standard fact about 1-generics. �

Lemma 3.3. If g is 2-generic in a _ b and a is not REA b, then a _ g is not REA
b _ g (and so a _ g is not REA b).

Proof. By Lemma 3.2, we can assume that b < a. By the same Lemma, we may also
assume that a � b0 as being 2-generic in a _ b makes G 1-generic in a _ b0 and so, if
a � b0, a � b0 _ g =(b _ g)0 as required (every 1-generic is GL1). By the limit lemma
then, we can �x a B-recursive approximation As to A.
By the limit-modulus characterization of being REA (see Lemma 2.1), we want to see

that for any 2-generic G, there is no pair (�;	) of reductions such that �B�G(x; s) is a
limit approximation ofA�G and	A�G(x) is a modulus function for this approximation.
Consider then any (�;	).
First, we can assume that the totality of � and 	 is forced and so for any � (a

possible initial segment of G) and any input (x; s), there is always a � � � such that
�B�� (x; s) and 	A�� (x) both converge. (This is a two quanti�er question and we
consider only conditions � extending the one forcing totality.)
Next, we can assume that we consider only conditions extending one forcing that

�B�G gives a limit computation ofA�G and that	A�G provides a modulus function for
it. (These are again guaranteed by two quanti�er statements: 8x; s9t > s(�B�G(x; t) =
(A � G)(x) and 8x; v(	A�G(x) = v ! 8v0 � v(�B�G(x; v0) = (A � G)(x)).) Thus if
�B��

0

(2x; v) #6= A(x), then there is a � 00 � � 0 and a v0 > v such that �B��
00

(2x; v0) #=
A(x) and if 	A�� (x) #= v and �B�� (2x; v) #= a then A(x) = a.
Now we argue that in this situation we can produce a B-recursive limit computation

of A with an A-recursive modulus function for the desired contradiction. Given x and s
consider all v; � � � 0; t (all bounded by s) such that 	At��s (2x) = v and �B��

0

s (2x; v) =
a. If there are no such v; � � � 0; t then our approximation says A(x) = 0. If every
such quadruple v; � � � 0; t gives the same value a then we say A(x) = a. If di¤erent
v; � � � 0; t give di¤erent values for a, then for each of them we look for a � 00 � � 0

and v0 � v such that �B��
00

(2x; v0) 6= �B��
0

(2x; v). By our assumptions, we must �nd
such � 00 and v0 for all v; � � � 0; t with �B��

0

(2x; v) 6= A(x). Thus we are left with
only one seemingly viable possible value for A(x) and we say that it is the value of our
approximation at s.
We want to show that this procedure gives a correct limit computation of A(x) for

each x. Consider any v; � � � 0 such that 	A�� (2x) #= v and �B��
0

(2x; v) #= a and
any t such that At is correct on the use of the �rst computation and also larger than
the number of steps needed for both computations to converge. This tuple v; � � � 0
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and t will be one we �nd at every s � t. Moreover, the computations of 	At��s (2x) = v
and �B��

0

s (2x; v) = a at s are correct computations from A and B. If there were any
� 00 � � and v0 > v such that �B��

00

(2x; v0) 6= �B��
0

(2x; v) we would contradict our
having forced �B�G to be a limit computation of A�G with modulus function 	A�G.
Thus, our procedure can never eliminate the value a and so that is the limit value of
our approximation. Again, by our assumptions, it is also the correct value of A(x).
Finally, it is clear that A (which, remember, computes B and so the approximation As
as well) can �nd such a stage s and so a modulus function for our approximation. �

Using Lemmas 3.2 and 3.3, it is now not di¢cult to argue case by case that negative
relations are also preserved. Consider �rst two degrees a � b in X. Their photocopies
are either unchanged or gotten by joining with g. It is obvious that a _ g � b. The
other two cases follow from Lemma 3.2.
Now take two degrees a not REA b. If a is not Turing above b, then a� is not Turing

above b� by the above argument, and so not REA b�. So we can assume that a > b.
In our procedure, if we join g to b to get b�, then we also join g to a to get a�. That is,
we don�t need to consider the case a not REA b _ g. The remaining two cases follow
from Lemma 3.3.
By genericity g and so y = x _ g is HI ([J2]) for the desired contradiction. �

We can now note that this argument gives the analogous result for AR.

Theorem 3.4. AR is not de�nable by a �1(�; REA;�c) formula.

Proof. We again begin with an AR minimal degree x which is not arithmetic in any of
the parameters (using standard minimal degree construction with cone avoiding) and
build the required photocopies as above. Now note that any 2-generic is ANR (the
set of conditions making the principal function of the generic be larger (at n many
inputs) than the modulus function for 00 are dense and �01). As ANR is, like HI,
closed upward, our y = x _ g is also ANR as required. �

Remarks. It is natural to ask whether this last result holds with REA replaced by
RE. In fact, it is actually not di¢cult to prove, in analogy with Lemma 3.3, that if a
is not r.e. in b (not necessarily above), and g is 1-generic in a_b, then a is not r.e. in
b _ g either. Indeed if A is not r.e. in B then A � G is not r.e. in B � G. However,
we do not know whether the degree a _ g is r.e. in b _ g or not.
In addition, as pointed out by an anonymous referee, based on the proofs above, we

can actually show that HIF (or AR) is not de�nable by �1 formula in the language
of order, jump and REA, i.e., we can add the jump to the language.
First of all, we need to split the formulas regarding double (or higher) jumps into

single ones. For example, x00 = b is rewritten as (x0 = y) ^ (y0 = b) (with y bounded
by an existential quanti�er), so for our purpose we can regard the jump as a binary
relation symbol.
The construction is essentially the same as in the proof above. We pick a su¢ciently

generic degree g and join it with the degrees in Z. Now we only need to show that
both positive and negative �jump relations� are preserved.
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Consider a = b0 as originals. If we join g to a in the construction, then we have to
join g to b as well (since a is REA b). Note that 1-generic degrees are GL1, and it
easily relativizes to (b _ g)0 = b0 _ g = a _ g. Therefore the positive jump relations
are preserved.
For the negative ones, by Lemmas 3.2 and 3.3, we only need to consider the case

when a is REA b but a is not b0. Now again by Lemma 3.2, a _ g is not above b0 for
any g which is 1-generic in a _ b0, therefore a _ g 6= (b _ g)0.
Our results in Section 7 now follow as a corollary. We nonetheless provide a separate

proof there because it illustrates a di¤erent approach and directly answers Miller and
Martin�s original question.

4. Decidability of the �1 theory of (D;�; REA)

The construction in the previous section heavily uses the given partial order of the
originals to preserve the positive relations. This idea cannot be used to solve similar
problems for HI and ANR simply because both classes are upward closed and so, for
example, there is no way to build a degree y above a given ANR x as its photocopy
and have y be AR. So what we need to do is to build some photocopy y with some
d��s by some di¤erent construction and still make them look like the originals.
This is in general not easy: In addition to building such a y, we also need to build

some d��s satisfying some given order and REA relations. Especially in the ANR case,
we probably need to build some d� below y such that y is REA d�. (Recall that every
ANR degree is RRE, i.e. it is r.e. in some degree strictly below it [CS]). So as the �rst
step towards the solution of our problem we try to investigate the embedding problem,
i.e., which (�nite) partial orders with some extra REA relations and their negations
can be embedded into the Turing degrees (D;�; REA).
We begin by listing some obvious properties that such a partial order must satisfy.

To simplify our analysis we take the REA relation to mean r.e. in and strictly above.
This certainly entails no loss of generality as each version of the relation is de�nable
from the other by a quanti�er free formula.

De�nition 4.1. An REA partial order (REA-PO) is a partial order � with an extra
binary relation REA satisfying the following two axioms:

Strict-Order: a REA b ) a > b.
Transitivity: a REA b ^ a > c > b ) a REA c.

It is easy to see that, if one takes a �nite collection of Turing degrees and considers
the REA relations among them, they form an REA-PO with the natural de�nitions of
the order and REA relations. Not too surprisingly, the converse also holds (although
the proof is not as easy as might be expected).

Theorem 4.2. Every �nite REA-PO can be embedded in (D;�; REA).

The proof of this theorem has several pieces.
Suppose we are given a �nite REA-PO A = fa1; a2; : : : ; ang. For each ai, we want

to construct a set Gi and some pairs l
j
i �s and m

j
i �s of functions. The Gi are generic

objects similar to the ones used for the standard embedding of �nite partial orders in
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D. Each pair lji (x; s) and m
j
i (x) is devoted to the REA requirement ai REA aj. We

try to make lji (x; s) a limit computation of the set Ai we want to build of degree ai
with mj

i (x) a modulus function for this approximation (see Lemma 2.1).
The degrees we are going to construct are de�ned inductively from the bottom of

our REA-PO up. We let:

(y) : Ai = Gi �
M

ai>aj

Aj �
M

aiREAaj

(lji �mj
i )�

M

akREAai

lik:

Each Ai is simply a join of G�s, l�s and m�s. We let ai = deg(Ai). (Note that each
Ai is a function.) We say that the sets and functions (G�s, l�s and m�s and other A�s)
mentioned in this formula appear in (the de�nition of) Ai.

4.1. Forcing notion. We now de�ne a notion of forcing P. A condition in P is
a collection p of �nite initial segments of the G; l;m�s as above such that each mj

i

appears to be a modulus function for lji which limit computes Ai as far as m
j
i can tell.

This means that when mj
i (x) has been de�ned at some x, then the corresponding limit

computation lji (x; s) cannot change beyond s = mj
i (x), and the �nal value l

j
i (x;m

j
i (x))

equals Ai(x), which we require to be de�ned if m
j
i (x) has been de�ned.

We say such pair lji (x; s);m
j
i (x) (or any one of them) is associated with the value

Ai(x) (and vice versa). Note that in Ai, such m
j
i (x) is always coded in a position after

Ai(x) by the formula (y) above (i.e., m
j
i (x) = Ai(x

0) where x0 > x). This fact will be
useful later.
A forcing condition q extends p if each �nite initial segment extends the correspond-

ing one. (This automatically implies that q does not violate the l-m rules p imposes.)
It is easy to see that both the set of forcing conditions and the extension relation are
recursive.

4.2. Positive order and REA requirements. To see that positive order require-
ments (Aj �T Ai) and positive REA requirements (Ai REA Aj) are satis�ed, we only
need to show that, given a forcing condition p, one can �nd an extension q of p where
the domains of Aj and Ai are extended, or equivalently, it su¢ces to know how to
extend individual sets or functions G; l;m�s.
Note that in a forcing condition, it is possible that Ai(x) is de�ned but some asso-

ciated limit computation l �m has not yet settled down, i.e., mj
i (x) is still unde�ned.

To extend G, we simply extend it (indeed, arbitrarily) without changing anything
else. It is easy to see that the extension q we get satis�es the de�nition of a condition.
To extend l, we only need to follow the rules m set up. That is, if some mj

i (x) has

been de�ned, then lji (x; s) for s � mj
i (x) has to be de�ned to be the same as Ai(x). If

the corresponding m has not yet been de�ned, then we can extend l freely.
To extend m, we �rst recall that, in the formula de�ning Ai ((y) as above), any

modulus value mj
i (x) is coded at a position x0 after the value Ai(x) with which it

is associated. Therefore here we can assume that this Ai(x) value has already been
de�ned. Then we �nd the initial segment where the corresponding lji function has been

de�ned. We may need to extend lji for one more change to make it agree with the
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value of Ai it limit computes. Then we can de�ne m
j
i to be the last number at which

lji changes. For example, suppose we want to de�ne m
j
i (x). At the moment l

j
i (x; s) has

been de�ned up to some s0 and the last value is t, where Ai(x) = t0 which might be
di¤erent from t, and so we need to extend lji (x; s) further with value t

0. Then we de�ne

mj
i (x) to be the last s where l

j
i (x; s) changes (for example, in this case m

j
i (x) = s0+1).

Therefore when we construct a generic �lter and let ai = deg(Ai) all the positive
order and REA requirements are automatically satis�ed.
Now we must show that the negative order and REA relations in our REA-PO are

also preserved. We �rst consider the nonorder requirements and argue that su¢cient
genericity su¢ces to satisfy them.

4.3. Negative order requirements. Say we have a �xed requirement Ai 6= �(Aj)
and a forcing condition p, and we want to �nd a forcing condition q extending p which
forces Ai 6= �(Aj).
Our construction here is not the easiest possible, but we want to introduce a module

of �modi�cation� that we will use later for the negative REA requirements.
We pick the �rst unde�ned number Gi(x

0) = Ai(x) (this implies that all associated
modulus mk

i (x)�s are unde�ned in p). We ask whether there is a forcing extension q of
p which forces �(Aj;x) #. If not, then p already forces Ai 6= �(Aj). If so, we pick such
q and check if its Ai(x) equals �(Aj;x) or not. Note that if Ai(x) is still unde�ned,
then as argued in §4.2, we can extend q and de�ne Ai(x) to be any value we want, and
in particular we can make it di¤erent from �(Aj;x). If at p, Ai(x) is di¤erent from
�(Aj;x), then p already forces Ai 6= �(Aj). So we only need to handle the case when
Gi(x

0) = Ai(x) = �(Aj;x) at p.
Now the plan is to change q to q0 by modifying Ai(x) together with some associated

l-m pairs. We call this a modi�cation process. In q, we �rst change Gi(x
0) = Ai(x) to

be a di¤erent value. This value is associated with some limit computation l-m pairs
(lki (x; s)-m

k
i (x)) for Ak limit computing Ai. In order to make a new forcing condition

q0, we may need to change some of the values of some of these l-m pairs. In this case,
for each l-m pair whose limit value needs modi�cation, we make m(x) large and extend
l to change the limit value without changing the current values. For example, if the
current mk

i (x) has been de�ned and l
k
i (x; s) has been de�ned up to s = s0, then we

let the new value of mk
i (x) be s0 + 1, and extend l

k
i (x; s) to change the limit value at

s0 + 1 which agrees with the new Ai(x).
Note that in the forcing notion, each lki limit computation corresponds to a unique

modulusmk
i , and so here there is no worry that the extended limit computation function

lki con�icts with other coding requirements.
For each m value modi�ed, we need to inductively change its own associated limit

computation (as a value of A(x)) in the same way. We will see that we eventually �nish
this modi�cation process and get a new forcing condition q0 where Ai(x) is di¤erent.
Brie�y, we have a queue of l-m pairs we need to modify. Each time we pick the

�rst one from the queue, change its m value and extend l, and then add all existing
l0-m0 pairs for limit computing the m value we just modi�ed into the end of the queue.
As we noted earlier, for such l0-m0 pairs, the m0 value is coded after the m value it is
associated with, so this modi�cation process will eventually stop.
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Now we want to show that in q0, the computation of �(Aj;x) remains the same
as that in q, i.e., the use of Aj is unchanged. Each m

k
i (the modulus of some limit

computation for Ai) only appears in Ai and all Al above Ai, therefore it is not di¢cult
to prove by induction that in the above modi�cation process, the only modi�ed values
are in Ai or in some Al which are above Ai. Since aj � ai, Aj will not be changed up
to the use of �(Aj;x) at q. So the new forcing condition q

0 forces Ai 6= �(Aj). Here is
the lemma (as proved above) which we will need later for the REA case.

Lemma 4.3. In this modi�cation process, the only changed values (other than the
initial one at Gi(x

0) = Ai(x) are in m�s that correspond to limit computations of Ai or
some Al above Ai.

In addition, note that we chose Ai(x) to be unde�ned at p, and if some modulus
functionm is de�ned at p, then the associated A value is also de�ned at p (see de�nition
of the notion of forcing in §4.1). Then it is easy to prove by induction that none of the
modi�ed values from q to q0 are already de�ned at p. As a result, q0 still extends p.
This shows that we can always �nd an extension of a given p which forces Ai 6= �(Aj).

4.4. Negative REA requirement. Now we want to deal with negative REA require-
ments: :(Ai REA Aj). First of all we only need to handle this requirement for pairs
Ai > Aj. In addition, by the Transitivity Axiom we know that there is no ak < aj such
that ai REA ak. This will turn out to be the crucial property we need to show that
the Aj part of a condition is not changed in some modi�cation processes. For example,
for all l-m pairs in Ai which aim to limit compute Ai(Gi), neither l nor m appears in
Aj. This fact will be used in the proof that Aj is unchanged after some modi�cation
process (see Lemmas 4.4 and 4.7).
Recall that we need to make sure that the degree of Ai is not REA the degree of

Aj, so in order to satisfy the requirement, we need to make sure that none of the pairs
�(x; s) = �(Aj;x; s) and �(x) =M(Ai;x) form a limit computation-modulus function
pair for computing Ai. So suppose we are given a forcing condition p and such a pair
of functionals (�;M) and we want to �nd a q which forces that (�;M) is not a limit
computation pair for Ai. We use the notation Mp(�i;x) to mean M(�i;x) where �i is
the �nite initial segment of Ai in the forcing condition p.
First we try to force totality of both functionals. We ask whether there is a forcing

extension q � p and a pair hx; si such that no r < q makes �r(�j;x; s) converge. If so,
q already forces the requirement. Similarly we can force the totality of M(Ai).
Now we ask if there is a forcing extension q of p and an x which sees that Mq(�i;x)

is not the modulus of �q(�j;x; s), i.e., Mq(�i;x) #= t but �q(�j;x; s) changes after t.
If so, such q also forces the requirement.
Similarly we can also ask if it is the case that the �nal value does not equal Ai(x).

If so, we are also done. So if none of these questions have a positive answer, then we
have a forcing condition p which forces totality of both � and M (in a weak sense as
above), and forces that M is a modulus for � limit computing Ai in the sense that for
every x and for every extension q � p, if Mq(�i;x) converges, then �q(�j;x; s) stops
changing within modulus Mq(�i;x), and the �nal value equals �i(x) (at q).



LOW LEVEL NONDEFINABILITY RESULTS: DOMINATION AND RECURSIVE ENUMERATION11

Now we want to derive a contradiction. Similar to the negative order construction
above, we �nd the �rst x such that Ai(x) = Gi(x

0) has not yet been de�ned at p. The
plan is to use what we have forced above to construct an extension of p which forces
that (�;M) is not a limit computation pair witnessing Ai REA Aj. In other words,
we want to derive a contradiction and so the above scenario cannot happen in the
construction.
By our assumption, we can �nd an extension q � p such that Ai(x), Mq(�i;x) = s0,

�q(�j;x; s0) = Ai(x) have all been de�ned.
In q, we want to change Ai(x) = Gi(x

0) (say = 0) to a di¤erent value (1). In order
to make a new forcing condition, we may have to change various l-m functions as well.
The plan here at this step is the same as that in the negative order construction

(§4.3): For each l-m pair we need to modify, we change the value of m to a large
number and extend the l part. So the values that need to be changed are all in m�s.
It follows by induction that these values are in some m�s that only appear in Ai or in
A�s above this Ai. In particular, the Aj part of q is preserved in this process (Lemma
4.3). Let us call the new forcing condition q0. Also note that by the same argument as
in the last paragraph of §4.3, this q0 extends our original forcing condition p.
Now again by our assumption, we can extend q0 to r0 where Mr0(�i;x) #= s1 and

�r0(�j;x; s1) = 1, i.e., the new value of Ai(x). It is obvious that s1 > s0 since q
0 does

not change the Aj part of q and so �q0(�j;x; s0) = �q(�j;x; s0) = 0.
Then we want to change r0 �back� to r such that the Ai part is changed back to what

it was in q. That is, change Ai(x) back to 0 and do another chain reaction modi�cation.
The modi�cation process here is a bit trickier than what we used above to go from

q to q0. The new rule is as follows: Step by step we modify values and add the new
l-m pairs we need to modify to the end of a queue. Each time we take the �rst pair
from the queue. If the place at which the m in the l-m pair needs modi�cation is z
and m(z) = Ai(z

0) is already de�ned at q, then we change m(z) back to its old value
at q and change all l values after the old modulus at q back to their old limit values.
Then, we add all existing l0-m0 pairs for computing m and the l values we just modi�ed
into the queue. Otherwise (even if they are in the current Ai but the m value is not
de�ned at q) we rede�ne m to be large and extend the l part, and add the associated
l0-m0 pairs for computing m to the queue. (The reason why this process will eventually
stop requires some extra work, see Lemma 4.5 below.)
In the �rst option, we say both l and m are modi�ed, and in the second option, we

say m is modi�ed but l is extended.
Now we need a few lemmas to show that this new forcing condition r gives a desired

contradiction.

Lemma 4.4. The values that are modi�ed in this process are either in l�s appearing
in some Ak that enumerates Ai (and hence not below Aj) or in m�s appearing in sets
above any of these Ak�s or Ai.

Proof. When we changed q to q0, the modi�ed values are in m�s which are modulus
functions which correspond to limit computations for Ai or for some Al above Ai
(Lemma 4.3). So here when we apply the �rst option modi�cation, it must be the case
that the m�s we changed back correspond to limit computations that compute Ai but
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do not appear in any sets strictly below Ai. Therefore according to the construction,
the only case in which some l values get modi�ed is when they are in some Ak that
enumerates Ai. The second option modi�cation only changes m without changing
l (i.e., the chain reaction for such modi�cations only result in modifying functions
appearing in higher A�s), and so the lemma follows. �

Lemma 4.5. The second modi�cation process eventually stops.

Proof. By the proof of the previous lemma, the only modi�ed l values are those which
are used for some Ak enumerating Ai and which were extended in the �rst modi�cation
process (from q to q0). There are only �nitely many l positions to modify, and remaining
modi�cations happen only in modulus values which are coded after the values they are
associated with. Therefore the modi�cation eventually stops, as the forcing condition
is �nite. �

Lemma 4.6. After this modi�cation, r is a valid forcing condition.

Proof. This is straightforward. In both cases, when we change some value A(z) which
has limit computation l-m, we always guarantee that we modify (or extend) this pair
as well so that the limit computation is correct. �

Lemma 4.7. After this modi�cation, the Aj part of r
0 is compatible with that of r.

Proof. By Lemma 4.4, no values in Aj will be modi�ed in this construction (though it
may get extended). �

Lemma 4.8. After this modi�cation, the Ai part of r is compatible with that at q.

Proof. In particular, this is because the values that need second option modi�cation
in sets below Ai are all unde�ned at q. When we changed q to q

0, we modi�ed m and
extended l, and so when we change m back, all l�s that are modi�ed are unde�ned at
q. Now it is not di¢cult to prove that step by step following the same procedure as
in the modi�cation from q to q0, the �rst option changes Ai back to its old version at
q. �

It is also easy to prove by induction that r < p since none of these modi�cations a¤ect
p where Ai(x) is unde�ned. Now we get a contradiction. By Lemma 4.8 Mr(�i;x) =
Mq(�i;x) = s0 but by Lemma 4.7 �r(�j;x; s1) = �r0(�j;x; s1) = 1 6= Ai(x). This
�nishes the proof of Theorem.4.2.

Corollary 4.9. The �1 theory of (D;�; REA) is decidable.

Remark. It is possible to prove Theorem 4.2 for countable REA-PO�s by modifying the
notion of forcing to allow the sets and functions to be drawn from the natural countable
set but restricting any condition to mention only �nitely many of them.

5. Some nondefinability corollaries

We �rst try to analyze the construction of the previous section and see how low down
in the degrees we can embed our REA-PO.
It seems that we asked 000 questions in satisfying the negative REA requirements.

However, the proof can be rephrased as a 00 construction.
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We start with p and pick Ai(x) to be unde�ned. We �rst try to force M(�i;x) to
converge (one question to 00) and if this is possible we then try to force convergence of
�(�j;x;M(�i;x)) (one question to 0

0). So we get a forcing extension q � p.
We change q to q0 as in the proof by changing the value of Ai(x) (recursive construc-

tion) and extend q0 to r0 (again two questions to 00). Then we change r0 back to r by
changing Ai(x) back (recursive construction) and the proof ensures that r extends p
and forces that Ai is not limit computed from �(Aj) via modulus M(Ai).
In summary, we only need to ask at most four questions to 00 to get the forcing

extension we need. Moreover, it is easy to see that forcing negative order requirements
only requires one question to 00, and one can add in requirements to force the jump of
each Ai, so by standard arguments one can embed the REA-PO in the superlow degrees
(a degree a is superlow if a0 �wtt 0

0). Every superlow degree is array recursive (see
[Sc, Prop 6.3]), and so every �nite REA-PO can be embedded into the array recursive
degrees. By a similar argument as before, we get the following:

Theorem 5.1. ANR is not de�nable in (D;�; REA) by a �1 formula.

In addition, we get the exact de�nability bound of the Turing jump in (D;�; REA):

Theorem 5.2. The Turing jump is de�nable in (D;�; REA) by a �1 formula but not
by a �1 formula.

Proof. For the claim about de�nability, note that y = x0 is the maximum degree which
is REA x, i.e., y = x0 if an only if (y REA x) ^ 8z(z REA x) z � y).
For the nonde�nability claim, assume that the jump is de�ned (as a relation) by

9 �d�(x; y; �d). Consider any y = x0 and the corresponding witnesses �d. One can embed
the REA-PO given by x;y; �d into the superlow degrees and there the photocopy y�

cannot be the jump of x�, which gives the desired contradiction. �

It is not di¢cult to see that we can embed a �nite REA-PO into Arith, the degrees
of arithmetic sets, and also into non-Arith, the complementary class of degrees of
nonarithmetic sets. Therefore the same argument as above yields the following.

Theorem 5.3. Arith is not de�nable in (D;�; REA) by a �1 or �1 formula.

6. r.e.,non-r.e: =2 �1(�; REA)

In this section we use the same methods to show that �r.e. in� (y is r.e. in x) is not
de�nable in (D;�; REA) by a �1 or a �1 formula.
First of all, to show that �not r.e. in� is not de�nable by �1 formula, we start with

incomparable originals x and y such that y is not r.e. in x (simply take two minimal
degrees that are �far away� from each other). Now we have a list of witnesses �d and
an REA-PO (x; y; �d).
To this REA-PO we add a new element m and make it below both x and y, and so

m is automatically below the elements which are above either x and y. In addition,
we make it incomparable with all the other elements (elements that are above neither
x nor y). For the REA relation, we make y REA m but no other new REA relation
hold. It is not di¢cult to check that the new partial order (x; y;m; �d) is an REA-PO,
and so by Theorem 4.2 we can embed this REA-PO into (D;�; REA). After removing
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the degree which corresponds to m, we get photocopies of our original degrees with the
desired contradiction that y� is now r.e. in x� since it is REA in m which is below x�.
To show that �r.e. in� is not de�nable by �1 formula, we need a bit more work. We

start with incomparable originals x and y such that y is r.e. in x and y is minimal.
(We can �nd such a pair by, for example, the construction of a minimal degree which
is �2 but not �2 from [S2].)
Now by our argument we have an original REA-PO (x; y; �d) with the extra property

that there is no d below both x and y such that y bounds some z which is REA d (by
our extra condition on x and y above).
We follow the same forcing construction as in Theorem 4.2 to make photocopies with

an extra requirement that y� is not r.e. in x�.
So it su¢ces to deal with this extra requirement here. For convenience we use aj

and ai to respectively denote x and y (so we want to make deg(Ai) not r.e. in Aj).
Here we want to diagonalize against all triples of functionals (�;	;W ) where � and

	 give the reductions between Ai and some set Y in the same degree (	(�(Ai)) =
	(Y ) = Ai), and W (Aj) gives an Aj-r.e. set which equals Y .
Of course we can start to diagonalize against a given triple (�;	;W ) by asking

whether we can force � or 	 to be partial, or if their composition gives some set which
is di¤erent from Ai, or whether we can force Y = �(Ai) 6= W (Aj). If all these attempts
fail, we show that along the generic �lter Y �T Aj and so get a contradiction (we can
make Ai and Aj Turing incomparable).
We only need to show that Y is co-r.e. in Aj. To tell if some y =2 Y , we try to �nd

a forcing extension q of p such that the Aj part of q is the true one (agrees with the
generic �lter in the end) and �q(�i; y) = 0. Whenever we �nd such q we claim that
y =2 Y .
It is easy to see that if y is not in Y , then along the generic �lter we can always �nd

such a forcing condition q. The hard part is to show that if y is in Y then we cannot
�nd such q. We assume for a contradiction that there is a q � p such that its Aj part is
correct (compatible with the generic �lter) and �q(�i; y) = 0 but W (Aj; y) = 1. Now
we want to extend this q to get a forcing condition which forces that �(Ai) 6= W (Aj).
The idea is, of course, that we can extend the �j part of q until we see W (Aj; y) = 1.
The problem is that, q might have promised some modulus requirements which may
not be compatible with the real Aj up to the use which enumerates y into W (Aj).
This is handled in a modi�cation process similar to what we used in Section 4. Start-

ing from q, we extend the �j at q following the real Aj up to the use ofW (Aj; y) = 1. If
the added values do not cause a contradiction (i.e., they still obey the forcing condition
requirements), then we do nothing. Once we detect that there is a contradiction, we
want to modify some values. The contradiction comes from either G, l or m which
appears in Aj. There will be no problem for m, because the corresponding limit com-
putation l also appears in Aj (we know Aj itself, which comes from the generic �lter, is
consistent); there will be no problem for G either, since at q, if we have decided some
modulus function, then the corresponding G is also de�ned. The only trouble is to
extend l where the m function does not appear in Aj. For example, some m function
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(appearing in some Ak REA Aj) may have decided a small modulus, but Aj may have
changes after that small modulus.
Once we see such a situation, we know that this pair l-m needs modi�cation and add

them to the queue. The modi�cation process goes exactly as in §4.3, i.e., we change the
modulus to be large and extend the limit computation, then add in the corresponding
l0-m0 we need modify into the end of the queue.

Lemma 6.1. The values that are modi�ed in this process are m values which appear in
some Ak which is REA some Al appearing in Aj (including Aj itself), or a set above
any of such Ak�s. In addition, such Ak do not appear in Aj.

Proof. By our argument above, the �rst modi�cation happens when Aj contains some
limit computation l but not the modulus, which corresponds to limit computing some
Ak REA Al in the lemma. Then the chain reaction only happen atm�s which are above
such Ak�s. Since Aj does not contain the modulus which needs modi�cation, such Ak
are not below Aj. �

By our extra condition (recall that x is minimal and so not above any degree REA any
degree below y) and by the above lemma, one can see that Ai will remain unmodi�ed
in the process. Also by the lemma, we know that Aj will remain unmodi�ed (but could
be extended). So we can get a new forcing condition q0 < p (it is easy to see that the
p part of the forcing condition is unmodi�ed in the process) such that its Ai part is
the same as that in q (�q0(�i; y) = �q(�i; y) = 0) but Wq0(Aj; y) = 1. This gives the
desired contradiction.

7. ANR; HI =2 �0(�;
0 ;�c)

With the jump added to our language, things get more complicated. Suppose we
need to build two degrees y > x. When we build x, there is a lot of freedom to choose
y. Even if we require y REA x, we can still choose from a countable class of degrees.
However if we have y = x0, then we have no choice at all when we �x x. In particular,
the following question is still open:

Question 7.1. Which degrees above 00 are jumps of HIF degrees?

We don�t even know whether this class (jumps of HIF degrees) is closed downwards
(for degrees above 00, of course).
This is actually a big obstacle for nonde�nability results even in the quanti�er-free

case. For example, it is hard and sometimes impossible to construct an HIF degree
whose jump is above a �xed c > 00 (If the jump of a degree is above 000, then the degree
is automatically hyperimmune, see for example [J1]). Miller and Martin conjectured
that HI is not de�nable by quanti�er-free formulae in (�;0 ;�c), and here we con�rm
this conjecture by proving the equivalent proposition that HIF is not quanti�er-free
de�nable.

Theorem 7.1. HIF is not de�nable by a quanti�er free formula in (�;0 ;�c).

Proof. Using the same type of argument as in §3, we have an original x which is HIF
and a quanti�er free de�nition of HIF with constants �c. As before, we will choose a
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particular x. For example, we can take our x to be incomparable with all nonrecursive
constants appearing in the formula. We regard all the jumps of constants as constants,
i.e., for each constant c, if c0 appears in the formula we will add a new constant ~c and
add c0 = ~c as a conjunct (for convenience we still write c0 but regard it as a constant).
Once x is chosen, we can assume that our formula is a conjunct of atomic formulas or
their negations which specify a complete diagram in � for the (�nitely many) x;x0; : : :
and �c appearing in it.
We now think of the conjuncts (atomic formulae or negations of atomic formulae)

appearing in our formula as a list of requirements. We can remove the requirements
that involve a degree and its own jump (or iterated jumps) such as x � x0 or x0 � x000

which, by basic results about the jump, must be satis�ed by all degrees. Similarly
we omit any conjunct of the form 0 � z. We can also assume that no obviously false
conjuncts are included, i.e. the diagram is consistent with the axioms for a jump partial
order ([HS]).
So the remaining requirements look like the following:

 : P (x0) ^
^

i2I1

(x � ai) ^
^

i2I2

(bi � x);

where P (x0) is the collection of all conjuncts about x0 (or higher jumps such as x00 and
x000) but not about x.
Our plan is to build a photocopy hyperimmune degree y whose jump is x0 (so y

automatically satisfy P (x0)) and such that y satis�es all remaining conjuncts in  .
Then we get our contradiction because y satis�es  , but is hyperimmune.
To get such a degree we build y low above x. This guarantees that its jump is

the same as x0 and it is hyperimmune since it is relatively �2 ([MM, Theorem 1.2]).
(Note that using x0 as an oracle, it is easy to make sure that y � x0.) We use �nite
forcing to build initial segments �i recursively in x

0 and let [i�i = Y . We then take
y = deg(X � Y ) where X 2 x and so guarantee that y � x. In the construction we
force the jump of X � Y as we go along. Therefore (X � Y )0 �T X

0, i.e., y0 = x0. To
�nish the proof we discuss how to satisfy all the requirements in the conjuncts listed
in  .
Avoiding lower cones (y � ai) is automatic: each ai is not above x, so it cannot be

above y as y � x.
For upper cones, note that we only need to consider those bi�s that are below x

0:
otherwise y cannot be above such bi. Now given � we can ask whether there are two
extensions � 0 and � 1 of � such that (X � � 0)je(X � � 1), i.e., there is an n such that
'X��0e (n) #6= 'X��1e (n). If so, we take the one which di¤ers with a �xed Bi 2 bi. If
not, we can easily argue that the function 'X�Ye is recursive in X if it is total, and so it
is not equal to Bi as bi � x. In either case we can satisfy the requirement bi � y. �

Corollary 7.2. AR is not de�nable by a quanti�er free formula in (�;0 ;�c).

Proof. As HIF implies AR, we can begin with a quanti�er free de�nition of AR in
(�;0 ;�c) and analyze it as in the proof of the Theorem for the same x. The same
construction of y can easily be augmented to make it ANR simply by making its
principal function in�nitely often be larger than the modulus function for 00 while
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staying recursive in x0. This produces an ANR degree y which, as above, satis�es the
assumed quanti�er free de�nition of AR for the desired contradiction. �

8. HI, ANR =2 �1(�;�c)

Theorem 8.1. HI and ANR are not de�nable by �1(�;�c) formulas.

Proof. The proof is essentially the same for both classes. We give the analysis for
HI and simply note any comments needed for ANR in brackets []. We follow the
same general strategy and use the same notations as in the previous sections. That
is, we have a hyperimmune [array nonrecursive] degree x and a sequence of witnesses
d0; : : : ;dn which satisfy a �1 formula 9 �d'(x; �d; �c) where c�s are parameters. We write
' in disjunctive normal form and by a suitable choice of x can pick one disjunct  
(which is a conjunction of atomic formulae or their negations) which says that x is not
in the lower cone or the upper cone of any ci. Our plan is to �nd some new d

�
0; : : : ;d

�
n

and a new hyperimmune-free [and so array recursive] y which satisfy  .
Recall our notation which, given an original degree z, has z� denote the corresponding

photocopy. In this construction, if z = x, then z� = y; if z = di, then z
� = d�i ; and

if z = ci, then z
� = ci. In the same fashion, if we have a set S of degrees, we let

S� = fz� : z 2 Sg. Now we �x S as the set of degrees x and all di which are below x.
We will need to impose some extra conditions on  before we begin our construction

but initially our plan is as follows: First, we �nd y and some degrees d�i below it such
that the these degrees provide the same partial order on S� as that given on S by x
and the di�s below x. We then use a construction similar to the one used in Section 3
to build the other d��s above members of S�.
For convenience we let d0; : : : ;dl be the d�s below x. The problem is that, for

example, if d0 is below some ci, then it is di¢cult to build our d
�
0. In particular, it

might be very hard to make it hyperimmune-free (as we need to make y hyperimmune-
free [and so array recursive]).
Thus we also assume that in  , there is no formula of the form di � c for 0 � i � l

and any constant c. The reason we can make this assumption is that we can take x
to be a hyperimmune degree which avoids all upper cones above any nonrecursive d
which is below any constant c. This is a countable list of requirements and we can
use standard constructions to get a 1-generic hyperimmune [and so array nonrecursive]
degree which avoids these cones.
Now we follow our plan: �rst we build y and d�0; : : : ;d

�
l which provide the same

partial order on S� as x and d0; : : : ;dl do on S and make sure that y is hyperimmune-
free [and so array recursive] and the following holds:

(�) For any subset of degrees T � of S�, any �nite set R of constants and any �xed
degree z among the x, ci�s and di�s, if the join of all degrees in T [ R is not above z,
then the join of all degrees in T � [R is not above z�.

This property seems ad hoc, but in fact it is natural and essential in the construction.
For example, it implies that y is not above or below any of the ci�s. Later this property
will also guarantee that when we construct other d��s, we do not get a degree which is
too high by joining it with some degrees we already have.
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To carry out the construction of S� with property (�), we use the uniform tree con-
structions using usl tables which are used to build initial segments of D and with which
we assume familiarity (see [Le, Chapter VI]). We need to satisfy the usual conditions
preserving the usl relations as given by those on S as well as those that force total-
ity to guarantee that the degrees constructed (and in particular the top one y) are
hyperimmune-free. We do not need to satisfy the most complicated conditions that
would make S� an initial segment but do need some extra requirements to satisfy (�).

Consider a tree and a requirement Z� 6= '
L
D�

i�
L
Ci

e (where Y may be viewed as
included among the D�

i ). If Z is some constant C, then we simply ask whether we can

�nd e-splittings on the tree for '
L
D�

i�
L
Ci

e . If so, we can choose one to diagonalize

against Z. If not, then it is easy to see that, if '
L
D�

i�
L
Ci

e is total, Z �T
L

Ci
which contradicts our assumption. If Z is X or some Dj, then we pick two nodes
� 0; � 1 on the tree which are congruent modulo

L

D�
i but disagree on Z

� (say, at x).
This is possible since Z �T

L

Di and by our usl representation we are able to make
Z� �T

L

D�
i . Then, we try to extend � 0 to �

0 where we have a convergent computation

of '
L
D�

i�
L
Ci

e (x). If there is no such � 0, then we take the full subtree above � 0 to satisfy
our requirement. If there is such a � 0, then we extend � 1 in the same way to �

00 such
that � 0 and � 00 are congruent modulo

L

D�
i (by uniformity). Therefore at �

0 and � 00,

the computations '
L
D�

i�
L
Ci

e (x) give the same value. We can pick one whose Z�(x) is
di¤erent from this value and take the full subtree above it.
Now we need to show that these d�i �s satisfy the same relations with the constants as

their originals: For each original di (i = 1; 2; : : : ; l or x), di is not in any of the upper
or lower cone of any constant c. So we only need to show that d�i is incomparable with
each of the constants. It is not di¢cult to see that these relations are guaranteed by
property (�).
Next let dl+1; : : : ;dk be the d�s that are above any degree in S. We need to build new

d�l+1; : : : ;d
�
k which satisfy the same diagram (we regard the remaining d�s as constants).

This construction follows the same idea as in Section 3. We �nd gl+1; : : : ;gk which are
mutually 1-generic over S� [ R where R is the set of all constants. We let the d��s be
the following joins:

d�i =
_

dj�di

gj _
_

z�di;z2S[R

z�.

We need to show that each d�i (among d
�
l+1; : : : ;d

�
k) satis�es the same relations with

di¤erent z� as its original di does (with z). We discuss this by cases:
If z is below di, then it is automatic by the de�nition of d

�
i that z

� � d�i . If z is above
di, then it can only be the case that z is some dj and we are back in the �rst case. So
we only need to take care of the negative order relations that say z is incomparable
with di. Here we further divide into subcases.
If z is x (or a constant c, or a degree d in S, as the arguments for them are essentially

the same), we need to show that d�i is incomparable with y. First, y is not above d
�
i

because gi is not below y;
W

z�di;z2S[R
z� is not above y by property (�) (since their

originals do not join to some degree above x), and so by Lemma 3.2 joining it with
some mutually 1-generic degrees does not make d�i above y.
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If z is some other dj among dl+1; : : : ;dk, then since di and dj are incomparable,
gi and gj only appear in one join but not the other. By 1-genericity d

�
i and d

�
j are

incomparable.
This gives the desired contradiction that y with witnesses d��s satisfy the same

formula 9d09d1 : : : 9dn'(x; d0; d1; : : : ; dn) but y is hyperimmune-free [and so array re-
cursive]. �

9. Remarks

9.1. Nonde�nability in the language (�). Shore [S, Proposition 7.6], following
related results in [LS], showed that neither the Low2 nor non-Low2 degrees are de-
�nable by a �2 formula in the language of order alone (without parameters). The
only property needed of these classes for the proofs there is that one can embed every
�nite lattice as an initial segment in them. The rest of the proofs rely only on general
algebraic facts about D and Kleene-Post type results about extension of embeddings.
Thus we can use the same argument to get the same nonde�nability result for any class
of degrees that contains copies of all �nite lattices as initial segments of D.
This argument works for HI, HIF, AR, Arith and non-Arith (by classical results

on embedding initial segments, see [Le]). We do not know whether ANR is de�nable
by a �2 formula in the language with just order (with REA added in, it is de�nable as
mentioned in the Introduction).

9.2. Nonde�nability in the language (�;0 ). Following the outline of the arguments
in Sections 5, one can get similar �1-nonde�nability results for the language with jump
from embedding theorems about jump partial orders. For example, it is known that
every �nite jump partial order ([HS]), or even �nite jump upper-semi lattice ([M]), is
embeddable in the Turing degrees. By modifying their constructions one can easily
make one of the elements HI or ANR, and so we know that HIF and AR are not �1
de�nable in (�;0 ). In addition, one can also make sure that the degrees constructed
are either all arithmetic or all nonarithmetic. This shows that Arith is not de�nable
by �1 or �1 formulae in (�;

0 ) (while there is a �2 de�nition again as mentioned in the
Introduction).

9.3. Open Questions. First of all, at the �1 level, there is one obvious remaining
open question: Is HI de�nable by �1 formula in (�; REA)? We believe arguments
similar to those in Section 5 may work (in particular. we would want to build a REA-
PO and make a certain element HIF), but our �rst attempts seem have meet some
obstacles.
Most of our analysis applies to the language with REA but not RE. It is an interesting

question whether similar results can be obtained for RE. If so, they seem likely to
require priority type arguments rather than (or in addition to) forcing arguments. In
another direction, we can also try to �nd possible de�nitions of RE in the language
augmented by REA, which might be easier than the language with order alone.
Of course, many other degree classes can be analyzed for de�nability and nonde�n-

ability results.
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