
ELEMENTS OF CLASSICAL RECURSION THEORY:

DEGREE-THEORETIC PROPERTIES AND

COMBINATORIAL PROPERTIES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Mingzhong Cai

August 2011

c© 2011 Mingzhong Cai
ALL RIGHTS RESERVED

ELEMENTS OF CLASSICAL RECURSION THEORY: DEGREE-THEORETIC
PROPERTIES AND COMBINATORIAL PROPERTIES

Mingzhong Cai, Ph.D.
Cornell University 2011

In Recursion Theory (Computability Theory), we study Turing degrees in terms
of their degree-theoretic properties and combinatorial properties. In this disserta-
tion we present several results in terms of connections either between these two
categories of properties or within each category.

Our first main result is to build a strong connection between array nonrecursive
degrees and relatively recursively enumerable degrees. The former is a combina-
torial property and the latter is a degree-theoretic one. We prove that a degree
is array nonrecursive if and only if every degree above it is relatively recursively
enumerable. This result has a corollary which generalizes Ishmukhametov’s classi-
fication of r.e. degrees with strong minimal covers to the class of n-REA degrees.

Then we produce new connections between minimality and jump classes, both
are degree-theoretic. By using more and more complicated structures, we can
finally build a minimal cover over a minimal degree (which we call a 2-minimal
degree) which is GH1, and this is the highest jump class we can reach by finite
iterations of minimality. This result answers a question by Lewis and Montalbán,
and it also answers an old question by Lerman raised in the 80’s.

One interesting group of combinatorial properties is the class of tracing notions.
They are important in classical recursion theory as well as in algorithmic random-
ness. We study several different notions of traceability and show that within the
n-REA degrees these tracing notions are equivalent to other combinatorial prop-
erties. We also introduce a new notion of tree traceability and study some of its
properties.

We end with a new approach in studying proof-theoretic strength of the totality
of recursive functions, and prove several interesting theorems about a degree struc-
ture induced by a natural provability reducibility relation on recursive functions.

BIOGRAPHICAL SKETCH

Mingzhong started learning English while in his middle school, Wenzhou Foreign
Language School, which was founded only one year before he entered. The teachers
there were great, and the students were even better. The only things that he didn’t
like were the big birthday cakes at the parties held in the classroom – as the cream
always ended on everyone’s face instead of inside everyone’s stomach.

He spent three years of high school in Ningbo Xiaoshi Middle School. There
he was a member of the Student Academy of Sciences. The members received
some funding from the school to buy books, and more importantly, they also got
a clubroom – which is very uncommon in Chinese high schools, and which became
the Joint Bridge-and-Mahjong Club’s perfect hideout.

After four years in Fudan University watching wild cats, Mingzhong came to
Cornell to study logic and mathematics. His favorite part of Ithaca life is that he
can sit on the dock by Cayuga Lake, enjoying the spectacular lakeside view and
enumerating the truths of the world (0′) – and in some sense, this is the best thing
he can do.

iii

IN MEMORIAM AVORUM

iv

ACKNOWLEDGEMENTS

I want to first give my keenest thanks to my advisor, Professor Richard A. Shore:
for his enjoyable lectures on recursion theory, which enlightened me in research; for
his meticulous academical guidance, which has helped me throughout my graduate
life and will continue to benefit me in the future; and for his great patience in
editing my papers, for which I want to say thanks many times.

I would like to thank Professor Anil Nerode and Professor Justin Moore for
being my special committee members. Professor Nerode was my initial advisor
when I came to Cornell and he guided me a lot in my first year. Professor Moore
taught me set theory and model theory, and also introduced to me a number of
interesting topics in set theory, one of which motivated some part of my research
which finally became the last chapter of this dissertation.

I also owe my thanks to the professors here at Cornell who gave interesting
lectures which I enjoyed and from which I learned a lot: Professor Cao, Professor
Connelly, Professor Hatcher, Professor Kjos-Hanssen, Professor Khoussainov, Pro-
fessor Sjamaar and others. Special thanks to Professor James West for handling
my Ph.D. Language Test. I also would like to thank the staff members in the
math department, especially Donna Smith, who found my application package left
somewhere hidden in the mailroom, otherwise I would have had no chance to come
to Cornell.

At Cornell, I have some good graduate student friends: Paul Shafer is my aca-
demic sibling and he helped a lot organizing a number of our academic travels; I
really enjoyed talking with Paul, especially on the fun topic of magic and mathe-
matics; James Worthington is a very warm-hearted senior student; Ho Hon Leung’s
optimistic attitude towards life and math influenced me quite a lot; and also to
Adam, Diana, Henry, Jiamou, Sam, Shisen, thanks!

I attended the Logic Summer School in Singapore in 2010 and learned a lot
there. So I want to thank the organizers Professor Chi Tat Chong, Professor Qi
Feng, Professor Frank Stephan and Professor Yue Yang for hosting a wonderful
summer school, Professor Moti Gitik, Professor Denis Hirschfeldt and Professor
Menachem Magidor for wonderful talks, and Professor Theodore Slaman and Pro-
fessor William Woodin for participating in discussions with students. In addition,
Dr. Adam Day was a nice roommate there in Singapore and we are still doing
some joint research. Professor Liang Yu and Dr. Wei Wang are very friendly and
I really enjoyed talking with them in the lunch time.

The research in this dissertation was partially supported by NSF grants DMS-
0554855 and DMS-0852811.

Moreover, I also would like to give sincere thanks to all logicians in history
(starting from Aristotle) for their brilliant ideas and their everlasting contributions
to this subject.

As I have grown old enough to be independent, my parents are still watching
and encouraging me with their greatest support. Our languages are never powerful
enough to express my love and respect to them.

v

Table of Contents

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Figures . xi

I Introduction to Classical Recursion Theory 1
I.1 Turing Degrees: Introduction to Degree-theoretic Properties . . . 1

I.1.1 L0: Order-theoretic properties 1
I.1.2 L1: Turing jump and jump classes 3
I.1.3 L2: Recursive enumeration 4

I.2 Introduction to Combinatorial Properties 5
I.2.1 Set properties . 5
I.2.2 Pointwise properties . 5
I.2.3 Limit approximation . 6
I.2.4 Domination . 7
I.2.5 Tracing . 8

I.3 Basic Definitions and Notations 9
I.3.1 Strings . 9
I.3.2 Turing functionals . 9
I.3.3 Trees . 10

II Domination and Forcing (joint with Shore) 11
II.1 Introduction . 11
II.2 Domination and Forcing . 13
II.3 ANR degrees are RRE . 17
II.4 GL2 degrees . 22

III Array Nonrecursiveness and Relative Recursive Enumerability 26
III.1 Introduction . 26
III.2 A Framework for Subtree Constructions 26
III.3 Tree Systems . 28
III.4 ANR and RRE . 30
III.5 Applications and Remarks . 33

III.5.1 Strong minimal covers . 33
III.5.2 More on definability . 34

vi

III.5.3 Join property and PA degrees 35

IV Domination and Definability: Some Negative Results (joint
with Shore) 36

IV.1 Introduction . 36
IV.2 Nondefinability in L1: Quantifier-free Case 37
IV.3 Nondefinability in L0: Π1 Case 39
IV.4 Nondefinability in L0: Σ1 Case 40
IV.5 Change to Array Nonrecursive Degrees 42

V Hyperimmune Minimal Degree and ANR 2-minimal Degree 43
V.1 Introduction . 43
V.2 A Hyperimmune Minimal Degree 45

V.2.1 Requirements . 45
V.2.2 Initial tree T0 . 46
V.2.3 Force α to be hyperimmune 46
V.2.4 Force α �T d . 46
V.2.5 Force α to be minimal . 47

V.3 Tree Systems . 48
V.4 An ANR 2-minimal Degree . 49

V.4.1 Requirements . 50
V.4.2 Initial tree system (T0, S0) 51
V.4.3 Force α to be minimal . 51
V.4.4 Force β to be ANR . 52
V.4.5 Force β to be minimal over α 52

V.5 Appendix . 54

VI 2-minimal Non-GL2 Degree 55
VI.1 Introduction . 55
VI.2 Preliminary Ideas . 56
VI.3 Basic Definitions and Notions . 57

VI.3.1 Trees . 57
VI.3.2 Tree systems . 57
VI.3.3 Blocks . 58

VI.4 Review of Sasso’s Proof and Basic Ideas on Narrow Trees 59
VI.5 One R Requirement . 60

VI.5.1 Initial tree system . 60
VI.5.2 Pruned subtree . 61
VI.5.3 Satisfy Pi . 63
VI.5.4 Satisfy Qi . 64
VI.5.5 Satisfy Re . 67

VI.6 Proving the Full Theorem . 68
VI.6.1 Pruned subtrees . 69
VI.6.2 Special tree systems . 71
VI.6.3 Satisfy Qe . 74

vii

VI.6.4 Satisfy Re . 77
VI.6.5 Final verifications . 78

VI.7 2-minimal GH2 Degree . 80

VII 2-minimal GH1 degree 81
VII.1 Introduction . 81
VII.2 Initial Tree System, Accessibility and List of Requirements 81
VII.3 Minimality Requirements . 83

VII.3.1 Make A minimal . 83
VII.3.2 Force totality for ϕB

e . 83
VII.3.3 Force splitting for ϕB

e . 84
VII.4 Force the Jump of B ⊕ 0′ . 87
VII.5 Final Verifications . 89

VIII Iterated FPF and minimality (joint with Greenberg) 92
VIII.1 Introduction . 92
VIII.2 Kumabe-Lewis Construction: A Simplification 92

VIII.2.1 Basic set-up . 92
VIII.2.2 Initial tree . 93
VIII.2.3 Force totality . 93
VIII.2.4 Force splitting . 94

VIII.3 Work with Tree Systems: 2-minimal 95
VIII.3.1 Tree systems . 95
VIII.3.2 Initial tree system . 96
VIII.3.3 Force totality . 96
VIII.3.4 Force splitting . 97

IX The n-r.e. Degrees: Undecidability and Σ1 Substructures
(joint with Shore and Slaman) 100

IX.1 Introduction . 100
IX.2 Basic Notions and Conventions 104
IX.3 Requirements I . 105
IX.4 Priority Tree I . 107
IX.5 Construction I . 107

IX.5.1 No announcement, Ψ or Π node 108
IX.5.2 No announcement, Φ node 108
IX.5.3 No announcement, Θ node 109
IX.5.4 Stage announcements . 110
IX.5.5 Modifications with a stage announcement 111

IX.6 Verification I . 111
IX.6.1 True path and true outcome 111
IX.6.2 Alternating A and P -stages 113
IX.6.3 The functionals are well-defined and correct 113
IX.6.4 All requirements are satisfied 116
IX.6.5 ∆0

2 and ∆0
3 partial orders 119

viii

IX.7 Requirements II . 120
IX.8 Priority Tree II . 120
IX.9 Construction II . 121

IX.9.1 Ψ node and Φ node . 121
IX.9.2 Θ node . 121

IX.10 Verification II . 122

X Three Theorems on n-REA Degrees: Proof-readers and Ver-
ifiers 126

X.1 Introduction . 126
X.2 Basic Conventions and Notions 128
X.3 Proof of the First Theorem: Proof-readers 129

X.3.1 m = 2 . 129
X.3.2 m = 3 . 130
X.3.3 General case . 131

X.4 Proof of the Second Theorem: Verifiers 131
X.4.1 m = 2 . 132
X.4.2 m = 3 . 133
X.4.3 General case . 134

X.5 Proof of the Third Theorem: Proof-readers again 134

XI A Note on Strong Minimal Covers: Tree Traceability 136
XI.1 Introduction . 136
XI.2 Definitions and Notions . 137
XI.3 Tree Traceable Degrees and Summary of Results 138
XI.4 Tree Systems . 140
XI.5 Main Theorem . 141

XI.5.1 Initial tree system . 142
XI.5.2 Force B >T A . 142
XI.5.3 Force minimality . 142

XI.6 An ANR Tree Traceable Degree 146
XI.7 Minimal Degree Construction I 147

XI.7.1 Initial tree T0 . 147
XI.7.2 Blocks . 148
XI.7.3 Force hyperimmunity . 148
XI.7.4 Force non-r.e. traceability 148
XI.7.5 Force minimality . 149
XI.7.6 Verification . 149

XI.8 Minimal Degree Construction II 150
XI.8.1 Force non-tree-traceability 150
XI.8.2 Force minimality . 152

XI.9 Remarks and Questions . 152

XII Degrees of Relative Provability 153
XII.1 Historical Background . 153

ix

XII.2 New Approach: Base Theory . 154
XII.3 Basics . 156
XII.4 Jump Operator . 158
XII.5 Incomparable Degrees . 159
XII.6 Minimal Pair . 160
XII.7 Degree Spectrum and Minimal Degrees 161
XII.8 Open Questions . 162

Bibliography 164

x

List of Figures

VI.1A block B . 58
VI.2P -N -block structure on S̄(τ ∗) . 62

xi

CHAPTER I
INTRODUCTION TO CLASSICAL RECURSION THEORY

I.1 Turing Degrees: Introduction to Degree-theoretic Properties

In classical recursion theory, we study the Turing degrees. They are induced by
a natural preorder called Turing reducibility. A set A is Turing reducible to (or
recursive in, or computable from) B (A ≤T B) if there is an effective algorithm
deciding whether x ∈ A based on the membership information from B. This notion
also applies to functions f and g by identifying them with their graphs. Two sets
are Turing equivalent if they are Turing reducible to each other. A Turing degree
is an equivalence class of Turing equivalent sets (and functions). A set is recursive
if it is reducible to the empty set, i.e., computable without extra information. We
use 0 to denote the degree of recursive sets.

The notion of Turing degrees formalizes the intuitive idea of how hard it is to
compute a set, and research in this area has been applied to effective mathematics
answering whether there are effective algorithms for certain problems, for example
the famous Hilbert’s Tenth Problem receives a negative answer by establishing
connections between r.e. sets and solutions to Diophantine equations. Recursion
theory also has strong connections with other branches of logic and they together
produce interdisciplinary subjects such as computable model theory, descriptive set
theory and reverse mathematics. We will, in Chapter XII, initiate an interesting
subject connecting recursion theory and proof theory, investigating proofs and rel-
ative provability strength by recursion-theoretic techniques such as diagonalization
and the Recursion Theorem.

I.1.1 L0: Order-theoretic properties

We start our topics with properties definable in L0 = {≤}, i.e., definable with only
the Turing order. Note that the preorder of Turing reducibility on sets naturally
induces a partial order on Turing degrees. This partial order has been the center
of the study of classical recursion theory for many years. A lot of facts are known
about this partial order, for example, it is not a total order ([KlPo54]) and it does
not have a maximal element (via a jump operator, see §I.1.2).

minimality

One of the most intuitive notions in degree theory is minimality, which asserts that
certain intervals are empty in the degrees. A degree b above a degree a is a minimal
cover of a if the interval (a,b) is empty, i.e., there is no degree strictly between
them. A minimal cover of 0 is usually called a minimal degree. In addition, if we
require that the degrees strictly below b are all below a, then b is called a strong
minimal cover of a.

Spector first showed the existence of minimal degrees and minimal covers
([Sp56]) and he asked for a characterization of degrees with strong minimal covers.
This became one of the most difficult problems in classical recursion theory and is
still beyond our current knowledge. Even more specific questions are also hard to
approach. For example, Yates asked whether every minimal degree has a strong

1

minimal cover and we still do not know the answer (see a survey paper by Lewis
([Lew06]) and see also discussions in Chapters V and XI).

The study of minimality in the Turing degrees revealed an important idea,
namely tree constructions. They turned out to be very useful in, for example,
constructing initial segments in the Turing degrees ([Ler83]). We will show a new
utilization of trees in Turing degree constructions in Chapter III.

A natural generalization of minimality is the iterations of minimality: We call
a minimal degree 1-minimal and a minimal cover of an n-minimal degree n + 1-
minimal. For example, a degree is 2-minimal if it is a minimal cover of a minimal
degree, i.e., two steps away from 0. One can think of it as a measurement of how
close a degree is to the recursive degree 0.

There are classical results which indicates that 1-minimal degrees are “com-
putably unpowerful” in various ways. For example, they are not PA (classical
result, see definition in §I.2.2), not ANR (see definition in §I.2.4 and see also
[DJS96]), not r.e. (by, for example, Sacks Splitting Theorem [Sac63]) and not
1-generic (see [Ler83, Theorem IV.2.9]). However, we are able to construct 2-
minimal degrees that are “relatively higher” than 1-minimal degrees, for example,
a 2-minimal degree which is ANR (see Chapter V). In contrast, in terms of r.e.
degrees, we know that no n-minimal degree can be r.e. or even above any non-
recursive r.e. degree. We still do not know, for example, whether we can find a
2-minimal or n-minimal degree which is PA.

To construct 2-minimal degrees in general, we introduced a notion of tree sys-
tems. Each tree system is, intuitively, a “tree of trees”. We will provide several
examples of tree system constructions in Chapters V, VI and VII.

cupping property and join property

In a partial order, it is natural to ask whether the join (least upper bound) and the
meet (greatest lower bound) exist for pairs of degrees. Note that they are easily
definable in L0. In the Turing degrees, we can define a join A ⊕ B of two sets A
and B by [A⊕B](2n) = A(n) and [A⊕B](2n+ 1) = B(n), i.e., producing copies
of A and B at even and odd positions respectively. It is easy to check that it is
well-defined in the degrees and gives the least upper bound for degrees a and b,
which we will denote as a ∨ b. Interestingly, one can show that the meet does
not necessarily exist in the Turing degrees (using Spector’s Exact Pair Theorem
[Sp56]). Such a partial order is called an upper-semilattice (usl), i.e., every pair of
elements has a join but not necessarily a meet.

Some of the usl-properties are strongly related to the notion of strong minimal
covers. For example, a degree a has the cupping property if for every b > a, there
is a c < b such that b = a ∨ c. Any degree with the cupping property naturally
fails to have strong minimal covers. A degree a has the join property if for every
b < a, there is a c < a such that a = b ∨ c. It is easy to see that such a degree a
cannot be a strong minimal cover.

Various interesting results about these properties have been established, for
example, see [JP78], [DJS96], [GMS04] and [Lewb]. One can also study other join-
related properties such as the capping property or join-reducible, etc. It is also
possible to investigate more complicated properties involving minimality, for ex-
ample, Ellison and Lewis ([ELxx]) studied the notion of minimal cupping property,

2

and Lewis has several proposals about different properties relating to a possible
definition of the Turing jump ([Lewa], see also §I.1.2 below).

I.1.2 L1: Turing jump and jump classes

In the Turing degrees, one can define a natural unary operator called the Turing
jump. For each set X one can define X ′ as the halting problem for algorithms
(Turing machines) with access to (oracle) X. Note that this is also a typical
example of relativizing, i.e., we can change the oracle to an arbitrary set X. It is
not difficult to prove that this operator is well-defined on the degrees, and we use
d′ to denote the jump of a degree d. By a standard diagonalization argument one
can show that d′ is strictly above d (therefore there is no maximal Turing degree).

We use L1 = {≤, ′} to denote the language of order with a jump operator. By
the results of Shore and Slaman ([SS99] and [Sh07]), the Turing jump operator is
definable in L0, therefore L1 and L0 have the same definable relations. However
these two languages are still different in terms of the quantifier complexity for the
definitions ([Sh07]). Some properties easily definable in L1 may have very difficult
definitions in L0. The current easiest definition of the jump (also the double jump)
involves coding and is very complicated in quantifier complexity, and it is still an
open problem to find natural definitions of the jump.

high/low hierarchy

With the jump operator one can give another measurement of how close a degree is
to 0, or to 0′. Note that the jump operator preserves ≤ (but it does not necessarily
preserve the strict order <), so the jump of a degree d is at least 0′, and if d′ = 0′,
we say d is low1 (L1), or simply low. Extending this notion, we call a degree d
lown (Ln) if d(n) = 0(n), where a(n) denotes the n-th iterated jump of a.

On the other hand, for a degree d below 0′, it is always the case that d′ ≤ 0′′,
and if equality holds, we call d high1 (H1) or simply high. Similarly if d(n) = 0(n+1),
then we say d is highn (Hn).

High/low hierarchy gives a nice layering of the degrees below 0′: each of the
low classes is downward closed and each of the high classes is upward closed in the
degrees below 0′. There is also the class of intermediate degrees which are strictly
between the lown ones and highn ones, i.e., they do not collapse with either 0 or
0′ by any finite iterations of the jump. See [Ler83, Figure IV.1.1] for a diagram.

generalized high/low hierarchy

For degrees that are not necessarily below 0′, one can define a generalized high/
low hierarchy : A degree d is generalized lown (GLn) if d(n) = (d ∨ 0′)(n−1), and
d is generalized highn (GHn) if d(n) = (d ∨ 0′)(n). Together with the high/low
hierarchy, these classes are also called jump classes.

It is known that the generalized high/low hierarchy is not as nice as the high/
low hierarchy in the way of layering the degrees (see [Mo06]). However, many
results for the high/low hierarchy generalize to the generalized high/low hierarchy,
for example, results about GH1 degrees and GL2 degrees resemble those of H1

3

degrees and L2 degrees (see for example [Ler83] and [ASDWY09]). In particular, it
is known that every GH1 degree bounds a minimal degree ([Joc77]), whereas there
is a GH2 degree which does not ([Ler86]). So the generalized high/low hierarchy
has some feature similar as the high/low hierarchy in giving a measurement of the
highness and lowness of the degrees.

Jockusch and Posner showed that all minimal degrees are GL2 ([JP78]), and
Lerman ([Ler83, Section IV.3]) observed that by relativizing Jockusch and Posner’s
theorem it is easy to show that all n-minimal degrees below 0′ are GL2 (therefore
L2). Then it is natural to ask (as Lerman did) whether this is true for all n-minimal
degrees in general. We will answer this question negatively in Chapter VI. In fact,
we can construct a 2-minimal degree which is in GH1 (Chapter VII), and it is not
difficult to show that GH0 degrees (i.e., degrees above 0′) cannot be n-minimal
for any n, so GH1 is the highest jump class we can reach with finite iterations of
minimality.

I.1.3 L2: Recursive enumeration

r.e. degrees and relatively r.e. degrees

A set A is recursively enumerable (r.e.) if there is an effective algorithm listing
all the members of A. Relativizing this, a set A is r.e. in B if there is such an
effective algorithm listing members of A, given membership information from B. A
degree is r.e. if it contains an r.e. set. The structure of the r.e. degrees is the most
well-studied subject in classical recursion theory (see survey [Sh99]). It began
with Post’s problem ([Po44]) asking whether there are incomplete nonrecursive
r.e. degrees, and it has provided a number of elegant techniques, namely priority
arguments.

Note that most established theorems about the r.e. degrees relativize to an
arbitrary oracle. So it is natural to study the relatively r.e. (RRE) degrees: a
degree a is relatively r.e. if it is r.e. in some b < a. Joint with Shore, we will, in
Chapters II and III, prove a strong connection between RRE degrees and ANR
degrees, which we will define later. In particular, we will show that a degree a is
ANR if and only if every degree b ≥ a is RRE. One can view this result as a
definition of the ANR degrees in the language L2 = {≤, ′ , R} where R stands
for a binary r.e. relation: xRy if x is r.e. in y. It is still a major open question
whether this relation R is definable in L0.

n-REA degrees

By iterating the r.e. relation, one can get the n-REA degrees. A degree is 1-REA
if it is r.e., and a degree is n+ 1-REA if it is r.e. in and strictly above an n-REA
degree. These give natural generalizations of the r.e. degrees (as a degree-theoretic
property). In Chapter X we will generalize several theorem about the r.e. degrees
to the n-REA degrees.

The first one is about the equivalence between array recursiveness (which we
define later) and r.e. traceability (a notion introduced in [Ish99] to study the strong
minimal cover problem, see also §I.1.1 and §I.2.5). The second one is about the
equivalence between strong jump traceability and strong superlowness (see defi-
nitions in Chapter X), two notions that arose in trying to give a combinatorial

4

characterization of K-trivials, an important notion in algorithmic randomness.
We also give a new proof of a known result generalizing Arslanov’s completeness
criterion ([Ars81]). For more information about various tracing properties, see
§I.2.5.

I.2 Introduction to Combinatorial Properties

The degree-theoretic properties we reviewed in the previous section are strongly
connected to definability. For example, a set A is r.e. if and only if it can be defined
by a Σ0

1 formula in arithmetic (which provides a negative solution to Hilbert’s Tenth
Problem), and being recursive and being recursive in 0′ correspond to respectively
∆0

1 and ∆0
2 definitions. So these degree-theoretic notions are “logical” in nature,

or in other words, expressible in terms of how complicated it is to define a set. In
this section, we want to study the combinatorial properties of degrees. They focus
on mathematical properties such as limit and domination (rates of growth), and
naturally address the “computing power” of degrees.

I.2.1 Set properties

The study of combinatorial properties in classical recursion theory probably started
with set properties ([Po44]). In these notions, we are interested in how sets in a
degree interact with different other sets, especially the r.e. ones. Examples of such
properties are simple, immune, hypersimple and hyperimmune, etc.

There have been some detailed analysis of the definability power of E = {R,⊂},
where R denotes the collection of r.e. sets. In particular there are full characteri-
zations of which jump classes are definable in E (see [Epsxx, Section 1.3]). In our
scheme, this is a typical example of building connections between degree-theoretic
properties (jump classes) and combinatorial properties (set inclusion).

I.2.2 Pointwise properties

FPF degrees

We are also interested in properties of functions at each point. For example,
a function f is diagonally nonrecursive (DNR) if f(n) 6= ϕn(n) for each n (see
notions in §I.3.2). They are natural examples of functions which are not recursive.
A degree is fixed-point-free (FPF) if it contains a DNR function. The term fixed-
point-free comes from the fact that a degree computes a DNR function if and only
if it computes a fixed-point-free function, i.e., a function f such that ϕe 6= ϕf(e)

for any e (note that the Recursion Theorem asserts that such a function f cannot
be recursive).

To list a few theorems about FPF degrees: Arslanov’s completeness criterion
says that an FPF r.e. degree has to be complete, i.e., ≥ 0′ ([Ars81]); Kučera’s
injury-free solution to Post’s problem used his theorem that every FPF degree
below 0′ bounds a nonrecursive r.e. degree ([Ku86]). We will, in Chapter X, give a
new proof of a generalization of Arslanov’s completeness criterion that every FPF
n-REA degree is complete.

5

FPF degrees are upward-closed and they represent a class of degrees which are
powerful, or similar to 0′. One can naturally ask whether there can be a mini-
mal degree which is FPF ([Sac85]). This was answered positively by Kumabe in
an unpublished paper and a simplification of the proof can be found in [KLxx].
Jointly with Greenberg, we generalize Kumabe and Lewis’ construction and build
minimality chains with relativized FPF properties. A preliminary two-step con-
struction is included in this dissertation as Chapter VIII.

PA degrees

A degree is PA if it computes a complete extension of Peano Arithmetic. We
think of it as a pointwise property (similar to the FPF degrees) because a degree
being PA is equivalent to it computing a 0-1 valued DNR function. One important
property is that every PA degree has the cupping property ([Ku94]), and so they
do not have strong minimal covers. They also corresponds to degrees that can
compute a path in any given nonempty Π0

1 class.

The PA degrees are also upward closed, and represent a class of degrees that
are powerful. However, we will in Chapter III give an alternative proof of the
existence of a PA degree without the join property, which is originally proved in
[Lewb]. This contrasts, for example, to the result that all GL2 degrees have the
join property ([DGLMxx]). We thank Adam Day for pointing out this corollary.

I.2.3 Limit approximation

limit computable

A function f(n) is limit computable if there is a recursive function λ(n, s) such that
lims→∞ λ(n, s) exists and is equal to f(n) for each n. This combinatorial property is
strongly connected to a degree-theoretic property by the Shoenfield Limit Lemma
([Shn59]): a degree is below 0′ if and only if every function recursive in it is limit
computable. The Limit Lemma is used very widely in classical recursion theory,
since it bridges two of the most important notions: the Turing jump and limit
approximations.

n-r.e. degrees

In a 0-1 valued limit approximation lims→∞ λ(n, s), if we can in addition bound the
number of changes in the approximation for each n, then we get stronger notions.
For example, if we can bound the number of changes in every limit approximation
by 1, then the limit we get is an r.e. set, and conversely every r.e. set can be limit
computed in such an approximation (assuming that each approximation starts with
0). If the bound is a fixed constant number n, then we get the notion of n-r.e. sets.
A degree is n-r.e. if it contains an n-r.e. set. This is called the Ershov Hierarchy
(see [Ars10] for a survey). One can regard the n-r.e. degrees as generalizations of
the r.e. degrees as a combinatorial property.

In Chapter IX (which is a joint work with Shore and Slaman), we show several
results about the global structure of the n-r.e. degrees. We show that the theory
of the n-r.e. degrees is undecidable, and we prove that the class of n-r.e. degrees

6

does not form a Σ1-elementary substructure of the n + 1-r.e. degrees. The latter
generalizes a result of Yang and Yu from the r.e. case to the n-r.e. case.

I.2.4 Domination

One intuitive idea in computability is that, functions which grow fast are powerful
in computing. Given two functions f and g, we say f dominates g if f(x) ≥ g(x) for
all but finitely many x. This is an important notion in many fields of mathematics,
especially in analysis. Domination properties also play important roles in classical
recursion theory, typically with the two complementary pairs: hyperimmune and
hyperimmune-free; array nonrecursive and array recursive, which we will discuss in
detail in the following sections. Besides these complimentary pairs, there are also
other interesting notions. For example, say a function is dominant if it dominates
every recursive function. A degree computes a dominant function if and only if its
jump is above 0′′ ([Ma66], see [Ler83, Lemma IV.3.3]). In the generalized high/low
hierarchies, the class of GL2 degrees also corresponds to a domination property:
a degree a is GL2 if and only if there is a function recursive in a ∨ 0′ which
dominates every function recursive in a ([JP78]). We will investigate properties
of the degrees which are not GL2 in Chapter II using this characterization by
domination properties and comparing them with the ANR degrees.

hyperimmunity

The term “hyperimmune” originally came from a set property, and it turns out
to be equivalent to a domination property which is more useful and much easier
to understand. A degree is hyperimmune if it computes a function which is not
dominated by any recursive function; and a degree is hyperimmune-free if it is
not hyperimmune, i.e., every function recursive in it is dominated by a recursive
function.

Hyperimmune and hyperimmune-free degrees have been studied for a long time,
and a lot of interesting theorems were discovered (see [MM68], [JSo72] and [Lew07],
see also discussion in Chapter IV). It was an old question ([MM68]) whether they
are definable in terms of degree-theoretic properties (in L0, L1 or L2). However
this question is still open. We will in Chapter IV, show some nondefinablity results
of hyperimmune degrees, and in particular, we confirm a conjecture in [MM68] that
there is no quantifier-free L1-definition of hyperimmune degrees.

Lewis’ theorem says every hyperimmune-free non-FPF degree has a strong min-
imal cover ([Lew07]), so in order to build a minimal degree without strong minimal
covers (as a negative answer to Yates’ question), we have to find a minimal degree
which is either FPF or hyperimmune. (See §I.2.2 for information about connec-
tions between FPF and minimality.)

We develop a direct construction of a hyperimmune minimal degree in Chapter
V, and the coding idea there turns out to be useful in Chapters VI and VII.

array nonrecursiveness

The notion of array nonrecursive (ANR) degrees was introduced in [DJS96] to
generalize the notion of being GL2. The ANR degrees share a lot of nice properties

7

with GL2 degrees, including the 1-generic bounding property, the cupping property
and relative recursive enumerability ([DJS96] and [CSh12]). To define them we
will also need the notion of the modulus function, which we will discuss in detail
in Chapter II.

In Chapter II (joint with Shore) we give a relativized definition of array non-
recursiveness and also develop a forcing schema for GL2 and ANR degrees. In
particular, we show that every ANR degree is RRE. Continuing this topic, in
Chapter III, we show that a degree is ANR if and only if every degree above it is
RRE, therefore ANR degrees are definable in L2. We also mention two interesting
applications of this theorem (see Section III.5).

Relating to minimality, there is an old result that all 1-minimal degrees are
array recursive, i.e., not ANR; in Chapter V, we prove that there is a 2-minimal
degree which is ANR. This also answers a generalized version of Yates’ question.
In addition, it shows that the class of degrees which are “low for ANR” is a proper
subclass of the array recursive degrees.

I.2.5 Tracing

The basic idea of tracing is quite easy: a function f might not be recursive, in
which case we have no way of recursively telling what f(n) is; however if we have
an effective guessing procedure that makes a number of guesses at the value of
f(n), and guarantee that one of our guesses is the correct answer, then we call
such an effective guessing procedure a trace and we call a degree traceable if all
or some (partial) functions recursive in it have traces which satisfy some specified
property. Depending on what functions we are tracing and how good the traces
are, we have a number of different notions.

We start with r.e. traceable degrees, a notion introduced in [Ish99] to answer
the strong minimal cover problem for r.e. degrees. In Chapter III we extend the
result there from the r.e. degrees to the n-REA ones, but not following the same
route. So in Chapter X we try to follow the original method as in [Ish99] and show
that for n-REA degrees, r.e. traceability is equivalent to array recursiveness.

We show two other such equivalence results for tracing notions about the n-
REA degrees. One of them gives a new proof of an old result in [JLSS89]. We hope
to see more such connections of tracing with other degree-theoretic or combinatorial
properties.

In studying Yates’ question, we introduce a notion of tree traceable degrees
(where the traces are related to trees) and prove several results about this notion
(see Chapter XI). In particular, we show that if we want to construct a minimal
degree without strong minimal covers (and hence give a negative answer to Yates’
question), then we need to find a minimal degree which is not tree traceable and in
the construction we must use trees that are “branchy” enough so that some function
recursive in the degree is not traced by any trees specified in the definition of tree
traceability.

8

I.3 Basic Definitions and Notations

We introduce here some common notations used in this dissertation. For some
notions (such as tree systems) which are defined differently in different chapters,
we will make their definitions separately later. This is mainly because that in each
theorem one definition might be easier to work with than others. It is also possible
that we have special restraints for using letters in each chapter separately, or we
have a slightly different notation than what is described here (in which case we
will specify it).

I.3.1 Strings

A string is a (finite or infinite) sequence of natural numbers. A binary string is
a string whose entries are either 0 or 1. We use 2<ω (2ω) to denote the set of all
finite (infinite) binary strings, and ω<ω (ωω) to denote the set of all finite (infinite)
strings.

We usually use lower case Greek letters to denote finite or infinite strings. For
two finite strings σ and τ , we write σ ∗ τ for the usual concatenation of σ with τ .
If i is a natural number, we also write σ ∗ i for the usual concatenation of σ with
〈i〉, as we confuse the number i with the string 〈i〉.

We use |σ| to denote the length of a string σ. We write σ ⊂ τ if σ is an initial
segment of τ (and so τ is an extension of σ), and σ (τ if the relation is proper,
i.e., σ ⊂ τ and σ 6= τ . We also use the standard interval notation to denote all
strings between two strings, e.g., (σ, τ) denotes all strings strictly between σ and
τ . We write σ|τ to denote that σ and τ are incompatible.

If α is an infinite string, we also write σ ⊂ α if for every i < |σ|, σ(i) = α(i).
We also call σ an initial segment of α, and β an (infinite) extension of σ.

We use upper case letters A,B,C, ... to denote sets of natural numbers. We often
view sets of natural numbers as infinite binary strings (A(x) = 1 ⇐⇒ x ∈ A)
and may write σ ⊂ A to denote that σ is an initial segment of A. We may also
say that σ is compatible with A (or A-compatible) if σ ⊂ A.

We use σ ⊕ τ to denote the join of two (possibly infinite) strings σ and τ . In
the case that their lengths are different (so at least one of them is finite), we define
σ ⊕ τ to have length 2n where n is the length of the shorter one.

I.3.2 Turing functionals

Let ϕe be the e-th oracle Turing functional. Our convention is that the computation
of ϕτ

e(x) only run for |τ | many steps, and so if it converges then it must converge
within |τ | many steps. This makes it recursive to decide whether ϕτ

e(x) converges
for any triple (e, τ, x). Another convention is that, when we only care about the
totality of functions (such as in minimality constructions), we will assume that if
ϕτ

e(x) converges then ϕτ
e(y) also converge for all y < x, that is, we try to compute

ϕτ
e(x) only when we have finished computing ϕτ

e(y) for all y < x.

We say that two strings σ and τ e-split if there is an x such that ϕσ
e (x) ↓6=

ϕτ
e(x) ↓. We denote this relation by σ|eτ , and we also say that σ and τ form an

e-splitting pair or an e-splitting.

9

I.3.3 Trees

We have some slightly different notions of trees in different chapters, and here we
only list some common definitions.

A tree is a possibly partial function T from a set of strings to another set of
strings satisfying the following properties.

1. (Substring property) (σ ⊂ τ ∧ T (τ) ↓) ⇒ T (σ) ↓.
2. (Order preserving) (T (σ) ↓ ∧ T (τ) ↓) ⇒ (σ (τ ⇔ T (σ) (T (τ)).

3. (Nonorder preserving) (T (σ) ↓ ∧ T (τ) ↓) ⇒ (σ|τ ⇔ T (σ)|T (τ)).

In most cases we will choose 2<ω or ω<ω as the domain or the codomain.

Note that a tree T naturally induces a (possibly partial) function from infinite
strings to infinite strings, sending each infinite α to ∪σ⊂αT (σ). We abuse notation
by using T to denote this function as well.

Given a set A and a tree T , we say A is a path on T if there is an infinite string
α such that A = T (α). We write [T] to denote the set of all paths on T .

A node on T is a string in the range of T . A leaf or a terminal node is a node
that does not have proper extensions on the tree. A string is even if it is of even
length. An even-node is a node whose preimage is even. Note that an “even node”
and an “even-node” have different meanings, but in this dissertation we will not
use the former notion.

A tree is finite if its domain is finite. If the domain is exactly 2n or ωn, then
we also call the number n the height of the tree. The level of a node is defined as
the length of its preimage. Equivalently the level of a node τ on T is the number
of the nodes on T which are proper substrings of τ .

Given two trees T and S, we say that S is a subtree of T if every node on S is
a node on T . A sequence of trees 〈Ti〉i∈ω is nested if each Ti+1 is a subtree of Ti.

A tree is e-splitting if every pair of incompatible nodes on the tree is an e-
splitting pair. A tree is (A-)recursive if it is a partial recursive function (in A).
Here is the usual computation lemma for e-splitting trees in minimal degree con-
structions. It will be used in our construction for minimal degrees.

Lemma I.3.1. If T is an e-splitting recursive tree and A ∈ [T], then A ≤T ϕ
A
e .

Proof. Standard. See [Ler83, Lemma V.2.6].

10

CHAPTER II
DOMINATION AND FORCING (JOINT WITH SHORE)

This chapter will appear as a paper in the Journal of Symbolic Logic.

II.1 Introduction

We present some abstract theorems showing how domination properties equivalent
to being GL2 or array nonrecursive can be used to construct sets generic for dif-
ferent notions of forcing. These theorems are then applied to give simple proofs
of some known results. We also give a direct uniform proof of a recent result of
Ambos-Spies, Ding, Wang and Yu ([ASDWY09]) that every degree above any in
GL2 is recursively enumerable in a 1-generic degree strictly below it. Our major
new result is that every array nonrecursive degree is r.e. in some degree strictly
below it. Our analysis of array nonrecursiveness and construction of generic se-
quences below ANR degrees also reveal a new level of uniformity in these types
of results.

The motivations for the work presented here were twofold. The first was the
similarity between certain constructions of degrees below a nonzero recursively
enumerable one and the analogous ones for degrees that are GL2 or ANR (array
nonrecursive). (A Turing degree a is in GL2 if a′′=(a ∨ 0′)′. If a /∈ GL2 we say
a ∈ GL2. An equivalent condition is that for every function g ≤T a∨0′, there is an
f ≤T a which is not dominated by g, i.e. ∃∞x(g(x) < f(x)) (see [Ler83, IV.3.4]).)
A degree a is array nonrecursive (ANR) if, for every function g ≤wtt 0′, there is an
f ≤T a which is not dominated by g ([DJS96]). In particular, there are theorems
(see [Sh81, Lemma 4.2] and [Sh07, Theorem 4.1]) about coding sets which are ΣA

3
below a for A ∈ a when a is either r.e. and nonrecursive or ANR. These results
played crucial roles in the proofs, respectively, that the theory of D(≤ 0′), the
degrees below 0′, is recursively isomorphic to that of true (first order) arithmetic
and that the Turing jump operator is directly definable in any jump ideal containing
0(ω), the degree of the truth set of (first order) arithmetic. Both theorems were
proved by fairly complicated but in some ways similar constructions. The first used
what is called r.e. permitting and the second ANR permitting. Both, like many
constructions below r.e., ANR or GL2 degrees, depend on domination properties
of the given degree to carry out a type of forcing argument (meeting various dense
sets) in a type of priority construction.

Thus it seemed that these and other results could be simplified by proving that
ANR (and so a fortiori GL2) degrees are relatively recursively enumerable, RRE,
i.e. recursively enumerable in some degree strictly below them. The point here
is that, if this were true, then the need for some of the separate proofs for ANR
or GL2 degrees could be eliminated by simply citing the corresponding ones for
r.e. degrees. Moreover, it seemed desirable to formulate a general theorem about
meeting classes of dense sets for specified notions of forcing based on the relevant
domination properties characterizing the ANR and GL2 degrees that would unify
the various constructions exploiting these properties.

The second motivation for this work was the paper of Ambos-Spies, Ding, Wang
and Yu ([ASDWY09]). They proved the following:

Theorem II.1.1 (Ambos-Spies, Ding, Wang, Yu [ASDWY09, Theorem 1.5]). Ev-
ery a ∈ GL2 is RRE and, in fact, every b above any a ∈ GL2 is r.e. in some

11

1-generic degree c < b.

In [ASDWY09] the authors then raised a number of interesting questions asking
for characterizations of the degrees a such that every b ≥ a is RRE and the
relation between being RRE and (the apparently stronger) property of being r.e.
in a strictly smaller 1-generic degree. (A set G is 1-generic if, for every r.e. set
of binary strings S, there is a binary string σ ⊂ G such that either σ ∈ S or
(∀τ ⊇ σ)(τ /∈ S). A degree is 1-generic if it contains a 1-generic set.)

We present in §II.2 an analysis of the domination properties characterizing array
nonrecursiveness that provide an appropriate definition for a relativized version
of the notion. The analysis also proves that ANR degrees satisfy a stronger
domination property with greater uniformity than previously established. This
property is closer to that characterizing GL2 and allows us to give a framework
for a general theorem about meeting dense sets recursively in either GL2 or ANR
degrees. Even in the GL2 case, our Theorem II.2.9 is more general than the ones in
the literature that typically deal only with Cohen forcing. In particular, it allows
for notions of forcing that are recursive in the given GL2 or ANR degree and so are
directly applicable to results that, for example, involve statements about coding
the given set. It thus applies directly to results about cupping (join) properties
and jump inversion and can be used to simplify the proofs of such theorems from
[JP78]. It also includes notions of forcing whose conditions are objects such as
finite trees which are more complicated than binary strings. The proof we provide
is also simpler than the standard ones (even) for oracle constructions as in [JP78]
or [Ler83, Section III.5] in that we eliminate the procedure of, given the current
string σ (an initial segment of our eventual generic G), appointing a string τ ⊃ σ
as a target (to satisfy some density requirement) and moving toward τ one step
at a time while at every step checking to see if some target for a higher priority
requirement has been located. While this procedure makes sense for binary strings,
it is hard to see what to make of it in more general settings when the forcing
conditions are more complicated. Instead, we provide a method that, at every
step, attempts to satisfy the highest possible requirement not currently satisfied.
While we cannot always immediately satisfy the next requirement as in the simpler
Kleene-Post finite extension arguments, these attempts eventually succeed for each
requirement. We then present a couple of illustrative applications for known results
(at times extended from GL2 to ANR) that are proven by ad hoc arguments in
the literature. New results for ANR degrees including Theorem II.3.2 that ANR
degrees are RRE are presented in §II.3 . This supplies the result needed to unify
those of [Sh81] and [Sh07] as described above.

In §II.4, we provide direct proofs of weaker natural variants, as well as the full
result, of Theorem II.1.1 for GL2 degrees. To be more precise, we note that the
proof of Theorem II.1.1 ([ASDWY09, Theorem 1.5]) , while very ingenious and
clever, is quite indirect and nonuniform. It proceeds by first establishing that any
a ≤ 0′ which is not L2 (i.e. a′′ > 0′′) is RRE. This argument relies on results
of [Har98] to convert the problem into one of finding an infinite ascending or
descending chain in a linear order constructed from a and then on (a modification
of) one of Hirschfeldt and Shore ([HSh07]) to (nonuniformly) produce such a chain
that is low and even 1-generic. [ASDWY09] then use a modification of a result of
Jockusch and Posner ([JP78]) for GL2 degrees (proved below for ANR as Theorem
II.3.1) and one of Yu ([Yu06]) as well as the Robinson Jump Interpolation Theorem
([Rob71]) and another result of Jockusch and Posner ([JP78]) to reduce the general
case to a relativization of the one for degrees below 0′ not in L2. In contrast, our

12

proof that even ANR degrees are RRE is uniform in a witness that the given
degree is ANR as defined and explained in Definition II.2.5, Proposition II.2.6
and Theorem II.3.2. In Theorem II.4.1 we extend a more elaborate coding strategy
introduced in Definition II.3.5 that provides a 1-generic c in which the given GL2

degree is RRE. We close our treatment of GL2 degrees by using a notion of
forcing in which conditions are finite trees to give a direct proof (Theorem II.4.4)
of the full version of Theorem II.1.1 that is uniform relative to the choice of a
function witnessing the specific instance of the degree being in GL2 required by
the construction.1

II.2 Domination and Forcing

In this section we begin by analyzing the definition of array nonrecursiveness. We
have in mind two goals. One (motivated in part by Theorem II.3.4 and Question
II.2.8) is to develop the correct relativized version. The other is to strengthen the
known domination properties for these functions and degrees. The strengthen-
ings will be make the notion seem more similar to the domination characterization
of GL2 degrees. They will also provide a stronger general theorem about meet-
ing dense sets to construct generic sequences for a larger class of collections of
dense sets than had been previously handled. Indeed, they will provide a common
framework for the construction of generic sequences below both ANR and GL2

degrees.

Recall that the basic domination theoretic definition of array nonrecursiveness
as given originally in [DJS96] is for degrees:

Definition II.2.1. A degree a is ANR if for every function g ≤wtt 0′ there is an
f ≤T a such that f is not dominated by g, i.e. ∃∞x(f(x) > g(x)).

What then should be the correct relativized definition that a is array nonre-
cursive relative to b? We should at least have b ≤ a. One might first try also
requiring that for some (or perhaps any) B ∈ b and any g ≤wtt B

′ there is an
f ≤T a not dominated by g. This, however, would not be sufficient to relativize
the usual results about ANR degrees to the realm above b. (In fact, it is not
hard to see that there is a single function recursive in 0′ which dominates every
g wtt below any set X.) Another possibility might be to include all functions f
computable from B′ with use bounded by a function recursive in A. This too is in-
sufficient. One needs to allow unbounded access to B. Along these lines a stronger
version would be that for any g computable from B ⊕ B′ such that the use from
B′ is bounded by a function recursive in B there is an f ≤T a not dominated by g.
Other variations also seem plausible. A simpler route is provided by an alternate
characterization of ANR degrees from [DJS96] that depends (in the unrelativized
case) on only a single function g, the modulus of 0′:

Definition II.2.2. We let m be the least modulus function of 0′, i.e. m(x) is the
least s ≥ x such that 0′s � x = 0′ � x where 0′s is the standard enumeration of 0′.
Note that m is nondecreasing. Similarly we let mh (or mA) be the least modulus
function for the standard enumeration of h′ (A′) relative to h (A). (We view sets
as represented by their characteristic functions.)

1Answering [ASDWY09, Question 4.2], Wang ([Wangxx]) has now shown that every RRE
degree is r.e. in a 1-generic below it. In contrast to our proofs here, however, his are not uniform.

13

Remark II.2.3. The common notation for m, the least modulus function of 0′(=
K), is mK, which is inconsistent with our notations here. In all other chapters we
will use the common notation to write mK for m.

Proposition II.2.4 ([DJS96]). A degree a is ANR if and only if there is a func-
tion f ≤T a which is not dominated by m.

We propose to turn this proposition into a definition which relativizes in an
obvious way.

Definition II.2.5. A function f is ANR if it is not dominated by m. It is ANR
relative to h if h ≤T f and f is not dominated by mh. A degree a is ANR relative
to b, ANR(b), if there are f ∈ a and h ∈ b such that f is ANR relative to h,
ANR(h).

Note that when b = 0 this definition agrees with the standard one for a being
ANR by Proposition II.2.4. (One also needs to note that, in general, if there is a
g ≤T X not dominated by h then there is an f ≡T X which is also not dominated
by h. Simply take f(n) = 2g(n) +X(n).)

We now provide a domination property that characterizes being ANR(h) but
is stronger than the ones previously presented in the literature even in the unrel-
ativized case. It also shows that our (seemingly weak) definition in the relativized
case is stronger than all the other possible definitions mentioned after Definition
II.2.1. It also makes ANR seem much more similar to GL2 than did previous
definitions. Recall that a ∈ GL2 if for every function g ≤T a ∨ 0′, there is an
f ≤T a which is not dominated by g. Our proposition similarly says that if f is
ANR and g = Θ(f ⊕ 0′) with 0′ use bounded by a function r ≤T f (not just a
recursive function) then there is a k ≤T f which is not dominated by g. We now
state and prove the relativized version by substituting an arbitrary h′ for 0′ and
also make the uniformities explicit.

Proposition II.2.6. If f is ANR(h) and g = Θ(f⊕h′) with the h′ use bounded by
a function r ≤T f then there is a k ≤T f which is not dominated by g. Moreover k
can be found uniformly in f in the sense that there is a recursive function s(e, i, j)
such that if Θ = Φe, r = Φi(f) and h = Φj(f) then Φs(e,i,j)(f) will serve as the
required k.

Proof. Without loss of generality or uniformity we may assume that f , g and r are
increasing. We define the required k ≤T f as follows: To compute k(n) compute,
for each m > n in turn, Θfr(m)(f ⊕ (h′)fr(m);n) (i.e. compute fr(m) many steps
in the standard enumeration of h′ from h and then, using this set as the second
component of the oracle (and f for the first), compute Θ at n for fr(m) many
steps) until the computation converges and then add 1 to get the value of k(n).
(This procedure must converge as Θ(f ⊕ h′;n) converges.) Now as mh does not
dominate f , there are infinitely many n such that there is a j ∈ [r(n), r(n + 1))
with f(j) > mh(j). For such n we have fr(n + 1) > f(j) > mh(j) ≥ mhr(n).
Thus (h′)fr(m) � r(n) = (h′) � r(n) for every m > n. So the computation of
Θ(f ⊕h′;n) is, step by step, the same as that of Θ(f ⊕ (h′)fr(m);n) for each m > n
as all the oracles agree on the actual use of the true computation. So eventually
we get an m > n such that Θfr(m)(f ⊕ (h′)fr(m);n) ↓ and the output must be
Θ(f⊕h′;n). Thus for these n, k(n) = g(n)+1 > g(n) as required. The uniformity
of the definition of k from f and the functions of the hypotheses is clear. (Noting

14

that we can uniformly, in f and the reduction of h to f , compute the standard
enumeration of h′ from h.)

Corollary II.2.7. A degree a is ANR(b) if and only if for every h ∈ b there is
a k ∈ a such that k is ANR(h).

Proof. The only if direction is immediate from Definition II.2.5. The other direc-
tion follows easily from above the proposition since given one h ∈ b with f ∈ a
which is ANR(h), the modulus function of any ĥ ≡T h is given by a function of
the type specified in the hypotheses of the proposition and so the function k ≤T f
provided by the proposition is not dominated by mĥ and as noted above we may

as well take k ≡T f . It is then the required ANR(ĥ) function.

Iterating the notion of relative array recursiveness also provides some interesting
questions. (A degree a is array recursive relative to b if it is not ANR(b).)

Question II.2.8. If 0 = a0< a1 < a2 < · · · < an is a sequence of degrees such
that ai+1 is array recursive relative to ai for each i, what can be said about an?
Showing that an /∈ GH1 would provide interesting information.

We want to consider notions of forcing P in which the underlying set P of
conditions (thought of as a subset of N) and the extension relation ≤P are both
recursive in a specified set A. We call such notions of forcing A-recursive (or
a-recursive when A ∈ a). Rather than using C-generic filters (for a class C =
{Dn|n ∈ N}) of dense sets) we work with C-generic sequences 〈pi〉 of conditions:
∀i(pi ≤P pi+1) and ∀n∃i(pi ∈ Dn) and a density function d(p, n) such that ∀p ∈
P∀n(d(p, n) ≤P p & d(p, n) ∈ Dn). (We actually construct the generic sequences
we need using such functions. Going from the sequence to the filter it generates is
not always a recursive operation.)

The basic fact about degrees a ∈ GL2 being able to construct generic sequences
(for Cohen forcing) is [JP78, Lemma 6] of stating that if C = 〈Dn〉 is a sequence
of dense sets (in 2<ω) uniformly recursive in A ⊕ 0′ for any A ∈ a then there is a
C-generic sequence recursive in a. (In fact, as [DJS96] pointed out, it is easy to see
that this condition also implies (and so is equivalent to) a ∈ GL2.) We wish to
generalize this result to arbitrary notions of forcing that are a-recursive. We give
a construction more direct than the original and usual one in that at each step we
move (if at all) directly to the condition that seems to get into the first Dn that
our sequence does not yet seem to have met rather searching for a “best possible”
target then moving towards it step by step and perhaps changing our mind before
reaching it. Also note that the idea of moving toward a condition p step by step that
makes natural sense when the conditions are binary sequences does not make any
obvious sense when they are arbitrary numbers under an arbitrary order relation.

We also give an argument that works (under the appropriate assumptions and
with minor variations) for both GL2 and ANR degrees. For a ∈ GL2 the natural
formulation of the necessary condition on the sequence 〈Dn〉 of dense sets that
we want to meet is that it is uniformly recursive in A ⊕ 0′. What we actually
use in the construction is a density function. In this setting, the existence of the
desired function d always follows from, and is usually equivalent to, the density
of the Dn and their being uniformly recursive in A ⊕ 0′. This is no longer the
case when we move from GL2 to ANR and so from Turing reducibility to wtt
reducibility. (For example, one cannot get the required d ≤wtt A ⊕ 0′ from the

15

assumption that the Dn are dense and uniformly wtt reducible to A ⊕ 0′ as its
definition requires an unbounded search.) Thus to handle ANR degrees we would
naturally turn to density functions as is done for Cohen forcing in [DJS96]. To
make the proofs in the two cases as similar as possible, we use them for the GL2

case as well. Note that, by Proposition II.2.6,we can actually get by with a weaker
hypothesis in the ANR case than might be expected that is closer to that for
GL2. For notational convenience we state and prove the unrelativized versions of
the theorem but, given the definitions and results above, relativization (to GL2(b)
and ANR(b)) is routine.

Theorem II.2.9. Suppose P is an A-recursive notion of forcing, C = 〈Dn〉 a
sequence of sets dense in P with a density function d(x, y) = Ψ(A⊕ 0′;x, y).

(i) If A ∈ GL2 then there is a C-generic sequence recursive in A.

(ii) If A ∈ ANR and the use from 0′ in the computation of Ψ(A ⊕ 0′;x, y) is
bounded by a function r̂ ≤T A, then there is also a C-generic sequence recursive
in A.

In both cases the sequence 〈ps〉 constructed is C-generic because ∀n∃s(ps+1 =
d(ps, n)). Moreover, in the ANR case the generic sequence is uniformly com-
putable from any ANR f ∈ a (as a function of the indices of Ψ and of r̂ relative
to f).

Proof. Let r̂(x, y) be a function that bounds the 0′ use in the computation of
Ψ(A⊕0′;x, y). Without loss of generality we may assume that r̂(x, y) is increasing
in both x and y. In case (i) we may clearly take r̂ ≤T A ⊕ 0′ and in case (ii)
we may take r̂ ≤T A by hypothesis. Next note that the nondecreasing function
mr̂(s, s) in case (i) is recursive in A⊕ 0′ and in case (ii) satisfies the hypotheses of
Proposition II.2.6, i.e. it is computable from A ⊕ 0′ and its 0′ use is bounded by
a function (r̂(s, s)) recursive in A. Finally note that the maximum of the running
times of Ψ(A ⊕ 0′;x, y) for x, y ≤ s is also is such a function in each case. (We
run Ψ on each input and then output the sum of the number of steps needed to
converge.) Finally, we let r be the maximum of these three functions so it too is
of the desired form. We now have, by the basic characterization of GL2 degrees
or Proposition II.2.6, an increasing function g ≤T A not dominated by r. We use
g to construct the desired generic sequence ps by recursion.

We begin with p1 = 1. At step s+ 1 we have (by induction) a nested sequence
〈pi|i ≤ s〉 with pi ≤ s. We calculate 0′g(s+1) and see if there are any changes on

the use from 0′ in a computation based on which some Dm was previous declared
satisfied. If so, we now declare it unsatisfied. Suppose n is the least m < s + 1
such that Dm is not now declared satisfied. (There must be one as we declare
at most one m to be satisfied at every stage and none at stage 1.) We compute
Ψg(s+1)(A⊕0′g(s+1); ps, n). If the computation does not converge or gives an output

q such that q > s + 1 or q �P ps we end the stage and set ps+1 = ps. Otherwise,
we end the stage, declare Dn to be satisfied on the basis of this computation of
the output q and set ps+1 = q.

We now try to verify that the sequence constructed is C-generic and indeed
∀n∃s(ps+1 = d(ps, n)). Clearly if we ever declare Dn to be satisfied (and define
ps+1 accordingly) and it never becomes unsatisfied again then ps+1 = d(ps, n).

16

Moreover, if we ever declare Dn to be satisfied (and define ps+1 accordingly) and
it remains satisfied at a point of the construction at which we have enumerated 0′

correctly up to r(ps, n), then by definition ps+1 = d(ps, n) and Dn is never declared
unsatisfied again. We now show that this happens.

Suppose all Dm for m < n have been declared satisfied by s0 and are never
declared unsatisfied again. Let s+1 ≥ s0 be least such that g(s+1) ≥ r(s+1). If
Dn was declared satisfied at some t + 1 ≤ s on the basis of some computation of
Ψg(t+1)(A⊕0′g(t+1); pt, n) and there is no change in 0′ on the use of this computation

by stage g(s + 1) then the computation is correct, pt+1 = Ψ(A ⊕ 0′; pt, n) ∈ Dn

and Dn is never declared unsatisfied again. (The point here is that by our choice
of s, g(s+ 1) > mr̂(s+ 1, s+ 1) ≥ mr̂(pt, n) and so 0′g(s) � r̂(pt, n) = 0′ � r̂(pt, n).)
Otherwise, Dn is unsatisfied at s and the least such. By construction we compute
Ψg(s+1)(A ⊕ 0′g(s+1); ps, n). The definition of r along with our choice of g and s

guarantee that this computation converges and is correct and so unless d(ps, n) >
s+1 we declareDn satisfied, set ps+1 = d(ps, n) andDn is never declared unsatisfied
again. If d(ps, n) > s+ 1, we set ps+1 = ps and, as Dn remains unsatisfied and the
computations already found do not change, we continue to do this until we reach
a stage v + 1 ≥ d(ps, n) at which point pv = ps and we set pv+1 = d(pv, n) declare
Dn satisfied and it is never unsatisfied again.

The uniformity required in the ANR case is immediate from Proposition II.2.6
and our construction.

The uniformity provided in the ANR case of this Theorem carries over to
most constructions of degrees recursive in a given ANR one. We describe them
explicitly in a number of results below. One classic example is the result of DJS
that every ANR degree bounds a 1-generic degree. Our construction shows that
there is a single e such that, for every ANR function f , Φe(f) is 1-generic (see also
Proposition II.3.6).

II.3 ANR degrees are RRE

In this section we give a number of applications of the basic Theorem II.2.9 for
ANR degrees including the result that they are RRE. We begin by extending
a theorem of [JP78] from GL2 to ANR. Even for the GL2 case, it does not fall
under the usual paradigm since it makes demands on coding that require a notion
of forcing that is a-recursive but not recursive.

Theorem II.3.1. If a ∈ ANR and c ≥ a ∨ 0′ and is r.e. in a, then there is a
g ≤ a s.t. g′ = c.

Proof. First fix anA ∈ a and an A-recursive enumeration 〈Cs〉 of C. The conditions
in our notion of forcing P are binary strings σ but extension is defined to reflect
the given enumeration of C. We let F (σ) = {e|Φσ

e (e) ↓}. (We employ the usual
conventions so that, for example, the computation of Φτ

e(x) requires at least xmany
steps to converge and runs only for |τ | many steps so F is a recursive function and
its values are finite sets.)

If τ ⊇ σ (and so F (τ) ⊇ F (σ)) and for any e ≤ min({|σ|} ∪ (F (τ) − F (σ))),
and for any 〈e, s〉 ∈ [|σ|, |τ |), τ(〈e, s〉) = C|σ|(e) we say that τ ≤P σ. We make
this into the required partial order by taking the transitive closure of this relation.

17

The transitive closure is also recursive in A because we can lay out and check the
finitely many possible one step paths between any p and q to see if any of them
satisfy the original relation at each step. The intuition (as in the jump theorem in
[Shn59]) is that, whenever we try to extend a string, we want to make sure that
some (eventually growing) initial segment of columns respects the enumeration of
C in sense that τ(〈e, s〉) = C|σ|(e) and so lims→∞G(〈e, s〉 = C(e). This makes
C ≤T G

′ by the Shoenfield limit lemma.

Define our sequence C of sets as follows:

Dn,j = {σ : |σ| > j & [Φσ
n(n) ↓ or ∀τ ⊃ σ[Φτ

n(n) ↑ or

∃s∃e < min({|σ|} ∪ (F (τ)− F (σ)))(〈e, s〉 ∈ [|σ|, |τ |) & τ(〈e, s〉) 6= C|σ|(e))]]}.
We calculate the required density function d(σ, 〈n, j〉) for theDn,j as follows: Given
any σ, n and j we may as well assume (by, recursively in A, taking a long enough
extension ρ with ρ(〈e, s〉) = C|σ|(e) for every 〈e, s〉 > |σ|, 〈e, s〉 ≤ j) that |σ| > j.
Now check whether Φσ

n(n) ↓, if so, set d(σ 〈n, j〉) = σ ∈ Dn,j and we are done. If
not, use A to get all the values of C|σ|(e) for e ≤ |σ|. Ask (0′) whether we can find an
extension τ of σ with the property that for all e ≤ min({|σ|}∪ (F (τ)−F (σ))) and
all s such that 〈e, s〉 ∈ [|σ|, |τ |), we have τ(〈e, s〉) = C|σ|(e), and Φτ

n(n) ↓. If so, we
let d(σ, 〈n, j〉) be the first such τ (found in a standard ordering of computations). It
is immediate that d(σ, 〈n, j〉) ≤P σ and τ ∈ Dn,j. Otherwise, we let d(σ, 〈n, j〉) =
σ ∈ Dn,j.

As we determined C|σ| recursively in A, the 0′ use for the question asked is
clearly bounded by a function recursive in A. Thus, by Theorem II.2.9(ii), we have
a C-generic sequence 〈σi〉 recursive in A. We let G = ∪{σpi

} ≤T A.

First, we claim that C ≤T G
′ and, in particular, C(n) = limG(n, s) for every n.

Given n, there is obviously a j such that for every e ≤ n, e ∈ G′ ⇔ Φ
σj
e (e) ↓ and

C|σj |(e) = C(e). By the definition of our forcing notion, G(n, t) = C|σj |(n) = C(n)
for t ≥ |σj|.

To see that G′ ≤T C, assume we have determined G′ � n and want to decide if
n ∈ G′. Recursively in C ≥T A∨0′ find j and k large enough so that C � n = Cj � n,
σk+1 = d(σk, 〈n, j〉) and G′ � n = F (σk+1) � n. (It is clear, first, that there are such
j and k and then that they can be recognized recursively in C which computes
both the sequence σi and d.) It is now clear from the definition of Dn,j and our
notion of forcing that n ∈ G′ ⇔ Φσk

n (n) ↓.

We now apply our general theorem to an A-recursive notion of forcing chosen
to produce relative recursive enumerability.

Theorem II.3.2. If a ∈ ANR then a is RRE. Indeed, there are e and i such

that, for every ANR function f , Φe(f) <T f and W
Φe(f)
i ≡T f .

Proof. Suppose f ∈ a is ANR. Let A be the graph of f (and so A ≡T f). We use
an A-recursive notion of forcing P with conditions p = 〈p0, p1, p2〉, pi ∈ 2<ω such
that

1. |p0| = |p1|, p0(dn) = A(n − 1), p1(dn) = 1 − A(n − 1) where dn is nth place
where p0, p1 differ and

18

2. (∀e < |p0 ⊕ p1|)(e ∈ p0 ⊕ p1 ⇔ ∃x(〈e, x〉 ∈ p2)).

Extension in this notion of forcing is defined simply by q ≤P p ⇔ qi ⊇ pi but
note that this applies only to p and q in P . Membership in P and ≤P are clearly
recursive in A.

Our plan is to define a class C of dense sets Dn with a density function d(p, n)
recursive in A⊕0′ with 0′ use recursively bounded. Theorem II.2.9(ii) then supplies
a C-generic sequence 〈ps〉 ≤T A from which we can define the required G ≤T A
in which a is r.e. If ps = 〈ps,0, ps,1, ps,2〉 we let Gi = ∪{ps,i|s ∈ N} for i = 0, 1, 2
so Gi ≤T A. Then, if we can force G0 and G1 to differ at infinitely many places,
G0⊕G1 ≡T A. On the other hand, the definition of the notion of forcing obviously
makes G0 ⊕G1 r.e. in G2. Thus a will be r.e. in g = deg(G2). We will have other
requirements that make g < a as well.

We begin with the dense sets that provide the differences we need:

D2n = {p ∈ P : p0, p1 differ at at least n points}.

We define the required function d(r, 2n) by recursion on n. Given r and n + 1,
we suppose we have calculated d(r, 2n) = p = 〈p0, p1, p2〉 ∈ D2n with p ≤P r.
If p /∈ D2n+2, we need to compute a q = 〈q0, q1, q2〉 ∈ D2n+2 with q ≤P p. Let
q0 = p0ˆA(n), q1 = p1ˆ(1 − A(n)). Choose i ∈ {0, 1} such that qi(|p0|) = 1.
Define q2 ⊇ p2 by choosing x large and setting q2(〈2|p0|+ i, x〉) = 1 and q2(z) = 0
for all z /∈ dom(p2) and less than 〈2|p0|+ i, x〉. Now q = 〈q0, q1, q2〉 satisfies the
requirements to be a condition in P . It obviously extends p and is in D2n+2. This
computation is clearly recursive in A.

We must now add dense sets to guarantee that A �T G2. A direct route is to
let

D2n+1 = {p ∈ P : ∃x(Φp2
n (x) ↓6= A(x)) or ∀(σ0, σ1 ⊇ p2)[∃x(Φσ0

n (x) ↓6= Φσ1
n (x) ↓)

⇒ (∃i ∈ {0, 1})(∃ 〈e, x〉)(e < |p0 ⊕ p1| σi(〈e, x〉) = 1 6= (p0 ⊕ p1)(e))]}.

Of course, the first alternative guarantees that ΦG2
n 6= A while the second that

ΦG2
n , if total, is recursive. The point here is that if some ps in our generic sequence

satisfies the second clause then, we can, for any z, calculate ΦG2
n (z) by finding any

σ ⊇ ps,2 such that Φσ
n(z) ↓ and taking its value as ΦG2

n (z). There is such a σ ⊆ G2

as ΦG2
n is assumed to be total and G2 ⊇ ps,2. If there were some other τ ⊇ ps,2

with Φτ
n(z) ↓6= Φσ

n(z) ↓ then, by our choice of s and the definition of D2n+1, there
is no 〈e, x〉 with e < |p0 ⊕ p1| such that τ(〈e, x〉) = 1 6= (p0 ⊕ p1)(e). Thus we
could form a condition q ≤P ps with q2 = τ by extending p0 and p1 by setting
q1(w) = q2(w) = 1 (for w ≥ |p0|) if either 〈2w, v〉 or 〈2w + 1, v〉 is in τ for any v.
In this way no new differences between q0 and q1 (not already in p0 and p1) occur
and the definition of being a condition is satisfied. Thus q is a condition extending
ps,2 with Φq2

n (z) ↓6= A(z) contradicting our choice of s.

We compute the required density function d(q, 2n+1) as follows. Given q we ask
one question of 0′ determined recursively in q: Are there extensions σ0, σ1 of q2 that
would show that q does not satisfy the second disjunct in the definition of D2n+1.
If not, let d(q, 2n + 1) = q which is already in D2n+1. If so, we find the first such
pair (appearing in a recursive search) and ask A which σi gives an answer different
from A(x). We now need a condition r = d(q, 2n + 1) extending q with third
coordinate r2 extending σi. For each 〈e, x〉 with e ≥ |q1 ⊕ q2|) and σi(〈e, x〉) = 1

19

we define rj(z) = 1 for both j ∈ {0, 1} for the z that makes (r0 ⊕ r1)(e) = 1 and
otherwise we let rj(u) = 0 for all other u less than the largest element put into
either r0 or r1 by the previous procedure. We now extend σi to the desired r2 by
putting in 〈k, y〉 for a large y for all those k ≥ |q1| put into r0 ⊕ r1 for which there
is no 〈k, w〉 in σi. Otherwise we extend σi by 0 up to the largest element put in by
this procedure. It is clear that this produces a condition r as required. (No points
of difference between r0 and r1 are created that were not already present in q.)

We now apply Theorem II.2.9 to get a C-generic sequence 〈ps〉 ≤T A. As
promised, we let Gi = ∪{ps,i|s ∈ N} for i = 0, 1, 2 and, as described above,
A ≡T G0 ⊕G1 which is r.e. in G2. In addition, the conditions in D2n+1 guarantee
(as above) that ΦG2

n 6= A as well. The uniformity assertions follow immediately
from those in Theorem II.2.9 and our construction.

We now point out some additional information about G2 that can be extracted
from this construction.

Proposition II.3.3. For the G2 constructed in the proof of Theorem II.3.2 such
that the given A ∈ ANR is r.e. in and strictly above G2 we also have G′

2 ≡T A⊕0′

and so if A ∈ GL2 then A is also GL2(G2), i.e. (A⊕G′
2)
′ <T A

′′.

Proof. We first claim that G′
2 ≤T A ∨ 0′. To see if e ∈ G′

2, recursively compute
an n such that, for every τ , Φτ

n(x) = τ(x) if Φτ
e(e) ↓ and is divergent otherwise.

Now, recursively in A ⊕ 0′ find an s such that ps+1 = d(ps, 2n + 1). If ps+1 is in
D2n+1 because of the first clause of the definition then Φ

ps+1,2
n (x) ↓ for some x and

so e ∈ G′
2. Otherwise we claim e /∈ G′

2. Suppose for the sake of a contradiction
that, for some t, Φ

pt,2
e (e) ↓. It is now easy to get extensions of pt,2 that show

that ps+1 does not satisfy the second clause of the definition of Dn for the desired
contradiction. Simply choose y > 2|ps,0|, |pt,2| and extend pt,2 by 0 up to 〈y, 0〉 and
then with i = 0, 1 at 〈y, 0〉 to get the required σi. On the other hand, as a is r.e.
in G2, A⊕ 0′ ≤T G

′
2 and G′

2 ≡T A⊕ 0′ as desired. If a ∈ GL2, a′′ > (a ∨ 0′)′ and
so a′′ > (a ∨ g′2)

′ as required.

A reasonable question now would be to ask for an analogous result for ANR
degrees to that given in this proposition for GL2 based on our Definition II.2.5 of
relative array nonrecursiveness.

Theorem II.3.4. If a is ANR then there is a g relative to which a is both r.e.
and ANR.

Proof. We replace the sets D2n+1 of the proof of Theorem II.3.2 with new ones (also
called D2n+1) that force a maximal number of convergences of ΦG2

n (m). We here
directly specify the (calculation procedure for the) associated density functions
d(p, 2n + 1): We ask 2p many questions of 0′. For each subset F of {i|i < p}
we ask if there is a σ ⊇ p2 “adding no new numbers” (i.e. ¬∃ 〈e, x〉 (e < |p0 ⊕
p1| & σ(〈e, x〉) = 1 6= (p0 ⊕ p2)(〈e, x〉)) that makes Φσ

n(m) ↓ for every m ∈ F .
We take a maximal such F and find the first extension σ > p witnessing the
convergences for m ∈ F . We then get an extension q of p with third coordinate
extending σ as before. Note that by the usual coding of binary sequences and
triples, q > p as well. By induction then if g(m) is the mth stage s at which we
have ps+1 = d(ps, 2n + 1) for some n, pg(m) > m. Note that this procedure also
satisfies the hypotheses of Theorem II.2.9(ii). The D2n+1 are declared satisfied and

20

unsatisfied as before but note that they become unsatisfied when we discover that
the F associated with the extension used was not maximal (this is, after all, part of
the computation on which we based the calculation of d). By the proof of Theorem
II.2.9, there are infinitely many m such that the D2n+1 declared satisfied at g(m)
is never declared unsatisfied. So in particular for such m, for every e < m with
e ∈ G′

2, Φ
pg(m)+1,2
e (e) ↓. Thus if we now define h(m) as the stage in the standard

enumeration of G′
2 at which all the numbers e such that Φ

pg(m)+1,2
e (e) ↓ have been

enumerated in G′
2, then, for each of these infinitely many m, h(m) will be at least

as large as the modulus function for G′
2 (relative to G2) at m.

In the next section we will improve Theorem II.3.2 when a ∈ GL2 by making
the degree witnessing that a is RRE 1-generic. Here we present another extension
to ANR of a result from [ASDWY09] about GL2 both as an illustration of our
general methodology as well as an introduction of the coding techniques that will
be exploited in the next section.

Definition II.3.5. For any set G, we define a relationship as(e,G) = σ, the
number e is assigned to (the string) σ to hold when σ is the shortest τ ⊂ G such
that Φτ

e(e) ↓. If as(e,G) = σ, we define the weak order of e along G, wo(e,G),
recursively as one more than the weak order of e′ along G where e′ is the unique
x < e such, for some τ ⊂ σ, as(x,G) = τ and for no e′′ < x and ρ with τ ⊂ ρ ⊂ σ
is as(e′′, G) = ρ. If there is no such x, then wo(e,G) = 0. We define as(e, ρ) = σ
and the weak order of e along ρ similarly for strings ρ.

Intuitively, we first assign numbers to strings along G, and then for each e
assigned to σ, we search downward from σ for the first e′ < e assigned. The weak
order of e is then the weak order of e′ plus 1. We use these notions to code a into
g′ in Proposition II.3.6.

Without loss of generality we may clearly choose our master list of computations
so that for every τ there is at most one e such that Φτ

e(e) ↓ but Φτ−
e (e) ↑. So along

any G each node is assigned at most one number.

For every string σ, we let σ− be the initial segment of σ gotten by removing the
last number in σ. If there is a set G (string τ) that is clear from the context such
that σ ⊂ G (τ), σ+ will denote σˆG(|σ|) (σˆτ(|σ|)).
Proposition II.3.6. If a ∈ ANR then there is an 1-generic degree g recursive in
a such that g′ = a ∨ 0′. Indeed, there is an e such that, if f is ANR, then Φf

e is
1-generic and (Φe(f))′ ≡T f ⊕ 0′ (and this equivalence is also given uniformly).

Proof. We again begin with A being the graph of f . Our forcing conditions are
binary strings. Membership of ρ in P is defined recursively: if σ (ρ is the
longest initial segment of ρ such that as(e, ρ) = σ for some e then we require that
σ+(|σ|) = A(wo(e, ρ)); moreover, if τ is the longest initial segment of σ such that
as(e′, ρ) = τ for some e′ < e then τ+ is also (recursively required to be) in P . (By
default, for the base case, if no number is assigned to any σ ⊂ τ , then τ ∈ P .)
Thus P is clearly recursive in A. The order σ ≤P τ for our notion of forcing is the
usual extension relation on strings, σ ⊇ τ .

Our dense sets will be:

Dn = {σ ∈ P|Φσ
n(n) ↓ or (∀τ ⊃ σ)(Φτ−

n (n) ↓ or Φτ
n(n) ↑ or (∀i)(τˆi /∈ P))}.

21

Now we define an appropriate density function d(p, n). Consider any ρ ∈ P . (If
ρ /∈ P , we let d(ρ, n) = 1 for any n.) In order to find σ ≤P ρ in Dn, we first check
whether Φρ

n(n) ↓, if so we are done, if not then ask whether there is σ ⊃ ρ such
that Φσ

n(n) ↓, Φσ−
n (n) ↑ and σˆA(wo(n, σ)) ∈ P . If so, σˆA(wo(n, q)) ∈ Dn and

σˆA(wo(n, q) ≤P ρ. If not, ρ ∈ Dn. The second question only requires A � n to
determine the question it asks of 0′. The rest of the procedure is recursive in A
and so d satisfies the hypotheses of Theorem II.2.9(ii).

Theorem II.2.9(ii) now provides a sequence 〈σi〉 ≤T A meeting all the Dn. Our
desired G is ∪σi. So G ≤T A. To see that G is 1-generic, we need to check that for
every e there is a node σ ⊂ G which forces e ∈ G′ or e /∈ G′. Note that there is an
i such that σi decides if e′ ∈ G′ for every e′ < e (by induction) and σi+1 ∈ De (by
the genericity of the sequence and the closure of the Dn under extension in P). Of
course, if Φ

σi+1
e (e) ↓ we are done. Otherwise, we claim that σi+1 forces e /∈ G′. If

not, then we can find the first τ ⊃ σi such that Φτ
e(e) ↓, take a one-bit extension

of τ by coding in A(wo(e, τ)), then this τ+ ∈ P because all e′ < e in G′ are forced
in by strings shorter than σi. This contradicts the fact that σi+1 ∈ Dn.

Now we have G′ ≤T G∨ 0′ ≤T A∨ 0′ and it remains to show that A ≤T G
′. We

say some pair (e, τ) has true weak order n = wo(e, τ), if no string extending τ can
have an assignment e′ with weak order n, i.e., any e′ assigned after τ is greater than
e. For such a pair (e, τ), we must have τ+(|τ |) = A(wo(e, τ)) = A(n). Finally,
for every n we can use G′ to find the unique pair (e, τ) with true weak order n, so
A ≤T G

′.

As usual the desired uniformities are immediate from those of Theorem II.2.9(ii)
and our construction.

II.4 GL2 degrees

Theorem II.3.2 provides a procedure that, given any ANR degree a, produces a
g < a in which a is r.e. We now show how to make g 1-generic if a ∈ GL2 much
more directly than is done in [ASDWY09].

Theorem II.4.1 ([ASDWY09]). If a ∈ GL2, then it is r.e. in and above a 1-
generic degree.

Proof. Given a finite string σ, we define the rank of σ (rk(σ)) as the maximum
weak order along σ.

Define a notion of forcing P consisting of all p = 〈p0, p1, p2〉, p0, p1, p2 ∈ 2<ω

such that:

1. p0 and p1 are of the same length and if m is the nth position at which they
differ, p0(m) = 1− p1(m) = A(n− 1).

2. For n < |p0 ⊕ p1|, n ∈ p0 ⊕ p1 if and only if there exists σ (p2 and an e
assigned to σ with weak order n and p2(|σ|) = 1 (i.e. σ+(|σ|) = 1).

3. 2|p0| = rk(p2).

Let q ≤P p if qi ⊃ pi for each i. Clearly this notion of forcing is A-recursive.
Intuitively, if we get 〈A0, A1, G〉 from a sufficiently generic sequence (recursive in

22

A), then A ≡T A0 ⊕ A1 which is r.e. in (and above) G. To determine whether
n ∈ A0 ⊕ A1, one simply runs through G checking whether there is a node with
weak order n and a 1 coded right after that. We also want to guarantee the
1-genericity of G.

Given p ∈ P , we say τ ⊃ p2 respects p if there is no (n, σ) such that n < |p0⊕p1|,
n /∈ p0 ⊕ p1, σ is between p2 and τ with some number e assigned to it and of weak
order n and τ(|σ|) = 1. So if τ does not respect p, then we cannot extend p to a
condition q with q2 extending τ because any such extension would violate clause
(2) in the definition of our notion of forcing. Conversely, the following holds:

Lemma II.4.2. If p ∈ P, rk(p2) > n, Φp2
n (n) ↑, τ ⊃ p2 respects p and n is

assigned to τ , then there exists a q ≤P p such that q2 ⊃ τ and so one can be found
recursively in A.

Proof. We first try to extend p0 and p1. If we use τ and blindly follow the dictates
of clause (2) of our definition of P to extend p0, p1, we might violate clause (1).
However, it is easy to see that we can fix this by extending τ by putting 1’s
after some nodes with certain weak orders between rk(p2) and rk(τ). Notice that
wo(n, τ) ≤ n and rk(p2) > n, and those weak orders that need adjustments are
> n, so we can extend τ and wait for those weak orders to appear, then code in
1’s after some of them so that we meet the requirements of clause (1).

Define dense sets:

Dn = {p : Φp2
n (n) ↓ or ∀τ ⊃ p2(Φ

τ
n(n) ↑)}.

These Dn will guarantee that G = ∪i{pi,2} is 1-generic. We need to define a density
function recursively in A⊕ 0′.

Given p, assume Φp2
n (n) ↑ and rk(p2) > n (as we can always extend a string

respectfully). We first ask whether there is a τ extending p2 which makes Φτ
n(n) ↓

and respects p. If so we find the first such τ and notice that n is assigned to τ .
Then, by Lemma II.4.2, we can find q ∈ Dn extending p. If not, we claim that we
can find q ≤P p with q ∈ Dn and Φq2

n (n) ↑, i.e. q forces n /∈ G′.

Next we ask (0′) whether there is a τ extending p2 which makes Φτ
n(n) ↓. If not

then p is already in Dn. If so, find the first one τ1, then, by the negative answer
to our first question, we know that τ1 does not respect p. Find the first initial
segment η1 of τ which does not respect p, i.e., η−1 is assigned a number with weak
order < rk(p2), η1(|η1| − 1) = 1 but the definition of η1 respecting τ would require
it to be 0. Then put ξ1 = η−1 ∗ 0, that is, we change the last bit to respect p.

Note that Φξ1
n (n) ↑ because ξ1 respects p. Now ask (0′) whether ξ1 forces n /∈ G′.

If so, then we are done by (a slight variation of) Lemma II.4.2. If not, we repeat
this process: find τ2 ⊃ ξ1 which makes Φτ2

n (n) ↓, then find the first initial segment
of τ2 which does not respect p, change the last bit and get a ξ2 which respects p.

We can continue this process but at each repetition we need some new exten-
sion assigned a number with weak order < rk(p2). Therefore this process cannot
continue forever, i.e. we will eventually stop and get a ξi which respects p and
which forces n /∈ G′. Finally use Lemma II.4.2 to get q ≤P p, q2 ⊃ ξi and q ∈ Dn.

To make sure that A0 and A1 have infinitely many points of difference we add
another sequence of dense sets:

D∗
n = {p : p0, p1 differ at at least n positions}.

23

This is similar to the last part of Lemma II.4.2: for any p, one has to be careful
extending p2 while still satisfying clauses (1) and (2) and yet adding a point of
difference. Since we don’t have any other requirements, this process is easy and
recursive in A.

Our final step is to prove that if a ∈ GL2 then every b ≥ a is r.e. in a 1-generic
strictly below it. We prove a seemingly quite different proposition from which this
result will easily follow.

Proposition II.4.3. Every a ∈ GL2 computes an infinite binary tree T in 2<ω

such that for every path C ∈ [T], C is 1-generic, C does not compute a and a is
r.e. in C (but not necessarily above C).

Proof. We now also arrange our master list of computations so that there is no τ
of even length such that Φτ

e(e) ↓ but Φτ−
e (e) ↑. Thus no string of even length is

assigned a number.

We say a string τ is A-admissible if there exist p0, p1 s.t. 〈p0, p1, τ〉 is a forc-
ing condition in the sense of the previous construction. Note that p0 and p1 are
uniquely determined by τ . We will denote them by p0(τ) and p1(τ), respectively.

We say τ respects σ if τ respects 〈p0(σ), p1(σ), σ〉 as in the previous construction.

Now we define a new notion of forcing: P consists of finite binary trees such
that every leaf is A-admissible. We let q ≤P p if q is a binary tree extending p,
and each leaf of q respects the corresponding leaf in p that it extends.

We define dense sets:

Dn = {p : for every leaf σ of p, Φσ
n(n) ↓ or ∀τ ⊃ σ(Φτ

n(n) ↑)}.

D∗
n = {p : for every leaf σ of p, p0(σ) and p1(σ) differ at at least n positions}.

These two types of dense sets are handled in the same way as in the previous
construction. For every leaf, after we find an extension satisfying the conditions
in Dn (or D∗

n), we can assume that it has even length and extend it by 0 and 1 to
split it into two leaves. This preserves A-admissibility since no number is assigned
to nodes of even length.

Next, we want to make sure that no path C can compute A. Define additional
dense sets as follows:

En = {p : for every leaf σ of p, [∃xΦσ
n(x) ↓6= A(x)

or ∃x∀τ ⊃ σ(τ respects σ ⇒ Φτ
n(x) ↑)]}.

Now given σ, a leaf of p, we first fix a recursive list of strictly increasing indices
n0 < n1 < · · · < ni < . . . such that if Φτ

n(i) ↓ then for any τ ′ ⊃ τ which is large
enough to allow for the spacing required by the conditions we imposed on our
master list of computations, Φτ ′

ni
(ni) ↓, and conversely Φτ ′

ni
(ni) ↑ if no τ ⊂ τ ′ makes

Φτ
n(i) ↓.
Let σi = σ ∗ 0j where j is the least such that rk(σ ∗ 0j) > ni and rk(σ ∗ 0j) is

even. Using 0′ and A we go through the σi asking whether:

∀τ ⊃ σi(τ respects σi ⇒ Φτ
n(i) ↑).

24

If we ever get a“yes” answer for some σi, we output this σi (note that σi is
always A-admissible and respects σ). If we get a “no” answer for σi, we then find
the first such τi ⊃ σi which respects σi and which makes Φτi

n (i) ↓. If Φτi
n (i) =

A(i)we proceed to i+ 1. If Φτi
n (i) 6= A(i), then extend τi to ηi = τi ∗ 0k for the first

k such that ηi is assigned the number ni. Now this ηi respects σi and by Lemma
II.4.2 we can find an extension η of ηi which is A-admissible, and then output η.

Now we prove that we always halt in this process: Suppose not, then for any σi

we would always get a “yes” answer and could find the first τi ⊃ σi which respects
σi and Φτi

n (i) = A(i). That would make A recursive.

Finally we get extensions of all leaves of p and then branch each them into two
in the same way as in our analysis of Dn and D∗

n. Now En forces that, for each
path C, either ΦC

n is not total, or it is not A.

Theorem II.4.4. If a ∈ GL2 and b ≥ a, then b is r.e. in and strictly above a
1-generic c. Moreover, a C ∈ c can be found uniformly effectively in any B ∈ b
from an index for an A ∈ a as a set recursive in B and an index for a function
(recursive in A and hence B) not dominated by a particular effectively determined
function recursive A⊕ 0′.

Proof. Let T be the tree recursive in A constructed in the above proposition. Given
B ≥T A, we let C be the path in the tree gotten by following B, i.e., C = T (B).
It is easy to see that B ≡T A⊕C, so B is r.e. in and above C which is, of course,
1-generic. Moreover, since A �T C, C is strictly below B.

As for the uniformity assertions, we explain what we mean by describing the
procedure. We are given B and an index computing A from B. From this infor-
mation we can effectively find indices (from A ⊕ 0′) for the density functions for
the sets Dn, D∗

n and En and then for the associated function r (from A⊕ 0′) used
in the proof of Theorem II.2.9. The noneffective step is now to produce an index
for the function g ≤T A which is not dominated by r. Given that index for g, the
rest of the construction in the proof of Theorem II.2.9 proceeds effectively in A
and provides the generic sequence 〈pi〉 for our construction here and an index for
it from A. Going from the sequence to the corresponding tree T and then to the
path C = T (B) is then also uniformly effective in B.

25

CHAPTER III
ARRAY NONRECURSIVENESS AND RELATIVE RECURSIVE

ENUMERABILITY

This chapter is mainly based on a paper which will appear in the Journal of
Symbolic Logic.

III.1 Introduction

In the previous chapter we show that every ANR degree is RRE. In this chapter
we prove that if a degree a is array recursive (AR) then there is a degree b ≥ a
which is not RRE. ANR degrees are closed upwards by definition, therefore a
degree is ANR if and only if every degree above it is RRE.

This gives a nice definition of the ANR degrees in L2, i.e., the language of
partial order, jump and r.e. relation. Using this result we can directly answer
[ASDWY09, Question 4.4] and also [ASDWY09, Question 4.3] (see last section in
this chapter). In addition, we show two other applications: one is an interesting
corollary that every n-REA degree has a strong minimal cover if and only if it is
array recursive; the other is to show the existence of a PA degree without the join
property (we thank Adam Day for pointing this out).

In this chapter we will only use trees that are (possibly partial) functions from
2<ω to 2<ω (i.e., binary trees).

III.2 A Framework for Subtree Constructions

As mentioned in the introduction, we are about to prove:

Theorem III.2.1. For every array recursive degree a, there is a degree b ≥ a
which is not RRE.

Suppose we are given a set A of degree a. Our aim is to find a set B which
computes A and for every C with C ≡T B and C is r.e. in a set D ≤T B,
then B ≤T D. Equivalently, B is constructed to satisfy the following list of
requirements, for all i, j, k, l:

• Ri,j,k,l: ¬[ϕ
ϕB

i
j = B ∧ ϕB

i = W
ϕB

k
l ∧B �T ϕ

B
k].

This basically says that we cannot find C = ϕB
i which has the same Turing

degree as B via a reduction with index j such that C is enumerated by index l
with oracle D = ϕB

k and D does not compute B. For convenience we can assume
that all strings we handle here are binary.

In our construction, we will approximate B in 2ω by total A-recursive trees
T : 2<ω → 2<ω.

For every total A-recursive tree T and every σ ∈ 2<ω, the tree T ∗ defined by
T ∗(τ) = T (σ∗τ) is also total and A-recursive. This is the usual Full Subtree above
a node and we will denote it by FSub(T, σ).

A tree T forces a sentence P (B), if P (B) is true for every B ∈ [T]. Given a
tree T , a node σ forces a sentence P (B) (on T), if FSub(T, σ) forces P (B).

26

Suppose we are given a total A-recursive tree T and a quadruple 〈i, j, k, l〉. We
plan to find a total A-recursive subtree T ′ of T such that T ′ forces Ri,j,k,l.

First we ask whether the following is true:

∃σ∃x∀τ ⊃ σ (ϕ
T (τ)
i (x) ↑).

That is, we ask whether there is a σ which forces ϕB
i to be partial, i.e., ϕB

i (x)
diverges for every B ∈ [FSub(T, σ)]. If so, we set T ′ = FSub(T, σ) and hence
satisfy Ri,j,k,l. Otherwise, we next find an A-recursive subtree T ∗ of T which forces
totality.

We define T ∗(∅) = T (µ) where µ is the first node in a recursive search such that

ϕ
T (µ)
i (0) converges. By induction, we assume that T ∗(σ) = T (τ) has been defined

and now we want to define T ∗(σ ∗ 0) and T ∗(σ ∗ 1). For n = 0, 1, we search above

T (τ ∗ n) on the tree T and find the first T (τ ′) where ϕ
T (τ ′)
i (|σ| + 1) converges,

and let T ∗(σ ∗ n) be this T (τ ′). We can always find such T (τ ′) because we have
a negative answer to the question above. We denote T ∗ by Tot(T, i), the i-Total
Subtree of T , and replace T with Tot(T, i) for convenience of notation. This is a
classical totality forcing subtree, and it is more important here to point out a nice

fact which will be used later (here ϕ
T (σ)
i is considered as a string):

Fact III.2.2. For every σ, |ϕT (σ)
i | ≥ |σ|+ 1.

Similarly we can assume that ϕk is total for every path on T by replacing T
with Tot(T, k), as otherwise we could find a full subtree to force ϕk to be nontotal.

We can also find a recursive function p such that ϕB
p(i,j) = ϕ

ϕB
i

j , so by replacing T

with Tot(T, p(i, j)) we can assume that for every path B ∈ [T], ϕ
ϕB

i
j is also total.

In addition we have:

Fact III.2.3. For every σ, |ϕϕ
T (σ)
i

j | ≥ |σ|+ 1, and |ϕT (σ)
k | ≥ |σ|+ 1.

Now we try to satisfy ϕ
ϕB

i
j 6= B by asking whether the following is true:

∃σ∃x(ϕϕ
T (σ)
i

j (x) ↓6= (T (σ))(x) ↓).

That is, we ask whether there is a σ that forces ϕ
ϕB

i
j 6= B. If so, we set T ′ =

FSub(T, σ) and claim that the requirement has been satisfied. Otherwise we
know:

Fact III.2.4. For every σ, ϕ
ϕ

T (σ)
i

j ⊆ T (σ), and so by totality, for every B ∈ [T],

ϕ
ϕB

i
j = B.

In this case, we try to satisfy ϕB
i 6= W

ϕB
k

l , by asking whether the following is
true (note that ϕB

i is binary):

(†) : ∃σ∃x{(ϕT (σ)
i (x) = 0 ∧ W

ϕ
T (σ)
k

l (x) = 1)

or (ϕ
T (σ)
i (x) = 1 ∧ ∀τ ⊃ σ(W

ϕ
T (τ)
k

l (x) = 0))}.

27

This sentence may be a bit difficult to parse. The predicate on the first line says

that ϕ
T (σ)
i (x) = 0 but x has been enumerated into W

ϕ
T (σ)
k

l , so σ forces ϕB
i 6= W

ϕB
k

l .

The predicate on the second line says that ϕ
T (σ)
i (x) = 1, but x will never be

enumerated into W
ϕ

T (σ′)
k

l for nodes T (σ′) extending T (σ) on T . Thus this σ also

forces ϕB
i 6= W

ϕB
k

l . In either case, we set T ′ = FSub(T, σ) and claim that the
requirement has been satisfied.

Now suppose the answer is no. We again construct a new subtree T ∗ of T as

follows: In the base case, notice that ϕ
T (∅)
i (0) is defined by Fact III.2.2. If it is

0, by the failure of (†), we know that 0 will never be enumerated into W
ϕB

k
l for

B ∈ [T] and simply define T ∗(∅) = T (∅). If it is 1, then also by the failure of (†),
we know that there must be some node T (σ) on T where 0 has been enumerated

into W
ϕ

T (σ)
k

l , so we can find the first such node on T and let it be T ∗(∅).
By induction, suppose we have defined T ∗(σ) = T (τ) and |σ| ≤ |τ |. This means

that ϕ
T (τ∗n)
i (|σ|+ 1) is defined by Fact III.2.2 for n = 0, 1. If this value is 0, then

let T ∗(σ∗n) = T (τ ∗n). If it is 1, then search above T (τ ∗n) on T for the first node
which enumerates |σ|+1 into Wϕk

l , and let it be T ∗(σ ∗n). It is easy to check that
T ∗ is a total A-recursive subtree of T and we denote it by TEum(T, i, k, l), the
True Enumeration Subtree. A similar key fact about this subtree is the following:

Fact III.2.5. For T ∗ = TEum(T, i, k, l) and for every σ, the first |σ| many values

of W
ϕ

T∗(σ)
k

l are equal to those of ϕ
T ∗(σ)
i and will never change in the enumeration

Wϕk

l for nodes extending T ∗(σ) on T ∗ (i.e., for every σ′ ⊃ σ, W
ϕ

T∗(σ′)
k

l � |σ| =

W
ϕ

T∗(σ)
k

l � |σ|). Finally for every B ∈ [T ∗], W
ϕB

k
l = ϕB

i .

For convenience of notation we again replace T with T ∗. Now the only chance
to win is to make ϕB

k compute B for every path B ∈ [T]. We will introduce
a complimenting structure in the next section and finish the proof later. Some
“diagram-chasing” ideas will be used in the following “tree diagram”, which shows
the relations between different copies of 2ω in our construction.

III(2<ω)

ϕjvvlllllllllllll

I(2<ω) T // II(2<ω)

ϕi

66lllllllllllll

ϕk ((RRRRRRRRRRRRR

IV(2<ω)

Wl

OO

III.3 Tree Systems

In this section we introduce some terminology needed to prove our main theorem.
Some of the ideas are motivated by Lewis’ proof that every hyperimmune-free
degree which is not FPF (fixed-point-free) has a strong minimal cover (see [Lew07,
Section 6]).

28

A base is an r.e. subset of 2<ω. We use the letter Π to denote bases, possibly
with superscripts or subscripts. A base Π is a strong base if there is a recursive
enumeration {Πs}s∈ω of Π such that |Πs+1 − Πs| ≤ 1, and at each step of the
enumeration, the only string enumerated at that step has no extensions that have
already been enumerated at the previous steps. This is equivalent to saying that,
at every step, we only enumerate finitely many strings which extend the strings
previously enumerated. We define the level of a string in a (strong) base as the
number of its proper predecessors. Note that in a strong base or a recursive tree,
the level function is recursive.

We always view a (strong) base as a partial order, and it will be convenient to
call the immediate predecessor of a string its parent, and its immediate successors
its children.

Suppose we have a total binary tree S recursive in A, we can write S = Ψ(A)
where Ψ is a recursive functional. For convenience we assume that Ψ has the
following properties:

1. For every σ, Ψ(σ) is a finite binary tree, and we can recursively find its height.

2. For every τ ⊃ σ, Ψ(τ) preserves the tree structure of Ψ(σ), i.e., Ψ(σ) is a
subtree of Ψ(τ), and those nodes on Ψ(τ) but not on Ψ(σ) must extend leaves
of Ψ(σ).

Definition III.3.1. Given such a tree functional Ψ and an A such that S = Ψ(A)
is a total binary tree, we call a pair (Π,Φ) a Tree System for (Ψ, A, S) if the
following properties hold:

1. Π is a strong base.

2. There are infinitely many initial segments of A that are in Π.

3. For every σ ∈ Π, Φ(σ) is a subtree of Ψ(σ).

4. For every σ, τ both in Π, if τ properly extends σ, then Φ(τ) properly extends
Φ(σ).

In addition, if the following holds, we call (Π,Φ) a Splitting Tree System:

5. For every pair of incomparable strings σ0, σ1 at the same level of Π, all leaves
of Ψ(σ0) and Ψ(σ1) are pairwise incomparable.

Intuitively a tree system is an r.e. “tree of trees” and from the enumeration we
can find a certain path A which computes a subtree S ′ of a given tree S ≤T A.
Note that conditions (2) and (4) above guarantee that S ′ = Φ(A) = ∪σ⊂A,σ∈ΠΦ(σ)
is a total binary subtree of S.

Lewis actually used Splitting Tree Systems in his main construction (see [Lew07,
Section 6]). In our construction (Section III.4) we will only use Tree Systems. We
won’t use the following lemma, but it illuminates some ideas about our main
construction.

Lemma III.3.2. If (Π,Φ) is an Splitting Tree System for (Ψ, A, S), then every
infinite path on S ′ = Φ(A) computes A.

29

Proof. Suppose we have C ∈ [S ′], we compute A as follows: Enumerate Π, for
every σ ∈ Π check whether there is a leaf on Φ(σ) which is an initial segment of
C. If so, σ is an initial segment of A, since any string in Π incompatible with A
would give us incomparable leaves by Definition III.3.1 (5). The initial segments
of A appear in Π infinitely often so we can compute A from C.

III.4 ANR and RRE

We now finish proving our main theorem.

Proof (of Theorem III.2.1). Recall that we are given a set A of array recursive
degree and we want to find B which computes A. This requirement can be easily
satisfied as follows: A string σ is A-pointed if for every n for which σ(2n) is defined,
σ(2n) = A(n). That is to say, the even positions of σ code the corresponding
information about A. If we write Even(σ) to denote the even substring of σ, i.e.,
Even(σ)(n) = σ(2n), then σ being A-pointed is the same as Even(σ) ⊂ A. A tree
is A-pointed if every node on the tree is A-pointed. Note that every infinite path
on an A-pointed tree can compute A.

It is easy to see that we can start our construction with the A-pointed tree T0

defined by T0(σ) = A �|σ| ⊕σ, and only need to satisfy the requirements Ri,j,k,l one
by one in our construction.

Now given an A-recursive tree T and a requirement Ri,j,k,l, we first go through
the subtree constructions in Section III.2 and so we can assume that our tree
T satisfies Facts III.2.2 to III.2.5. For convenience we summarize those facts as
follows:

Fact III.4.1. For every σ of length n, let τ = T (σ), we know:

1. |τ | ≥ n.

2. |ϕτ
i | ≥ n.

3. |ϕϕτ
i

j | ≥ n and it is an initial segment of τ .

4. |ϕτ
k| ≥ n.

5. W
ϕτ

k
l � n = ϕτ

i � n.

6. W
ϕ

T (σ)
k

l � n will never change, i.e., W
ϕ

T (σ′)
k

l � n = W
ϕ

T (σ)
k

l � n for every σ′ ⊃ σ.

Now the only way to satisfy our requirement is to find a subtree T ′ of T and
guarantee that, for every path B ∈ [T ′], B ≤T ϕB

k . Also T ′ needs to be recursive
in A to continue our construction. This is why we consider tree systems as in
Definition III.3.1.

To simplify the proof, we first take the splitting subtree T ∗ of T with respect
to k defined as follows: T ∗(∅) = T (∅), and, by induction, once we have defined
T ∗(σ) = T (τ), we can search above τ for k-splitting pairs, i.e., τ0, τ1 ⊃ τ such that

ϕ
T (τ0)
k is incomparable with ϕ

T (τ1)
k . By Fact III.4.1(3,5) we know such a splitting

exists, so we can find the length-lexicographically first such pair τ0, τ1 and define

30

T ∗(σ ∗ n) = T (τn) for n = 0, 1. We denote T ∗ by Spl(T, k) and replace T with
such T ∗. Note that Fact III.4.1 is preserved.

Let S be ϕk ◦ T mapping from I to IV. As T is a k-splitting tree, S is also a
total binary tree. In addition, we can define a bijection between the nodes of T
and nodes of S. Any node τ on T maps to ϕτ

k on S, and for every node η on S,
we can use A to compute T and search for the τ which maps to η. This bijection
is recursive in A.

This is to say, for every path C ∈ [S], if A ≤T C, then C computes its preimage
under ϕk, i.e., our requirement is satisfied. Now, our plan is to find a total binary
subtree S ′ of S, also recursive in A, such that for every C ∈ [S ′], A ≤T C. Then the
corresponding T ′, which induces S ′ = ϕk ◦ T ′, is also a total binary tree recursive
in A, and the requirement is satisfied for every path on T ′.

Let S = Ψ(A). We will find S ′ by constructing a tree system (Π,Φ) for (Ψ, A, S)
and make sure that every path on S ′ = Φ(A) computes A.

A primitive version of the idea to be used here is that we want to set up some
space between the leaf level and a “pseudo-leaf” level (which will be defined in the
following construction) of a finite binary tree so that the binary structure of the
tree can be used to code some information.

Define a strong base Π0 and a level function lev as follows: In the base case,
we put ∅ into Π0 and define lev(∅) = 0 (and assume that Ψ(∅) has height 0). At
each step s, we consider the next string σ in the length-lexicographical order (i.e.,
σ = s in the canonical coding). Let σ′ be the longest predecessor of σ already in
Π0. Suppose lev(σ′) = k and Ψ(σ′) is of height n. Also assume that Ψ(σ) is of
height m. We check whether the following are true:

1. m ≥ n+ [log2(k + 4)] + 2.

2. For every node τ on Ψ(σ) which is [log2(k + 4)] + 1 levels down from the leaf
(i.e., a node of level m− [log2(k+4)]−1, which we call a pseudo-leaf of Ψ(σ)),
we have:

Even(ϕ
W τ

l �(m−[log2(k+4)]−1)
j) ⊃ σ′.

We call m− [log2(k + 4)]− 1 the pseudo-height of Ψ(σ).

3. For every pseudo-leaf τ of Ψ(σ) extending a pseudo-leaf τ ′ of Ψ(σ′), W τ
l

doesn’t add new elements to W τ ′

l � n′, where n′ is the pseudo-height of Ψ(σ′).

If so, we enumerate σ into Π0 and define lev(σ) = k+ 1; otherwise we don’t do
anything and continue to the next step.

Using Fact III.4.1(3,5,6), it is easy to prove by induction that there are infinitely
many substrings of A that are in Π0. Let α0, α1, . . . , αn, . . . be all of them in
ascending order (so α0 = ∅). Define f(n) ≤T A to be the step s at which αn enters
Π0 in this enumeration.

By the definition of array recursive degrees, we know that mK dominates f
(see Remark II.2.3). By changing finitely many columns of the standard limit
computation of mK , we can assume that there is a recursive approximation λ(n, s)
whose limit g(n) = lims→∞ λ(n, s) exists and is greater than f(n) for each n. In
addition, the number of changes along each column {λ(n, s)}s∈ω is bounded by n.

Now we define a strong base Π ⊂ Π0 and a function grp (group function) for
strings in Π. First put ∅ into Π and define grp(∅) = 0. At step s, there are finitely

31

many strings in Π(s): pick anyone of them, say τ with lev(τ) = k, and check
whether there are extensions τ ′ of τ enumerated into Π0 between steps λ(k + 1, s)
and λ(k+ 1, s+ 1) with lev(τ ′) = k+ 1 (i.e., they are immediate successors of τ in
Π0). If so, add those nodes into Π(s + 1) and define grp(τ ′) to be the number of
changes in {λ(k+1, t)}t∈ω up to t = s+1, i.e. |{r ≤ s : λ(k+1, r) 6= λ(k+1, r+1)}|.
Then do the same thing for every τ ∈ Π(s). It is easy to prove by induction that
Π contains infinitely many initial segments of A.

For every σ in Π, its immediate successors are “grouped” into at most lev(σ)+2
many groups. The space we have from the pseudo-leaves to leaves is used to code
the group numbers in the construction below.

For k ≥ 1 and i ∈ {0, 1, . . . , k}, define θk,i to be the i-th (in lexicographical
order) binary string of length [log2(k + 1)] + 1. For example, θ2,0 = 00, θ2,1 = 01
and θ2,2 = 10.

Given a σ ∈ Π at level k (k ≥ 1), let τ be a pseudo-leaf of Ψ(σ), we define
Code(τ, σ, i, k + 2) to be the leaf of Ψ(σ) extending τ with θk+2,i coded along the
tree: Find ρ such that τ = [Ψ(σ)](ρ), then put Code(τ, σ, i, k + 2) = [Ψ(σ)](ρ ∗
θk+2,i). Note that there are exactly [log2(k + 3)] + 1 levels from the pseudo-leaves
to leaves in the tree Ψ(σ), so Code(τ, σ, i, k + 2) is a leaf.

For convenience we assume that all nodes in Π are compatible with α2, the third
node along A which is in Π. We define a functional Φ such that for every σ ∈ Π,
Φ(σ) is a subtree of Ψ(σ′) where σ′ is the parent of σ in Π, and every leaf of Φ(σ)
is a pseudo-leaf of Ψ(σ′).

In the base case, we pick one pseudo-leaf τ of Ψ(α1) and define Φ(α2) to be the
singleton tree with only one node τ .

Suppose we have defined, for σ of level k+1, Φ(σ) to be a subtree of Ψ(σ′) where
σ′ is the parent of σ. Let σ0, σ1, . . . , σr list all the immediate successors (children)
of σ in group i, i.e., grp(σ0) = grp(σ1) = · · · = grp(σr) = i. For every τ , a leaf of
Φ(σ) and pseudo-leaf of Ψ(σ′), we let τ ∗ = Code(τ, σ′, i, k + 2), the leaf on Ψ(σ′)
which extends τ after coding in θk+2,i. We then find two incomparable extensions
τ0, τ1 of τ ∗ at the pseudo-leaf level of Ψ(σ) (note that in the construction of Π0

we have at least one level between the leaves of Ψ(σ′) and the pseudo-leaves of
Ψ(σ)). After we have done this for every leaf τ of Φ(σ), we will have a binary
subtree R of Ψ(σ) and the leaves of R are pseudo-leaves of Ψ(σ). We then define
Φ(σ0) = Φ(σ1) = · · · = Φ(σr) = R (intuitively, we code the group number of σ0 in
every path of Φ(σ0) with respect to Ψ(σ′)). This finishes the construction and it
is easy to see that we now have a tree system (Π,Φ) for (Ψ, A, S).

It suffices to show that, for every infinite path C on S ′ = Φ(A), C com-
putes A. We prove this by showing that any such C can compute the sequence
(α0, α1, . . . , αn, . . .). We can assume that we are given α0, α1, α2 and grp(α3); and
at the inductive step we assume that we have αk and grp(αk+1), and we want to
find αk+1 and grp(αk+2).

First we can recursively list all the children σ0, σ1, . . . , σr of αk in group
grp(αk+1). Of course, this list includes αk+1. We now find the only leaf τ of
Φ(σ0)(= Φ(σ1) = · · · = Φ(σr)) which is an initial segment of C and a pseudo-leaf
of Ψ(αk). With C, τ and Ψ(αk) we can figure out the (coded) group number x of
αk+2: Let τ = (Ψ(αk))(η), then by our construction, θk+2,x can be found as the last
[log2(k + 3)] + 1 many bits of η. Finally we can, of course, decode x = grp(αk+2)
from θk+2,x.

32

Now we can compute:

Xi = {τ : τ ⊃ σi & lev(τ) = k + 2 & grp(τ) = x},

i.e., the set of all the children of σi in group x. Then we need the following lemma:

Lemma III.4.2. (With the assumptions above) let τ0 ∈ Xp, τ1 ∈ Xq and p 6= q.
If η0 is a pseudo-leaf of Ψ(τ0), η1 is a pseudo-leaf of Ψ(τ1), and both are initial
segments of C, then η0 6= η1. In addition, if η0 ⊂ η1, then τ0 is not an initial
segment of A.

Proof. Let ni be the pseudo-height of Ψ(τi). By the construction of Π0 we know
that:

Even(ϕ
W

η0
l �n0

j) ⊃ σp & Even(ϕ
W

η1
l �n1

j) ⊃ σq.

Since σp is incomparable with σq, η0 and η1 cannot be the same. By assumption
η0 is shorter, and if we assume that τ0 is an initial segment of A, then it will
contradict Fact III.4.1(6), as W η0

l � n0 is never going to change along any path
C ∈ [S] extending η0, but it does change since W η1

l � n1 computes an incomparable
string via ϕj.

Finally we find all strings τ in X = ∪r
i=0Xi, compute all pseudo-leaves of Ψ(τ)

for each one and pick those τ ’s whose Ψ(τ) have a pseudo-leaf compatible with C.
By the previous lemma, those τ ’s that have the longest C-compatible pseudo-leaf
in Ψ(τ) must be in exactly one of those Xi’s, and the corresponding σi is the next
initial segment αk+1 of A. This finishes the proof.

Finally this corollary easily follows from our main theorem and Theorem II.3.2:

Corollary III.4.3. A degree a is ANR if and only if every b ≥ a is RRE.

III.5 Applications and Remarks

III.5.1 Strong minimal covers

In [ASDWY09] the authors also asked whether B has a minimal element. The
answer is no, as every ANR degree has another ANR degree strictly below it
(e.g. by [DJS96, Theorem 2.5]).

To see that there is no maximal AR degree, note that any Spector minimal
cover of an AR degree is hyperimmune-free relative to that degree, and so it is
also AR.

Alternatively, in the proof of Theorem III.2.1 one can easily adapt requirements
from the minimal cover construction to guarantee that B is minimal above A (i.e.
the interval (a,b) is empty).

To be explicit, we add the following list of requirements:

Pe ϕ
B
e is total ⇒ (ϕB

e ≤T A or B ≤T ϕ
B
e ⊕ A).

33

Given T and Pe, we ask whether the following holds:

∃σ∀τ0, τ1 ⊃ σ[¬(∃x(ϕT (τ0)
e (x) ↓6= ϕT (τ1)

e (x) ↓))].

If so, we take T ′ = FSub(T, σ) and T ′ forces ϕB
e to be A-recursive whenever it

is total. Otherwise, we take T ′ = Spl(T, e) and T ′ forces B ≤T ϕ
B
e ⊕ A.

Now we have the following theorem:

Theorem III.5.1. For every array recursive degree a, there is a minimal cover
b > a which is not RRE.

This b is certainly AR by Theorem II.3.2. In addition, if a is an r.e. degree,
then the b in Theorem III.5.1 is actually a strong minimal cover of a (i.e. D(< b) =
D(≤ a)). If not, then there is a c < b which is not recursive in a. Consequently
b = a ∨ c and b would be r.e. in c. This would make b an RRE degree.

Note that no ANR degree has a strong minimal cover (e.g., they all have the
cupping property by [DJS96, Theorem 3.4]). We thus have a new proof of the
following result from [Ish99].

Corollary III.5.2 (Ishmukhametov). An r.e. degree has a strong minimal cover
if and only if it is array recursive.

In fact, this result can be generalized to the n-REA degrees.

Definition III.5.3. A degree is 1-REA if it is an r.e. degree. A degree is (n+1)-
REA if it is r.e. in and strictly above an n-REA degree.

Corollary III.5.4. An n-REA degree has a strong minimal cover if and only if
it is array recursive.

Proof. Suppose we are given an > an−1 > · · · > a1 > a0 = 0 where each ai+1 is r.e.
in and strictly above ai, and an is AR. By Theorem III.5.1 we can find a minimal
cover b of an such that b is not RRE. We claim that this b is actually a strong
minimal cover of an.

Suppose not, then there is a c < b which is not recursive in an. Consider
c1 = c∨a1. c1 must be strictly below b, as otherwise b would be r.e. in and above
c. Inductively define ci+1 = ci ∨ ai+1, and using the same argument we know that
ci+1 is strictly below b. Then cn = c∨a1∨a2∨· · ·∨an = c∨an would be a degree
strictly between an and b. This contradicts the fact that b is a minimal cover of
an.

III.5.2 More on definability

[DJS96] raised the question whether the ANR degrees are definable in the Turing
degrees with only the order relation. From this point of view, Corollary III.4.3
asserts that the ANR degrees are definable in the Turing degrees with the order
relation and with an additional predicate “x is r.e. in and above y”.

Theorem III.2.1 also shows that a degree a is ANR if and only if every degree
b ≥ a is n-REA relativized to some degree strictly below b for some n. Hence the
ANR degrees are also definable from the predicate “x is n-REA in y for some

34

n”, which might be easier to define than “x is r.e. in and above y”. Shore ([Sh85,
Question 5.6]) conjectured that a degree is x is n-REA if and only if for every y,
x ∨ y is not a minimal cover of y.

Since it is known that the jump is definable in the Turing degrees, one might
try to define the ANR degrees by replacing “being r.e. (Σ1) in a degree strictly
below” with “being ∆2 relativized to some degree strictly below”. However, this
attempt fails. First note that every nonempty Π0

1 class of infinite binary strings
has a member of array recursive degree. For example, in the proof of the low basis
theorem ([JSo72, Theorem 2.1]), 0′ can decide the jump of the low path G only
using recursively bounded information, i.e., G′ is weak truth table below 0′. For
each computation ϕG

a (b) one can recursively translate it into ϕG
n (n) for some n,

and so it is easy to see that there is a function f ≤T G ⊕ K such that the use
from K is recursively bounded and f(n) bounds all convergent ϕG

a (b) for every
pair a, b ≤ n. Such a function f then dominates all functions recursive in G and
therefore deg(G) is array recursive (see [CSh12]).

There is a Π0
1 class in 2ω such that every member of it is PA and every PA degree

has the cupping property ([Ku94]). It follows that there is a low array recursive
PA degree a such that degree b above a is the join of a and some c < b, and so
b ≤ c ∨ 0′ ≤ c′, i.e., b is ∆2 relativized to c.

III.5.3 Join property and PA degrees

There has been various results about the join property. For example, in [GMS04]
it was proved that GH1 degrees have the complementation property, which is
stronger than the join property; later it is proved that GL2 degrees have the join
property ([DGLMxx]). So it seems that degrees that are higher above have the join
property, and then it is natural to ask what is the best upward-closed property that
ensures the cupping property. Some natural guesses might be the ANR ones or
the PA ones. However, Lewis ([Lewb]) proved that in fact all low FPF degrees fail
to have the join property, and as a consequence there are PA degrees and ANR
degrees that fail to have the join property. Here we give an alternative proof that
there is a PA degree without the join property by our main theorem.

Following the discussion in the previous subsection, we have an array recursive
PA degree a and by Kučera’s Theorem ([Ku86]) there is a nonrecursive r.e. degree
d ≤ a. By Theorem III.2.1, there is a degree b ≥ a which is not RRE. This b is
still PA since PA degrees are upward closed, and it is easy to see that b fails to
have the join property via d.

35

CHAPTER IV
DOMINATION AND DEFINABILITY: SOME NEGATIVE

RESULTS (JOINT WITH SHORE)

IV.1 Introduction

Given two functions f and g, we say f dominates g if f(x) ≥ g(x) for all but
finitely many x. Domination plays an important role in classical recursion theory.
The intuition is that, a function which dominates (or is not dominated by) some
certain fast-growing function is powerful enough to run certain corresponding com-
putations; in contrast, if a degree only contains slow-growing functions then the
degree cannot be too powerful. For example, one can define a function f(n) ≤T 0′

by letting f(n) be the number of steps in the computation of ϕn(n) if it converges,
and 0 if it diverges. Then it is easy to see that a degree contains a function which
dominates f if and only if it is above 0′.

The complementary pair of hyperimmune and hyperimmune-free degrees was
originally defined by a property involving intersection with uniform sequences of
recursive sets, but it is more natural to define them in terms of domination prop-
erties. A degree is hyperimmune if it computes a function which is not dominated
by any recursive function; and a degree is hyperimmune-free if it is not hyper-
immune, i.e., every function recursive in it is dominated by a recursive function.
More recently “0-dominated” has often been used in place of “hyperimmune-free”.

Miller and Martin’s paper ([MM68]) proved a number of interesting theorems
about these two classes of degrees. For example, all nonrecursive degrees below 0′

are hyperimmune, but there are nonrecursive hyperimmune-free degrees below 0′′.
To list a few more theorems: Jockusch and Soare [JSo72] proved a basis theorem for
hyperimmune-free degrees: every nonempty Π0

1 class contains a hyperimmune-free
member. Lewis ([Lew07]) proved that every hyperimmune-free non-FPF degree
has a strong minimal cover (a degree is FPF if it computes a function f such that
ϕe 6= ϕf(e) for any e).

Miller and Martin suggested that the project of “characterizing a notion” (such
as hyperimmuneness) is to give definitions of such a combinatorial property in
the language of degree theory. For example, if we let L0 = {≤}, the language of
partial order, then we can ask whether there is an L0-formula ϕ(x) defining the
hyperimmune degrees, i.e., x is hyperimmune if and only if ϕ(x) holds. Note that
Miller and Martin allow constants in the formulae, so we can actually write out
some nontrivial examples even by quantifier-free formulae. For example, by the
Friedberg’s Jump Inversion Theorem ([Fri57]), {d : ∃a : a′ = d} is the same as
{d : d ≥ 0′}, so there is a quantifier-free L0-formula defining the degrees which
are jumps of other degrees. As another example, let a and b be the exact pair of
the sequence 0,0′,0′′, . . . (see [Sp56]), then we can get a quantifier-free definition
of the arithmetic degrees using a and b.

Similarly we can extend the language, using the notation in [MM68], to L1 =
{≤, ′} and L2 = {≤, ′, R} where R stands for the relation “r.e. in” (aRb if a is r.e.
in b). By results of Shore and Slaman ([SS99] and [Sh07]) the jump ′ is definable
in the language of partial order L0, so L0 and L1 have the same definability power,
but they are still different in terms of quantifier complexity (see [Sh07]). It is still
an open question whether R is definable in L0.

Miller and Martin showed that in L0, one cannot define the hyperimmune de-

36

grees using a quantifier-free formula, and they conjectured that if we use L1, this is
still true. We confirm this conjecture in Section IV.2 (we do not know whether it is
still true that no quantifier-free L2-formula defines the hyperimmune degrees). In
addition, we can also show that in L0, there is no one-quantifier formula defining
the hyperimmune degrees (see Sections IV.3 and IV.4).

Besides the complementary pair of hyperimmune and hyperimmune-free de-
grees, array nonrecursive and array recursive also form an important and inter-
esting pair of domination properties. To define them, we first need the modulus
function mK of K, the halting problem, where mK(n) is defined as the least stage
s at which the initial segment of length n settles down in the standard enumeration
of K. A degree is array recursive if every function recursive in it is dominated by
mK ; and a degree is array nonrecursive (ANR) if there is a function recursive in
it which is not dominated by mK .

The notion of ANR degrees was introduced in [DJS96] to generalize a jump
class namely GL2 degrees. See [DJS96] and [CSh12] for discussions and some
theorems about ANR degrees. In terms of definability, though it is unknown
whether the ANR degrees have an L0-definition, it is actually a recent result that
they are definable in L2 by a Π2 formula ([CSh12] and [Cai12], see also Chapters
II and III). So it might be interesting to discuss whether this definition is sharp
in terms of quantifier complexity. We do not know the answer but guess that
it probably is. In the last section we briefly discuss the nondefinability of the
array nonrecursive degrees and show that what we have done for hyperimmune
degrees all applies to array nonrecursive degrees, i.e., there is no quantifier-free L1

or one-quantifier L0 formula which defines the array nonrecursive degrees.

IV.2 Nondefinability in L1: Quantifier-free Case

As we mentioned in the introduction, Miller and Martin showed that in L0 one
cannot define the hyperimmune degrees by a quantifier-free formula. Briefly, they
first assume that there is such a formula defining the hyperimmune degrees and
then find a hyperimmune-free degree which satisfies the same formula for a con-
tradiction. They then conjectured that it is also true for L1, i.e., with the jump
operator added one still cannot define the hyperimmune degrees by a quantifier-free
formula.

The initial difficulty is that we do not have a nice characterization of the jumps
of hyperimmune-free degrees, and it would be difficult to construct a hyperimmune-
free degree whose jump is a fixed degree or satisfies some given properties. However,
we do know the jumps of hyperimmune degrees: every degree above 0′ is a jump
of a hyperimmune degree. (In fact we conjecture that every degree above 0′ is the
jump of a hyperimmune minimal degree.) So it seems that it is better to handle
this problem in the direction opposite to Miller and Martin’s approach, and in fact
from this point of view it turns out to be fairly easy.

To get a contradiction, we start with a quantifier-free L1-formula ϕ(x) which
purportedly defines the hyperimmune-free degrees, i.e., a degree x is hyperimmune-
free if and only if ϕ(x) holds.

We write ϕ in disjunctive normal form, i.e., ψ0∨ψ1∨ ...∨ψk, where each ψi is a
conjunction of atomic formulae. We regard all the jumps of constants as constants,
i.e., for each constant c, if c′ appears in the formula we will add a new constant c̃

37

and add c′ = c̃ as a conjunct (for convenience we still write c′ but regard it as a
constant).

Without loss of generality we assume that each ψi is a complete diagram about
all the degrees and their jumps mentioned in ϕ, i.e., for each (ordered) pair of
degrees a and b, we either have a ≤ b or a � b.

In addition, we remove all those ψi’s that are redundant, i.e., there are no
hyperimmune-free degrees satisfying ψi. We also remove all conjuncts that are
trivial, for example a ≤ x where a = 0, i.e., we remove all conjuncts that are
satisfied by all degrees. This allows us to remove formulae that involve a degree
and its own jump (or iterated jumps) such as x ≤ x′ or x � x′ (either no degree
or all degrees satisfy these formulae).

First we argue that there must be at least one ψi which does not have any
conjunct of the form x ≤ a or a ≤ x. Otherwise there is a finite list of degrees
a0, ..., ak such that every hyperimmune-free degree is comparable with at least one
of them. However there always exists a hyperimmune-free minimal degree which
avoids all these lower cones (and automatically avoids upper cones by minimality),
so this cannot happen.

Now we pick a formula ψi (for simplicity we use ψ to denote it) which does not
have any conjunct of the form x ≤ a or a ≤ x. We can write ψ as follows:

P (x′) ∧
∧
i∈I1

(x � ai) ∧
∧
i∈I2

(bi � x),

where P (x′) is the collection of all conjuncts about x′ (or higher jumps such as x′′

and x′′′) but not about x. Note that we have removed all trivial atomic formulae
which include any atomic formulae about both x and x′ (or higher jumps) such as
x ≤ x′.

So by our assumption there is a hyperimmune-free degree x which satisfies ψ.
Our plan is to build a hyperimmune degree y whose jump is x′ (so y′ automat-
ically satisfy P (x′)) and y also satisfies all other conjuncts in ψ. Then we get a
contradiction because y satisfies ψ and hence ϕ but is hyperimmune.

To get such a degree we build y low above x: this guarantees that its jump is
x′ and it is hyperimmune since it is relatively ∆2 ([MM68, Theorem 1.2]). We use
finite forcing to build initial segments σi recursively in x′ and in the end ∪iσi = Y .
We take y = deg(X ⊕ Y) where X ∈ x, so guarantee y ≥ x. In the construction
we force the jump of X ⊕ Y step by step, therefore (X ⊕ Y)′ ≤T X

′, i.e., y′ = x′.
To finish the proof we discuss how to satisfy all the requirements in the conjuncts
listed in ψ.

Avoiding lower cones (y � ai) is automatic: each ai is not above x, so it cannot
be above y as y ≥ x.

For upper cones, note that we only need to consider those bi’s that are below
x′: otherwise y cannot be above such bi. Now given σ we can ask whether there
are two extensions τ0 and τ1 of σ such that (X ⊕ τ0|eX ⊕ τ1), i.e., there is an n
such that ϕX⊕τ0

e (n) ↓6= ϕX⊕τ1
e (n): If so we take the one which differs with a fixed

Bi ∈ bi; if not we can easily argue that the function ϕX⊕Y
e is recursive in X if it

is total, and so it is not equal to Bi as bi � x. In either case we can satisfy the
requirement bi � y.

38

IV.3 Nondefinability in L0: Π1 Case

We want to show that in L0, one cannot define the hyperimmune degrees by a
one-quantifier formula, i.e., we can define neither the hyperimmune-free nor the
hyperimmune degrees by a Σ1 formula.

We start with the easy case: there is no Σ1 formula which defines the
hyperimmune-free degrees (i.e., there is no Π1 formula which defines the hyper-
immune degrees). Following an argument similar to Section IV.2, we first assume
that ∃d0∃d1 . . . ∃dnϕ(x, d0, d1, . . . , dn) defines the hyperimmune-free degrees using
constants c0, c1, . . . , cm. We write ϕ in disjunctive normal form ψ0 ∨ ψ1 ∨ · · · ∨ ψk

where each ψi is a conjunction of atomic formulae. We also assume that each ψi is
a complete diagram. Without loss of generality we can also assume that each ψi

can be realized by at least one nonrecursive hyperimmune-free degree x, i.e., we
can find witnesses d0,d1, . . . ,dn such that ψi(x,d0,d1, . . . ,dn) holds.

By the same argument as in Section IV.2 we can find a ψ among these ψi’s such
that it does not have any atomic formula of the form x ≤ ci or cj ≤ x, i.e., x is
not in any of the lower cones or upper cones of the ci’s.

We pick a hyperimmune-free degree x and a sequence of witnesses d0,d1, . . . ,dn

which realize ψ. Now our plan is to find a new y which is hyperimmune and a new
sequence of witnesses d∗0,d

∗
1, . . . ,d

∗
n which satisfy the same ψ.

We will build such a y above x; for those di’s such that x is not below di, we
will have d∗i = di; and for di’s above x, we will build new degrees d∗i above y. For
convenience we let d0, . . . ,dl be the di’s which are above x and regard the other
di
′s as constants in our construction.

It is easy to see that ψ does not have di ≤ c as a conjunct for some i ≤ l and
constant c. The reason is that otherwise we would have x ≤ c by transitivity which
contradicts our assumption.

So we need to satisfy the following list of requirements:

1. d∗i ≤ d∗j for each di ≤ dj appearing in ψ, i, j ≤ l

2. d∗i � d∗j for each di � dj appearing in ψ, i, j ≤ l

3. d∗i � ci,j for each di � ci,j appearing in ψ, i ≤ l

4. cj � d∗i for each cj � di appearing in ψ, i ≤ l

5.
∨

j:cj≤di

cj ≤ d∗i for each i ≤ l

For convenience we let ai be the join of cj’s in the fifth requirement, that is, we
need to make ai ≤ d∗i . Note that if di ≤ dj then ai ≤ aj by transitivity.

Let g−1,g0, . . . ,gl be a sequence of mutually 1-generic degrees relative to all
other degrees mentioned, i.e., each gi is 1-generic relative to the join of ci,j’s, di’s,
x and

∨
j 6=i gj.

Then we let:
d∗i = ai ∨

∨
dj≤di

gj ∨ y and y = x ∨ g−1.

39

We claim that these d∗i ’s satisfy all the requirements.

It is easy to see that the requirements of types (1) and (5) are automatically
satisfied. Requirements of types (2) and (3) are easily satisfied by 1-genericity. For
example, if we have some di � dj in ψ, then we know that gi is in the join of d∗i
but not in the join of d∗j as in our formula above. Therefore gi is 1-generic relative

to d∗j and so d∗i � d∗j .

For requirements of type (4), we need the following easy lemma:

Lemma IV.3.1. If c � a and g is 1-generic in c ∨ a, then c � a ∨ g.

Proof. Define sets Se = {σ : ∃n(C(n) 6= ϕA⊕σ
e (n) ↓)} which is ΣA⊕C

1 . By 1-
genericity, either G meets Se, which makes C 6= ϕA⊕G

e ; or there is an initial segment
σ of G which forces G to avoid Se, i.e., there is no extension τ of σ which is in
Se: in which case if ϕA⊕G

e is total, then it is recursive in A and so is not equal to
C.

Now for requirements of type (4), if we have some cj � di in ψ, then we know
that cj � ai∨x (since cj � di and ai∨x ≤ di). By iterating the lemma above and
adding the gi’s appearing in the formula defining d∗i , one can see that cj � d∗i .

Finally y is hyperimmune since 1-generic degrees are hyperimmune and being
hyperimmune is upward closed in the degrees.

IV.4 Nondefinability in L0: Σ1 Case

Now we show that there is no Σ1 formula which defines the hyperimmune de-
grees. We follow the same outline and use the same notations as in the previous
section. That is, we have a hyperimmune degree x and a sequence of witnesses
d0, . . . ,dn which satisfy a Σ1 formula ∃d0∃d1 . . . ∃dnϕ(x, d0, d1, . . . , dn) with con-
stants c0, . . . , cm. Similarly we write ϕ in disjunctive normal form and pick one
disjunct ψ (which is a conjunction of atomic formulae) which says that x is not in
the lower cone or the upper cone of any ci. Our plan is to find some new d∗0, . . . ,d

∗
n

and a new hyperimmune-free y which satisfy ψ.

To make our construction smoother, we use the following ∗-notation: given
any degree z appearing in ψ(x), z∗ denotes the corresponding degree appearing in
ψ(y). That is, if z = x, then z∗ = y; if z = di, then z∗ = d∗i ; and if z = ci, then
z∗ = ci. Similarly, if we have a set S of degrees, then S∗ = {z∗ : z ∈ S}. We call
the non-∗ degrees originals and their corresponding ∗-versions their photocopies.

We need to impose some extra conditions on ψ before beginning our construc-
tion. Our plan is as follows: First we find y and some degrees d∗i ’s below it such
that the these degrees form the same partial order S∗ as the partial order structure
S of x and the di’s below x. Then use a construction similar to the one used in
the previous section to build the other d∗’s above members of S∗.

For convenience we let d0, . . . ,dl be the d’s below x. The problem is that, for
example, if d0 is below some ci, then it is difficult to build our d∗0: in particular, it
might be very hard to make it hyperimmune-free as to make y hyperimmune-free.

40

We thus in addition assume that in ψ, there is no formula of the form di ≤ c for
0 ≤ i ≤ l and some constant c. The reason we can make this assumption is that,
if no disjunct ψ has this property, then we can construct a hyperimmune degree z
which avoids all the following upper cones: for any constant c and any d ≤ c we
have z � d. This is a countable list of requirements and we can even construct
a hyperimmune minimal degree which automatically avoids these cones. It would
contradict the fact that our formula defines the hyperimmune degrees.

Now we follow our plan: first we build y and d∗0, . . . ,d
∗
l which form the same

partial order S∗ as S (the structure of x and d0, . . . ,dl), and make sure that y is
hyperimmune-free and the following holds:

(∗) For any subset of degrees T ∗ of S∗, any finite set R of constants and any
fixed degree z among the x, ci’s and di’s, if the join of all degrees in T ∪R is not
above z, then the join of all degrees in T ∗ ∪R is not above z∗.

This property seems ad hoc, but in fact it is natural and essential in the con-
struction. For example, it implies that y is not above or below any of the ci’s.
Later this property will guarantee that when we construct other d∗’s, we do not
get a degree which is too high by joining it with some degrees we already have.

First of all, to see that we can carry out the construction of S∗ with property
(∗), we can use, for example, the uniform tree constructions using usl tables (which
are used to build initial segments, see [Ler83, Chapter VI]) with some extra re-

quirements to satisfy (∗). Given a tree and a requirement Z∗ 6= ϕ
⊕

D∗
i ⊕

⊕
Ci

e , if Z is
some constant C, then we simply ask whether we can find e-splittings on the tree

for ϕ
⊕

D∗
i ⊕

⊕
Ci

e : if so we can choose one to diagonalize against Z; if not then it is
easy to see that Z ≤T

⊕
Ci which contradicts our assumption. If Z is X or some

Dj, then we pick two nodes τ0, τ1 on the tree which are congruent modulo
⊕

D∗
i

but disagree on Z∗ (say, at x). This is possible since Z �T

⊕
Di and by our usl

representation we are able to make Z∗ �T

⊕
D∗

i . Then we try to extend τ0 to τ ′

where we have a convergent ϕ
⊕

D∗
i ⊕

⊕
Ci

e (x). If there is no such τ ′, then we take
the full subtree above τ0 to satisfy our requirement. If there is such a τ ′ then we
extend τ1 in the same way to τ ′′ such that τ ′ and τ ′′ are congruent modulo

⊕
D∗

i

(by uniformity). Therefore at τ ′ and τ ′′, the computations ϕ
⊕

D∗
i ⊕

⊕
Ci

e (x) give the
same value. We can pick one whose Z∗(x) is different from this value and take the
full subtree above it.

Then we need to show that these d∗i ’s satisfy the same relations with the con-
stants as their originals: For each di (i = 1, 2, . . . , l), it is not in any of the upper
or lower cone of constant c, so we only need to show that d∗i is incomparable with
any of the constants. It is not difficult to see that these relations are guaranteed
by property (∗).

Now let dl+1, . . . ,dk be the d’s that are above any degree in S. We need to
build new d∗l+1, . . . ,d

∗
k which satisfy the same diagram (we regard the remaining

d’s as constants). This construction is almost the same as the one in Section
IV.3, by replacing one degree y with a sequence of degrees y,d∗0, . . . ,d

∗
l . We find

gl+1, . . . ,gk which are mutually 1-generic, and we let d∗’s be the following joins:

d∗i =
∨

dj≤di

gj ∨
∨

z≤di,z∈S∪R

z∗,

where R is the set of all constants, and in particular,
∨

z≤di,z∈R z∗ here is analog

41

to the ai as in Section IV.3.

The arguments and proofs are very similar to the ones in Section IV.3. We need
to show that each d∗i (among d∗l+1, . . . ,d

∗
k) satisfies the same relations with z∗ as

its original di with z. We discuss the cases:

If z is below di, then it is automatic by the definition of d∗i that z∗ ≤ d∗i . If
z is above di, then it can only be the case that z is some dj, and we are back to
the first case. So we only need to discuss the case that z is incomparable with di.
Here we further divide into subcases:

If z is x (or a constant c, or a degree d in S, as the arguments for them are
essentially the same), we need to show that d∗i is incomparable with y: first y is
not above d∗i because gi is not below y;

∨
z≤di,z∈S∪R z∗ is not above y by property

(∗) (since their originals do not join to some degree above x), and so by Lemma
IV.3.1 joining it with some mutually 1-generic degrees does not make d∗i above y.

If z is some other dj among dl+1, . . . ,dk, then since di and dj are incomparable,
gi and gj only appear in one join but not the other. By 1-genericity d∗i and d∗j are
incomparable.

This gives the desired contradiction that y with witnesses d∗’s satisfy the same
formula ∃d0∃d1 . . . ∃dnϕ(x, d0, d1, . . . , dn) but y is hyperimmune-free.

IV.5 Change to Array Nonrecursive Degrees

First, in Section IV.4, the argument is the same since y being hyperimmune-free
automatically guarantees array recursiveness. In Sections IV.2 and IV.3, if we
want to make our new y array nonrecursive in addition to hyperimmune, we only
need to code in some numbers larger than mK infinitely often. This can be easily
handled since we are using finite forcing and we have x′ or higher oracle. Therefore
the theorems we prove above all apply to the array nonrecursive degrees, i.e., we
cannot define them by quantifier-free formulae in L1 or by one-quantifier formulae
in L0.

42

CHAPTER V
HYPERIMMUNE MINIMAL DEGREE AND ANR 2-MINIMAL

DEGREE

This chapter is mainly based on a paper in the Notre Dame Journal of Formal
Logic (Volume 51, Number 4, 2010, Pages 443–455).

V.1 Introduction

In this chapter, we develop a new method for constructing hyperimmune minimal
degrees and construct an ANR degree which is a minimal cover of a minimal
degree.

The primary motivation is a long-standing question of Yates:

Question V.1.1 (Yates). Does every minimal degree have a strong minimal cover?

A recent and remarkable result in the positive direction for Question V.1.1 is
Lewis’ Theorem [Lew07, Theorem 4.3].

Theorem V.1.2 (Lewis). Every hyperimmune-free degree which is not FPF has
a strong minimal cover.

So in order to give a negative answer to Question V.1.1, we have to look for
minimal degrees that are either FPF or hyperimmune.

On one hand, it was also an old question whether FPF minimal degrees exist.
Kumabe gave a positive solution to this question in an unpublished note and Lewis
simplified the proof in [KLxx].

On the other hand, the observation might seem easy: it is well known that there
is a minimal degree below 0′ ([Sac66, Theorem 1]) and any nonrecursive degree
below 0′ is hyperimmune ([MM68, Theorem 1.2]). However this argument doesn’t
apply to the degrees that are not recursive in 0′. Miller and Martin ([MM68,
Section 3]) then asked whether there is a hyperimmune minimal degree which is
not recursive in 0′.

Our second motivation is the finite maximal chain problem for GL2 degrees,
i.e., those degrees a such that a′′ > (a ∨ 0′)′. A degree a has the finite maximal
chain property if there is a chain 0 = a0 < a1 < · · · < an = a where each ai+1

is a minimal cover of ai. Lerman ([Ler83, Section IV.3]) asked whether there is a
GL2 degree with the finite maximal chain property. Note that 0 is GL2 (i.e., not
GL2). Moreover, it is a classical result that all minimal degrees are GL2 ([JP78,
Theorem 1]), and so in order to find a GL2 degree with the finite maximal chain
property, we at least need a maximal chain of length 3, i.e., 0 < a < b where a is
minimal and b is a minimal cover of a.

Regardless of the length of such a maximal chain, we need to build a GL2

degree b minimal over a GL2 degree a. It is not difficult to prove (see Proposition
V.5.1) that if b is a minimal cover of a GL2 degree a, and if b is hyperimmune-free
relativized to a or b ≤ a′, then b is also GL2. That is to say, in order to find a
GL2 degree with the finite maximal chain property, we need a relativized version
of “a hyperimmune minimal degree not recursive in 0′”.

Cooper ([Coo73]) answered Miller and Martin’s question using an indirect ar-
gument. He proved that any d ≥ 0′ is the jump of a minimal degree and showed

43

that any minimal degree whose jump is 0′′ is not below 0′. In addition, he used
Jockusch’s result that a′ ≥ 0′′ implies that a is hyperimmune ([Joc69]). Therefore
any minimal degree whose jump is 0′′ is hyperimmune and not below 0′.

The technical difficulty with producing a direct proof is that in the standard
minimal degree construction we don’t have a method which explicitly forces the
minimal degree to be hyperimmune. In this chapter we will provide a new minimal
degree construction and use it to directly construct a hyperimmune minimal degree.
In addition, our construction can be easily augmented, given any degree d, to
construct a hyperimmune minimal degree which is not recursive in d. Note that
this can be done by Cooper’s argument: one can find a minimal degree whose
jump is d′′, and apply Jockusch’s result as above to show that it is hyperimmune;
in addition, such a minimal degree cannot be recursive in d because otherwise its
jump would be below d′.

The third motivation comes from some recent research on array nonrecursive
(ANR) degrees. They share a lot of nice properties with GL2 degrees (see [DJS96]
and [CSh12]). So it is also natural to ask whether there is an ANR degree with
the finite maximal chain property.

In addition, the following theorems about ANR degrees are quite interesting
(in the sense of Question V.1.1):

Theorem V.1.3 (Downey, Jockusch, Stob [DJS96, Theorem 2.1]). No ANR de-
gree is minimal.

Theorem V.1.4 (Downey, Jockusch, Stob [DJS96, Theorem 3.4]). No ANR de-
gree has a strong minimal cover.

In some sense, ANR degrees are “high” in the Turing degrees and these degrees
with strong minimal covers must be “lower” than ANR ones. Minimal degrees are
of course the lowest possible nonrecursive degrees. From this point of view, Ques-
tion V.1.1 is asking whether these “lowest” degrees have strong minimal covers.

Similarly to Question V.1.1, one might also ask whether every n-minimal degree
(degrees that are “finitely many steps” away from 0) has a strong minimal cover.
The answer is no and actually we will construct an ANR degree which is 2-
minimal. This result gives an ANR degree with the finite chain property and
together with Theorem V.1.4 implies the following corollary:

Corollary V.1.5. There is a 2-minimal degree that does not have a strong minimal
cover.

This also shows that the class of degrees which are “low for ANR” is a proper
subclass of array recursive degrees: a degree a is low for ANR if the ANR
degrees above it are exactly the degrees ANR relative to a (see definition of the
relativization in Chapter II). One can similarly define low for hyperimmune-free or
low for PA, etc. It is easy to see that the degrees that are low for hyperimmune-
free are exactly the hyperimmune-free ones. However, our example shows that
that this is not true for the ANR case: such a 2-minimal degree is a ANR degree
which is array recursive in an array recursive 1-minimal degree.

To guarantee hyperimmunity or array nonrecursiveness, we need to code in
sufficiently large numbers in a minimal degree or a minimal cover construction, so
we work with approximations in ω<ω rather than 2<ω. We use Even to denote the
set of all strings of even length, i.e., a string is even if it is in Even. A node on T
is an even-node if it is the image of an even string.

44

V.2 A Hyperimmune Minimal Degree

Theorem V.2.1 (Cooper). For any degree d, there is a hyperimmune minimal
degree which is not recursive in d.

Proof. We approximate an infinite string α in ωω by a sequence of (partial) recur-
sive trees 〈Ti〉 all of which map from 2<ω to ω<ω.

Definition V.2.2. A tree T is special if it satisfies the following properties :

1. T (∅) ↓.
2. For any string σ ∈ Even, if T (σ) ↓, then neither T (σ) nor T (σ ∗ 0) is a leaf.

3. For any σ, T (σ ∗ 0) ↓⇔ T (σ ∗ 1) ↓.

It is worth noting that although on a special tree some nodes do not branch,
the paths on a special tree still contain a copy of the Cantor space, and this allows
us to carry out Spector’s minimal degree construction in a slightly different way.

In this construction we will require all trees to be special. In order to code
in some sufficiently large numbers we want all trees in the construction to have
another property as well:

Definition V.2.3. A tree T is recursively unbounded, if there is no recursive
function that dominates every path on T .

In particular, for any special tree T considered in the construction, we also
provide a recursive function f(n) such that f(n) is even for every n and for every
string σ of length f(n), if T (σ) ↓, then ϕn(|T (σ ∗ 1)|) ↓ if and only if T (σ ∗ 1 ∗ 0) ↓.
In addition, if both converge, then for i = 0, 1, T (σ ∗ 1 ∗ i) ⊃ T (σ ∗ 1) ∗ (ϕn(|T (σ ∗
1)|) + i+ 1). We call such a function a witness function for T .

It is easy to see that if we have a witness function f(n) for a special tree T , then
T is recursively unbounded, and we can take an appropriate full subtree to satisfy
one requirement for hyperimmunity. In our construction, a common example of
such a function is f(n) = 2n.

The following lemma is very easy to prove but it is convenient to make it explicit.

Lemma V.2.4. If T is a special tree and σ is an even string in the domain of T ,
then FS(T, σ), the full subtree of T above σ defined by FS(T, σ)(σ′) = T (σ ∗ σ′),
is also special.

Proof. Immediate.

V.2.1 Requirements

First of all, as in a standard minimal degree construction, we need the following
requirements to guarantee that deg(α) is minimal:

Re either ϕα
e is not total, or it is recursive, or α ≤T ϕ

α
e .

45

It is easy to see that hyperimmunity of a degree a is equivalent to having a
function f ≤T a which is not dominated everywhere by any recursive function,
i.e., for every recursive function h, there is an x such that f(x) > h(x). We will
require α to be such a function.

Pe either ϕe is not total, or ∃x(α(x) > ϕe(x) ↓).

To make sure that α �T d, we fix a set D ∈ d and the following requirements.

Qe either ϕD
e is not total, or ∃x(α(x) 6= ϕD

e (x) ↓).

A tree T forces a requirement Re, Pe or Qe if the requirement holds for every
path α ∈ [T]. Next, we provide basic modules to find a subtree T ′ of any given
special T with a witness function such that T ′ forces one requirement Re, Pe or Qe.
It is then easy to construct a sequence of trees 〈Ti〉 which approximates a string α
satisfying all the requirements.

V.2.2 Initial tree T0

We begin our construction with a special tree T0.

First let T0(∅) = ∅, T0(0) = 0, T0(1) = 1, T0(00) = 00 and T0(01) = 01.
Compute ϕ0(1). If it does not converge then T (1) = 1 is a leaf; if it converges, let
T0(10) = 1 ∗ (ϕ0(1) + 1) and T0(11) = 1 ∗ (ϕ0(1) + 2).

Inductively for any σ of length 2k, if we have defined T0(σ) = τ , then we let
T0(σ ∗0) = τ ∗0, T0(σ ∗1) = τ ∗1, T0(σ ∗00) = τ ∗00 and T0(σ ∗01) = τ ∗01. Next
we compute ϕk(2k+ 1). If it does not converge, τ ∗ 1 is then a leaf; if it converges,
let T0(σ ∗ 10) = τ ∗ 1 ∗ (ϕk(2k + 1) + 1) and T0(σ ∗ 11) = τ ∗ 1 ∗ (ϕk(2k + 1) + 2).

Note that T0 is a special tree and f(n) = 2n is a witness function for it.

V.2.3 Force α to be hyperimmune

Suppose we are given a special tree T with a witness function f(n) and we want to
force Pe. If ϕe is not total then we are done. If it is total, then we need a subtree
T ′ of T which forces α to be not dominated everywhere by ϕe, i.e., α(x) > ϕe(x)
for some x.

First find any σ of length f(e) in the domain of T . By the definition of a witness
function we know that ϕe(|T (σ ∗ 1)|) ↓ if and only if T (σ ∗ 1 ∗ 0) ↓. By assumption
ϕe(|T (σ ∗ 1)|) converges, so T (σ ∗ 1 ∗ i) ⊃ T (σ ∗ 1) ∗ (ϕn(|T (σ ∗ 1)|) + i + 1). We
can now take the full subtree of T above σ ∗ 1 ∗ 0 as T ′. By Lemma V.2.4 it is also
a special tree. By the Padding Lemma we can recursively find a witness function
f ′ for T ′ from f .

V.2.4 Force α �T d

Given a special tree T and an index e, we want to find a subtree T ′ of T which
forces α 6= ϕD

e , if ϕD
e is total.

46

Pick any two different even-nodes τ0 and τ1 on T . One of them must be incom-
patible with ϕD

e if it is total. Without loss of generality we can assume that τ0 is
incompatible with ϕD

e , i.e., ∃x(τ0(x) ↓6= ϕD
e (x) ↓); then we take T ′ = FS(T, σ0)

and again by Lemma V.2.4 and the Padding Lemma we are done.

V.2.5 Force α to be minimal

Now given a special tree T , its witness function f and an index e, we need to find
a subtree of T to force Re, i.e., either ϕα

e is not total, or it is recursive, or α ≤T ϕ
α
e .

Note that Posner’s Lemma is usually used to show that the nonrecursiveness
of α is guaranteed by a splitting tree construction. Here this is automatically
guaranteed by the requirements, because hyperimmune degrees are not recursive.

As in a standard minimal degree construction, we first try to ask whether there
are e-splitting pairs above every node, i.e., whether we can construct a splitting
subtree of T . However, we need to be careful here. Some nodes on T are leaves,
and these nodes cannot be extended on T . For example, we start from the root
of T and search for two nodes above it which form an e-splitting pair. If the two
nodes we find are leaves, then we cannot extend them at the next step.

A possible way to solve this problem is to ask a similar but more specific ques-
tion. First let E = Even∩dom(T), i.e., the collection of even strings in the domain
of T , then ask whether the following is true:

∃σ ∈ E ∀σ0, σ1 ⊃ σ, σ0, σ1 ∈ E[¬(T (σ0)|eT (σ1))].

Intuitively, property 2 of special trees guarantees that T (σ0) and T (σ1) are not
terminal nodes, so we can continue to construct our subtree, if the answer is “no”.

Now if the answer is “yes”, then we can find an even σ in the domain of T
such that for any even σ0, σ1 above σ, T (σ0) and T (σ1) do not form an e-splitting.
For any α an infinite path on FS(T, σ), if ϕα

e is total, then we can compute it as

follows: Given x, we search above σ for the first even σ′ such that ϕ
T (σ′)
e (x) ↓ and

output that value. We can always find one because ϕα
e (x) ↓. We cannot find an

answer different from ϕα
e (x) because of the positive answer to our question.

If the answer is “no”, then we know that for any even σ in the domain, we can
find two even strings σ0, σ1 such that T (σ0) and T (σ1) form an e-splitting. So we
can easily construct a splitting tree. In addition, we want the splitting tree to be
recursively unbounded. We guarantee this by arranging for f ′(n) = 2n to be a
witness function as in the following construction:

First put T ′(∅) = T (∅). By the negative answer to our question we can find two
even strings σ0, σ1 (above ∅) such that T (σ0) and T (σ1) e-split. Now find t such
that ϕt = ϕ0 and f(t) bounds |σ0| and |σ1|. Extend σ0 and σ1 respectively to σ′0
and σ′1 with |σ′0| = |σ′1| = f(t). Let T ′(0) = T (σ′0 ∗ 0) and T ′(1) = T (σ′1 ∗ 1).

On the 0 side, search above σ′0∗0 for even strings σ00 ⊃ σ′0∗0∗0 and σ01 ⊃ σ′0∗0∗1
such that T (σ00)|eT (σ01) and let T ′(0i) = T (σ0i) for i = 0, 1. (We can find such
two even strings because of our convention that ϕσ

e (x) ↓ only if for all y < x,
ϕσ

e (y) ↓.)
On the 1 side, we wait for ϕ0(|T (σ′1 ∗ 1)|) = ϕt(|T (σ′1 ∗ 1)|) to converge. If

it doesn’t, T ′(1) is a leaf. If it converges, then we know that T (σ′1 ∗ 1 ∗ i) ⊃

47

T (σ′1 ∗ 1) ∗ (ϕ0(|T (σ′1 ∗ 1)|) + i+ 1). Note that σ′1 ∗ 1 ∗ 0 and σ′1 ∗ 1 ∗ 1 are even, so
we can search above them for even strings σ10 ⊃ σ′1 ∗ 1 ∗ 0, σ11 ⊃ σ′1 ∗ 1 ∗ 1 such
that T (σ10)|eT (σ11). Then let T ′(1i) = T (σ1i) for i = 0, 1.

Inductively, suppose we have defined T ′(σ) = T (σ∗) for |σ| = 2n, and σ∗ is
even. We find two even strings σ0, σ1 extending σ∗ such that T (σ0)|eT (σ1), and
pick t such that ϕt = ϕn and f(t) bounds the lengths of σ0 and σ1. Then we
extend σ0 and σ1 respectively to σ′0 and σ′1 with |σ′0| = |σ′1| = f(t). Now we define
T ′(σ ∗ i) = T (σ′i ∗ i) for i = 0, 1. The rest of the construction here is similar to the
one in the base case. It is easy to see that T ′ is special and recursively unbounded
witnessed by f ′(n) = 2n. This finishes the construction and the proof.

V.3 Tree Systems

Next we construct an ANR 2-minimal degree. We use a tree construction to find
a string α of minimal degree. At the same time, we do another tree argument
relativized to α to find a string β which is minimal over α.

Usually, such iterations are implemented with uniform trees (see [Ler83, Chapter
VI]). Here we provide a different and more general approach.

The intuition is to build a “tree of trees” where “tree” refers to the construction
of α and “trees” refers to the construction of β.

A tree system is a pair of functions (T, S) where T is a partial recursive tree
from ω<ω to ω<ω and S is a recursive function defined on the range of T with
values finite trees mapping from a subset of 2<ω to ω<ω, such that if τ ⊂ τ ′ are
both in the range of T , then S(τ ′) is an extension of S(τ), i.e., S(τ ′) restricted to
the domain of S(τ) is equal to S(τ).

In this setting T is called a tree and S is called a system. We use σ to denote
strings in the domain of T , τ (and less frequently π) to denote strings in the range
of T and the domain of S. We use R to denote finite trees in the range of S. We
use µ to denote strings in the domain of such an R and ρ (and less frequently η, ξ
or ζ) to denote strings in the range of such an R.

We write lb(ρ) to denote the last bit of ρ, i.e. ρ(|ρ| − 1).

In our proof we will construct tree systems with the following Properties :

1. For any σ, if T (σ) ↓ then for any i ≤ |T (σ)| + 1, T (σ ∗ i) ↓⊃ T (σ) ∗ i, and
T (σ ∗ i) ↑ for i > |T (σ)|+ 1.

2. For any node τ on T , the maximum length of leaves on S(τ) is 3|τ |+ 1.

3. For any node τ on T , all leaves of S(τ) are of length 3i + 1 for some i and
all leaves are images of odd strings. We call these leaves of length 3|τ | + 1
the top leaves on S(τ), and the other leaves on S(τ) the terminal leaves. In
addition, if S(τ)(µ) = ρ is a terminal leaf, then lb(µ) = lb(ρ) = 1.

4. For any infinite path α ∈ [T], S(α) = ∪τ⊂αS(τ) is a special tree (see Definition
V.2.2).

5. For any τ = T (σ) and any even-node ρ on S(τ), there are η0, η1 ∈ S(τ)
extending ρ which are top leaves of S(τ) with lb(η0) = 0 and lb(η1) = 1.

48

We call such tree systems special.

Property 1 assures that we can infinitely often code some information into α.
Properties 2 and 3 provide a convenient specific framework. Property 4 is crucial:
it allows us to “guess” whether something happens or not as in our hyperimmune
minimal degree construction. Property 5 would follow from our construction but
it is more convenient to make it explicit.

Before starting our main construction, we provide some technical lemmas about
special tree systems.

Lemma V.3.1. Given a special tree system (T, S), if T ′ is a subtree of T which
also satisfies Property 1, and S ′ is the restriction of S to the range of T ′, then
(T ′, S ′) is also a special tree system.

Proof. Immediate.

We give an analog of the “full subtree” in the usual tree construction.

Definition V.3.2. Given a tree system (T, S), τ = T (σ) and ρ = S(τ)(µ), the
full subtree system (T ′, S ′) of (T, S) above (σ, µ), is defined as follows: Let T ′ be
the usual full subtree of T above σ. For any π in the range of T ′, define S ′(π) to
be the full subtree of S(π) above µ. We denote this T ′ by FSTS(T, S, σ, µ).

Intuitively, this is a “full subtree of full subtrees”. Now we show that with one
easy requirement, this full subtree system is special if the original tree system is
special.

Lemma V.3.3. Suppose (T, S) is a special tree system, τ = T (σ) and µ is an even
string in the domain of S(τ), then FSTS(T, S, σ, µ) is also a special tree system.

Proof. Properties 1, 3 and 5 are immediate. Property 4 follows from Lemma V.2.4
and finally Property 2 follows from Properties 3 and 4.

V.4 An ANR 2-minimal Degree

Theorem V.4.1. There is a 2-minimal ANR degree.

Proof. We construct a sequence of special tree systems (Ti, Si) with each one a
subtree system of the previous one, i.e., Tn+1 is a subtree of Tn and for any τ in
the range of Tn+1, Sn+1(τ) is a subtree of Sn(τ).

In the end, the Ti’s will approximate an infinite string α. That is to say, α is the
only string in all [Ti]. In addition, Si(α) will approximate β in the same way. Our
plan is to make deg(β) an ANR degree minimal over the minimal degree deg(α).

We take λ(n, s) to be the standard approximation of the modulus function of
K with the number of changes in the column {λ(n, s)}s∈ω bounded by n+ 1.

Notice that in our construction of a hyperimmune minimal degree we could
replace the partial recursive ϕn used at level f(n) by any partial recursive function
specified uniformly in n. Relativizing this idea, when we construct a minimal cover
β of α, we can code in some partial α-recursive function infinitely often.

49

Now we construct an α which is bounded by f(n) = n+ 1 and each value α(n)
will be regarded as a guess at the true number of changes in the corresponding
column {λ(n, s)}s∈ω. If we assume that infinitely often we can code the true number
of changes into α, then α computes a partial recursive function h(n) which infinitely
often equals the modulus function of K: for each n, we first read α(n), and then
run through the column {λ(n, s)}s∈ω looking for α(n) many changes. If we can
find such a position we output the value of λ(n, s) at that place, and if we cannot,
the computation diverges.

If β can infinitely often exceed the values of h(n) where it is equal to mK(n),
then deg(β) is ANR. One thing to worry about here is how to make sure that those
places where β exceeds h are the positions where h coincides with the modulus
function of K. The main difficulty in the proof is to find a framework within which
we can carry out this idea.

In our construction we place one more requirement on our tree systems:

6. For any τ on T and ρ a terminal leaf of length 3i + 1 on S(τ), we have
lb(ρ) = 1 and |{s : s < |τ |, λ(i, s) 6= λ(i, s+1)}| < τ(i). This implies that, for
any τ ′ ⊃ τ on T such that ρ is no longer a leaf on S(τ ′), |{s : s < |τ ′|, λ(i, s) 6=
λ(i, s+ 1)}| ≥ τ(i).

Note that Lemma V.3.1 and V.3.3 are still true with Property 6 added.

Again note that α being nonrecursive and β being strictly above α are both
automatic: β is ANR while α is not ANR by Theorem V.1.3, so deg(β) is not
below deg(α). In addition, deg(α) is strictly above 0 because otherwise deg(β)
would be an ANR minimal degree, contradicting Theorem V.1.3.

V.4.1 Requirements

First of all, we want α to be minimal.

Re either ϕα
e is not total, or it is recursive, or α ≤T ϕ

α
e .

In addition, we require β to be minimal over α.

Pe either ϕβ
e is not total, or it is recursive in α, or β ≤T ϕ

β
e ⊕ α.

We guarantee array nonrecursiveness by the following:

Qn there exists at least n distinct x’s such that β(3x+ 2) > mK(x).

Then β computes a function which is not dominated by mK . Therefore it is
ANR by definition.

The definition of forcing here is similar to that in section V.2: we say (T, S)
forces a requirement if for every α ∈ [T] and every β ∈ [S(α)], the requirement
holds for α and β. Finally α ≤T β is guaranteed by the initial tree system defined
below.

50

V.4.2 Initial tree system (T0, S0)

We define an initial tree system (T0, S0) in this subsection. For simplicity we write
(T, S) instead of (T0, S0).

T is rather simple. It is the restriction of the identity function to a recursive
domain defined as follows:

∅ is in the domain; if σ is in the domain then σ ∗ 0, σ ∗ 1, . . . , σ ∗ (|σ| + 1) are
exactly the immediate successors of σ in the domain.

Given τ of length n in the range of T (and so in the domain of S), we define
S(τ) = R as a finite tree as follows:

The domain of R is a subset of 22|τ |+1. First let R(∅) = ∅. Inductively, for
any µ of length ≤ 2|τ | and R(µ) = ρ, if µ is even, then put R(µ ∗ 0) = ρ ∗ 0 and
R(µ ∗ 1) = ρ ∗ 1.

If |µ| = 2k + 1 and lb(µ) = 0, we put R(µ ∗ 0) = ρ ∗ τ(k) ∗ 0 and R(µ ∗ 1) =
ρ ∗ τ(k) ∗ 1. If lb(µ) = 1, then we search for the τ(k)-th change in the column
{λ(k, s)}s∈ω up to s = |τ |. If we cannot find that many changes, then both R(µ∗0)
and R(µ ∗ 1) diverge; if we can find such, then let x be the value of λ(k, t) where
t is the place we see the τ(k)-th change, and let R(µ ∗ 0) = ρ ∗ τ(k) ∗ (x+ 1) and
R(µ ∗ 1) = ρ ∗ τ(k) ∗ (x+ 2).

It is easy to see that R is a finite tree and the maximum length of its leaves is
3|τ | + 1. For every α ∈ [T] and every β ∈ [S(α)], it is immediate that ∀x(α(x) =
β(3x+ 1)); hence α ≤T β.

Intuitively, along any path on the tree S(τ), position 3i+1 codes the (possible)
number of changes, position 3i guesses whether it can be found (1) or not (0), and
position 3i + 2 codes a sufficiently large number, if position 3i guesses that such
number of changes happens and it is actually found.

Infinitely often Property 1 can be used to find a full subtree of T (with the
induced “subsystem” of S) to code the “correct number of changes along a column”
into α. So in β we can code in a number greater than the corresponding value of
the modulus function of K.

V.4.3 Force α to be minimal

Suppose we are given (T, S) and an index e, and we need to find a subtree system
(T ′, S ′) of (T, S) to force Re.

By Lemma V.3.1 we only need to find such a subtree T ′ of T which satisfies
Property 1 and take S ′ to be the corresponding restriction.

As usual we ask whether the following holds (for simplicity we always let D be
the domain of T):

∃σ ∈ D∀σ0, σ1 ⊃ σ, σ0, σ1 ∈ D(¬(T (σ0)|eT (σ1))).

If the answer is “yes” then we take T ′ = FS(T, σ). It is routine to argue that
ϕα

e is either not total or recursive for every α ∈ [T ′].

If the answer is “no”, then we do the following construction. Start with T ′(∅) =
T (∅) = τ . Now, in order to satisfy Property 1, we need to find |τ | + 2 pairwise

51

e-splitting nodes on T , each extending one of T (i) ⊃ τ ∗ i for i = 0, 1, . . . , |τ | + 1
respectively. In the inductive step we need a similar argument, i.e., once we have
defined T ′(σ) = τ = T (σ′), then we need to find |τ |+ 2 pairwise e-splitting nodes
on T , each extending one of T (σ′ ∗ i) ⊃ τ ∗ i for i = 0, 1, . . . , |τ | + 1 respectively.
We start with these nodes T (σ′ ∗ i). Each time we pick one pair of them, and
using the splitting property we can extend these two strings on T to make them
e-split. We can iterate this process for each pair. Finally we end up with pairwise
e-splitting extensions and let them be T ′(σ ∗ i) for i = 0, 1, . . . , |τ |+ 1.

This construction gives us an e-splitting subtree T ′ of T and it is easy to argue
that α ≤T ϕ

α
e .

V.4.4 Force β to be ANR

Given (T, S) we want to code a sufficiently large number into β, i.e., we need to
find a new n such that β(3n+ 2) ≥ mK(n).

By Property 5 we know that there exist τ = T (σ) and ρ = S(τ)(µ) a top leaf
of S(τ) with lb(ρ) = 1. Then, by Property 1, we know that τi = T (σ ∗ i) ⊃ τ ∗ i,
i = 0, 1, . . . , |τ | + 1 are exactly the successor nodes of τ . Intuitively, they are
guessing that the |τ |-th column of λ has i many changes, respectively for each i.

Then we take i to be the actual number of changes through that column, i.e.,
we let i = |{s : λ(|τ |, s) 6= λ(|τ |, s + 1)}|. That is to say, T (σ ∗ i) = τi ⊃ τ ∗ i
has the correct guess at the number of changes in this column. Also let t be the
position in that column where we see the i-th change, i.e. t is the least such that
λ(|τ |, t′) = λ(|τ |, t) for all t′ > t.

Note that by Property 3, µ ∗ 0 is an even string. By the construction of the
initial tree and Property 6, we know that for all T (σ∗) = τ ∗ ⊃ τi with length ≥ t,
S(τ ∗)(µ ∗ 0) ⊃ ρ ∗ i ∗ |mK(|τ |) + 1| or ρ ∗ i ∗ |mK(|τ |) + 2|. Pick any such σ∗ and
take (T ′, S ′) = FSTS(T, S, σ∗, µ ∗ 0). By Lemma V.3.3, this tree system is special
and it is easy to see that it forces β to have one more position n where β(3n+ 2)
is greater than mK(n).

V.4.5 Force β to be minimal over α

In this subsection we will present the main splitting construction. Suppose we are
given a special tree system (T, S) and an index e. We need to find a special subtree
system (T ′, S ′) which forces Pe, i.e., either ϕβ

e is not total, or it is recursive in α,
or β ≤T ϕ

β
e ⊕ α.

Notice that in the requirement above, if we could force β ≤T ϕ
β
e , then we would

make β a strong minimal cover over α, but this cannot happen because no ANR
degree can be a strong minimal cover (for example, by [DJS96, Theorem 2.5]).

Now we ask the following key question (note that D is the domain of T and we
let E(τ) be the set of all even strings in the domain of S(τ)):

∃σ ∈ D∃µ ∈ E(T (σ))

∀σ′ ⊃ σ, σ′ ∈ D∀µ0, µ1 ⊃ µ, µ0, µ1 ∈ E(T (σ′))[¬(S(T (σ′))(µ0)|eS(T (σ′))(µ1))].

52

That is, we ask whether there is a node τ = T (σ) and an even-node ρ = S(τ)(µ)
such that for any τ ′ = T (σ′) extending τ on T , there is no e-splitting pair of even-
nodes on S(τ ′) extending ρ.

If the answer is “yes”, then we pick a witness pair (σ, µ), take (T ′, S ′) =
FSTS(T, S, σ, µ) and claim that if ϕβ

e is total, then it is recursive in α. To compute
ϕβ

e (x), we simply search on the tree S ′(α) for an even-node η which makes ϕη
e(x)

converge. We must find an answer because β ∈ [S(α)] and ϕβ
e is total. We cannot

find an answer different from ϕβ
e (x) by the positive answer to our key question.

Now if the answer is “no”, then we know that

(†) : ∀σ ∈ D∀µ ∈ E(T (σ))

∃σ′ ⊃ σ, σ′ ∈ D∃µ0, µ1 ⊃ µ, µ0, µ1 ∈ E(T (σ′))[S(T (σ′))(µ0)|eS(T (σ′))(µ1)].

We will use this property to construct a “splitting” subtree system (T ′, S ′).
Here by “splitting” we mean the following:

(∗) : For all τ on T ′, all leaves of S ′(τ) pairwise e-split.

First we argue that with property (∗) the requirement is satisfied. From α one
can compute S ′(α) and β is a path on S ′(α). (∗) guarantees e-splitting so ϕβ

e can
pick a unique leaf which is an initial segment of β, on S ′(τ) for every τ ⊂ α. This
proves that β ≤T ϕ

β
e ⊕ α.

To finish the proof we will provide such a splitting subtree system construction,
i.e., we construct a subtree system (T ′, S ′) which is special and has property (∗).

To find T ′(∅), first by (†) we search above ∅ for a σ such that there exist two
e-splitting even-nodes ρ0 and ρ1 on S(T (σ)). Then by Property 5 we know that
on the tree S(T (σ)), ρ0 and ρ1 have extensions η0 and η1 respectively such that
lb(η0) = 0, lb(η1) = 1 and both are top leaves of S(T (σ)). Then define T ′(∅) = T (σ)
and S ′(T ′(∅)) to be the subtree of S(T (σ)) defined by S ′(T ′(∅))(∅) = S(T (σ))(∅),
S ′(T ′(∅))(0) = η0 and S ′(T ′(∅))(1) = η1.

Now suppose we have defined T ′(σ′) = τ = T (σ) and S ′(τ) a subtree of S(τ).
We need to define T ′(σ′ ∗ i) ⊃ T (σ ∗ i) for each i ∈ {0, 1, . . . , |τ |+1} and define the
corresponding S ′(T ′(σ′ ∗ i)) with pairwise splitting leaves. The good thing is that
we only need e-splitting for leaves on each S ′(T ′(σ′ ∗ i)) separately but not for all
leaves on every tree altogether. As we know the number i from α in the end, we
only need to find e-splitting extensions separately for each i.

Suppose ρ0, ρ1, . . . , ρn are all leaves on S ′(τ). Note that by induction, they
pairwise e-split. Let X = {ρ0, ρ1, . . . , ρk} be the set of all top leaves and Y =
{ρk+1, ρk+2, . . . , ρn} be the set of all terminal leaves on S ′(τ). Some of the ρj’s in
X are terminal leaves on S(T (σ ∗ i)) and we can put them aside (into Y) at this
time. Now let Z = {ρ0, ρ1, . . . , ρl} be the set of all leaves on S ′(τ) that are not
terminal leaves on S(T (σ ∗ i)).

The aim of the construction is to find τi ⊃ T (σ ∗ i) ⊃ τ ∗ i on T such that
for each ρj ∈ Z, ρj = S ′(τ)(µj) (note that |µj| is always odd by Property 3), one
can find on S(τi) six appropriate nodes defined to be S ′(τi)(µj ∗ 0), S ′(τi)(µj ∗ 1),
S ′(τi)(µj ∗ 00), S ′(τi)(µj ∗ 01), S ′(τi)(µj ∗ 10) and S ′(τi)(µj ∗ 11). Moreover, the
latter four are top leaves of S(τi) and they have the desired e-splitting property.

53

For each ρj ∈ Z, ρj = S ′(τ)(µj) = S(T (σ))(µ′j) we know that ρ′j = S(T (σ ∗
i))(µ′j ∗ 0) is an even-node on S(T (σ ∗ i)), hence also an even-node on S(π) for any
π ⊃ T (σ ∗ i).

Now start from ρ′0. By (†) we know that there is a π0 ⊃ T (σ ∗ i) and two
even-nodes ξ1

0 , ξ
1
0 on S(π0) extending ρ′0 that e-split.

Using the same idea, we apply (†) twice to get π2 ⊃ π1 ⊃ π0 such that both ξ0
0

and ξ1
0 have two even-node extensions ξ00

0 , ξ01
0 and ξ10

0 , ξ11
0 , respectively.

Now on S(π2), some nodes in Y will become nonterminal and we need to move
them into Z.

Pick the next node in Z, say ρ1. ρ
′
1 defined above is also an even-node in S(π2)

and similarly by applying (†) three times one can get π5 ⊃ π4 ⊃ π3 ⊃ π2 and even-
nodes ξ0

1 , ξ
1
1 , ξ

00
1 , ξ01

1 and ξ10
1 and ξ11

1 extending ρ′1 (to be explicit, the subscript 1
refers to ρ′1 and superscripts 0, 1, 00, 01, 10, 11 refer to their positions in the relative
2-level tree structure extending ρ′1).

Again some nodes in Y will appear nonterminal at this level and we need to
move them into Z. There are only finitely many leaves on S ′(τ) at the beginning.
So we can iterate this process for all ρj ∈ Z and finally end up with π = π3t−1 for
some t. On S(π) each ρ′j similarly has six extensions with appropriate e-splitting
properties, and these nodes in Y are still terminal leaves. Now define T ′(σ∗ i) = π,
and define R = S ′(π) extending S ′(τ) as follows: for each ρj ∈ Z, ρj = S ′(τ)(µj),
define S ′(π)(µj ∗ 0) = ξ0

j and S ′(π)(µj ∗ 1) = ξ1
j .

By Property 5 we can find a top leaf ζmn
j on S(π) extending ξmn

j (m,n ∈ {0, 1})
such that lb(ζmn

j) = n. Then we define S ′(π)(µj ∗m ∗ n) = ζmn
j for m,n ∈ {0, 1}.

This finishes the splitting subtree system construction and it is not difficult to
see that the subtree system (T ′, S ′) we constructed is a special tree system.

V.5 Appendix

Here we prove a proposition mentioned in the Introduction.

Proposition V.5.1. Suppose a is GL2 and b is a minimal cover of a, then b is
also GL2 if either of the following holds:

1. b < a′, or

2. b is hyperimmune-free relative to a, i.e., every function recursive in b is
dominated by a function recursive in a.

Proof. In the first case, by a relativized version of [JP78, Corollary 1], we know that
if b < a′ then b is L2 relativized to a. That means b′′ = a′′ = (a∨0′)′ ≤ (b∨0′)′.
Therefore b is GL2.

In the second case, it is well known ([JP78, Lemma 1]) that a being GL2 is
equivalent to there being a function g recursive in a ∨ 0′ which dominates ev-
ery function recursive in a. Then this function g also dominates every function
recursive in b and of course g ≤T a ∨ 0′ ≤ b ∨ 0′. So b is also GL2.

54

CHAPTER VI
2-MINIMAL NON-GL2 DEGREE

This chapter will appear as a paper in the Journal of Mathematical Logic.

VI.1 Introduction

We investigate two important subjects in the research of Turing degrees: one is
the generalized high/low hierarchy, the other is the study of minimal degrees and
minimal covers.

As we mentioned in Chapter I, in recursion theory, there are different notions
of how close a degree is to the recursive degree 0, or how close a degree is to 0′, the
degree of the complete set K (the halting problem). For example, the high/low
hierarchy (see definition in §I.1.2) is such a measurement in terms of the number of
Turing jump operators needed to collapse the degree with either 0 or 0′. Roughly
speaking, the low degrees are close to the recursive degree 0 (in the sense that any
degree below a low one is also low), and the high ones are close to 0′. The number
of iterations provides an approximation of how close a degree is to either 0 or 0′,
for example, the low1 degrees are regarded as being closer to 0 than low2 ones.

The high/low hierarchy only classifies the degrees below 0′, and we can general-
ize this notion to all Turing degrees and define the generalized high/low hierarchy.
A lot of nice properties of the high/low hierarchy transfer to properties of the
corresponding generalized high/low hierarchy. In particular, it is also a common
technique to prove a theorem for the high/low hierarchy first, and then use the
method of the proof to show an analogous version for the generalized high/low
hierarchy (see, for example, [ASDWY09]).

Another notion of such measurement is minimality and iterated minimality (see
definition in §I.1.1). For example, 2-minimal degrees are those degrees that are
“two steps” away from 0. This provides another notion of how close a degree is to
the recursive degree, i.e., the number of minimality iterations needed to reach the
degree from 0.

The lowness notion and the minimality notion are both trying to characterize
how close the degree is to 0, so we would like to see if they have some strong
connections. The first breakthrough is the following theorem:

Theorem VI.1.1 (Jockusch and Posner [JP78, Theorem 1]). Every minimal de-
gree is generalized low2 (GL2). In fact, every degree which is not GL2 (GL2)
computes a 1-generic set.

Lerman iterated this theorem below 0′ and showed that iterations of minimality
below 0′ cannot reach higher than L2 in the high/low hierarchy, therefore the
degrees below 0′ that are not low2 (L2) cannot be n-minimal for any n ∈ ω. In
another words, they do not have the finite maximal chain property : A degree c has
the finite maximal chain property if there is a chain 0 = c0 < c1 < · · · < cn = c
such that each ci+1 is a minimal cover of ci (such a chain is also called a maximal
chain).

Lerman then asked whether this result also holds for GL2 degrees ([Ler83,
IV.3.7]), i.e., whether there is a GL2 degree with the finite maximal chain property.

55

The class of GL2 degrees has been studied over the years and these degrees
have a lot of nice properties (see for example, [JP78], [ASDWY09] and [CSh12],
see also chapter [2]). In particular, Theorem VI.1.1 actually shows that the degree
structure below any GL2 degree is complicated, since it is a classical result that
one can embed any countable partial order below a 1-generic degree. In contrast,
finite maximal chains are in some sense the least complicated partial orders. So
it seems unlikely that a GL2 degree can be the top of a finite maximal chain.
However, this intuition turns out to be false.

On the other hand, Theorem VI.1.1 is strict with respect to the generalized
high/low hierarchy. More precisely, we have:

Theorem VI.1.2 (Sasso [Sas74]). There is a minimal degree which is not GL1.

In the language of [LS88], these two results (Theorems VI.1.1 and VI.1.2) com-
pletely categorized the invariant classes of non-minimal degrees with respect to
the generalized high/low hierarchy. Results of this sort can be used to get some
bound on the quantifier complexity of definitions of various degree classes. So
in [LS88], it was asked whether we can answer a similar question for 2-minimal
degrees ([LS88, Question 6.4]), as it is “the first roadblock” in classifying ∃∀ sen-
tences with respect to the generalized high/low hierarchy. So the first question to
consider here is whether there is a 2-minimal degree which is “significantly higher”
than 1-minimal degrees, i.e., whether a 2-minimal degree can be GL2.

In this chapter, we show that actually there is a 2-minimal degree which is GL2.
This answers Lerman’s question and also provides a first step towards an answer
to Question 6.4 in [LS88].

In the end, we modify the construction to get a 2-minimal degree which is GH2.

VI.2 Preliminary Ideas

Lerman’s question we mentioned in the previous section was also studied in [Cai10]
(see also Section V.1 and Proposition V.5.1). In Proposition V.5.1 we pointed out
some necessary conditions if one wants to build a degree b minimal over a where
a is GL2 and b is GL2, since it is easy to see that such construction is necessary
to get a GL2 degree with the finite maximal chain property. We also showed
that there is an array nonrecursive 2-minimal degree by building a maximal chain
0 < a < b with b being array nonrecursive. Array nonrecursive degrees are defined
to generalize GL2 degrees. They share a lot of nice properties with GL2 degrees
(see [DJS96] and [CSh12]), and have also been used in various places in the study
of Turing degrees (see for example, [Ish99] and [Sh07]). However, one can actually
show that the array nonrecursive 2-minimal degree constructed there is GL2.

In the setting above, by a relativized version of Theorem VI.1.1, we know that b
is GL2 relativized to a. Now if a is GL1, then b′′ = (b∨a′)′ = (b∨a∨0′)′ = (b∨0′)′

and so b is GL2. That is to say, in order to make b be GL2, one has to make a
be GL1, i.e., not GL1. So the technique used in Theorem VI.1.2 might be very
important for constructing a GL2 degree with the finite maximal chain property.

In our construction, the framework (tree systems) comes from [Cai10], and the
coding idea is from a new construction of a hyperimmune minimal degree ([Cai10],

56

see also Section V.2). We also use Sasso’s idea of narrow trees (in the proof of
Theorem VI.1.2, see the review in Section VI.4) for both the “a part” and the “b
part” of the proof.

We provide basic definitions and some new notions in Section VI.3 and discuss
the requirements together with the basic ideas of the construction in Section VI.4.
We then work with only one single GL2 type of requirement in Section VI.5 to
give readers a local picture of the construction, and we prove the full theorem in
Section VI.6.

VI.3 Basic Definitions and Notions

VI.3.1 Trees

In this chapter, we use trees as partial functions T : 2<ω → 2<ω.

Recall that a tree is finite if its domain is finite. For two finite trees R0, R1, we
say that R1 is a tree extension of R0 if the restriction of R1 to the domain of R0

is the same as R0. Intuitively, R1 preserves the tree structure of R0 and possibly
adds some extensions.

Given two trees T and S, we say that S is a subtree of T if every node on S is
a node on T . If τ = T (σ) is a node on T , then the full subtree T ′ of T above τ is
defined as T ′(ξ) = T (σ ∗ ξ) for every ξ ∈ 2<ω. We use FS(T, τ) to denote this full
subtree.

Given a tree T , the narrow subtree T ′ of T is defined as T ′(σ) = T (∅ ⊕ σ) for
every σ ∈ 2<ω. We use Nar(T) to denote the narrow subtree of T .

VI.3.2 Tree systems

A tree system is intuitively “a tree of trees”. Similar to the case of trees, we might
have different definitions of tree systems in different situations. Here we also want
to embed recursiveness into the definition for simplicity.

A tree system is a pair (T, S) where T is a total recursive tree and S is a recursive
function from the range of T to (indices of) finite trees such that for every τ0 ⊂ τ1
both in the range of T , S(τ1) is a tree extension of S(τ0). In this setting, T is a
tree and S is called a system. Any node on any S(τ) is also called a node on the
tree system.

From now on, we reserve the use of certain lower case Greek letters for strings
in different worlds: σ will only denote strings in the domain of a tree T ; τ will only
denote strings in the range of T and domain of S; µ will only denote strings in the
domain of R = S(τ) and ρ (with other letters like η, ξ) will only denote strings in
the range of such R. So with a given tree system (T, S), when we say “for every
τ”, we mean “for every string τ in the range of T” (i.e., “for every node τ on T”),
etc.

A tree system (T ′, S ′) is a subtree system of (T, S) if T ′ is a subtree of T and for
every τ in the range of T ′, S ′(τ) is a subtree of S(τ). A sequence of tree systems
〈(Ti, Si)〉i∈ω is nested if every (Ti+1, Si+1) is a subtree system of (Ti, Si).

57

Given a tree system (T, S), a node τ on T and a node ρ on S(τ), the full subtree
system of (T, S) above (τ, ρ) is a tree system (T ′, S ′) where T ′ is the full subtree of
T above τ and for each τ ′ in the range of T ′, S ′(τ ′) is the full subtree of S(τ ′) above
ρ. We use FSTS(T, S, τ, ρ) to denote this full subtree system. It is an analog of
full subtrees and will be used in our construction in many places.

For every path A ∈ [T], S(A) = ∪τ⊂AS(τ) is a tree recursive in A. We call a
path on S(A) a path of the tree system.

A tree system (T, S) is e-splitting if every S(τ) is an e-splitting tree. Similarly
we have the following computation lemma, though in our construction we will use
a slightly different version.

Lemma VI.3.1. For every e-splitting tree system (T, S), if A ∈ [T] and B ∈
[S(A)], then B ≤T ϕ

B
e ⊕ A.

Proof. Relativize Lemma I.3.1 to A.

VI.3.3 Blocks

In our construction, we regard each R = S(τ) in a tree system (T, S) as a structure
consisting of blocks. We use the letter B to denote blocks. Each block B consists
of five or seven nodes: R(µ), R(µ ∗ 0), R(µ ∗ 1), R(µ ∗ 0 ∗ 0), R(µ ∗ 0 ∗ 1), and if
R(µ ∗ 1) is not a leaf, also R(µ ∗ 1 ∗ 0), R(µ ∗ 1 ∗ 1). Here µ is always even. In this
setting, we call R(µ) the root of the block B, R(µ ∗ 0) the 0-node of B, R(µ ∗ 1)
the 1-node of B, etc. (see Figure VI.1). The two or four third level nodes are also
called the top-nodes of the block.

root

0-node 1-node

00-node 01-node 10-node 11-node

Figure VI.1: A block B

A block is full if it has all four top-nodes. Note that a block which is not full
might become full if we branch its 1-node in the construction later, in which case
we say that we fill the block.

We connect the blocks in a tree R = S(τ) in a natural way: B1 immediately
extends B0 if the root of B1 is a top-node of B0. The level of a block is defined
naturally as the number of blocks below it.

A block is e-splitting if every pair of incompatible nodes in it e-splits.

58

In a block, the root is in some sense not important. It might be worth mention-
ing here that in our construction, sometimes we might change the root of a block
to some node below it and keep every other node. In our construction, the crucial
ingredients of a block are the 1-node and the 01-node. From this point of view, we
are not changing the essence of a block if we only change its root.

VI.4 Review of Sasso’s Proof and Basic Ideas on Narrow Trees

For a detailed version of Sasso’s construction, see [Ler83, V.3.12].

In the construction of a minimal path A, if we want to make A′ >T A ⊕ 0′,
we simply need to satisfy A′ 6= ϕA⊕0′

e for every e. We first take a narrow subtree
Nar(T) of the tree T with which we are currently working. Now “A is a path on
Nar(T)” is a Π0

1(A) statement, and so we can find an x such that A is a path on
Nar(T) if and only if x /∈ A′.

Then we ask whether we can force ϕA⊕0′
e (x) to converge on Nar(T); if not, then

the requirement is automatically satisfied by taking Nar(T) as the next tree in
the construction. If so, say τ on Nar(T) makes ϕτ⊕0′

e (x) ↓= i. If i 6= 0, 1, the
requirement is also satisfied by taking FS(T, τ). If i = 1, then the requirement
is satisfied by taking FS(Nar(T), τ), since we have forced A to be on the narrow
subtree. If i = 0, then we find an extension τ ′ of τ on T but not on Nar(T)
(note that this is always possible by the definition of narrow trees), and by taking
FS(T, τ ′) we are also done, since we have forced A to be off the narrow subtree. In
each case, we have forced A′(x) 6= ϕA⊕0′

e (x), and so the final path A we construct
is GL1.

Now we want to build A ≤T B by a nested sequence of tree systems 〈(Ti, Si)〉
in the sense that A is the only path on every Ti and B is the only path on every
Si(A). We want to satisfy three requirements: A is minimal; B is minimal over A;
and most importantly B′′ >T (B ⊕ 0′)′.

As we have already mentioned in the introduction, by relativizing Theorem
VI.1.1, we know that if B is minimal over A, then B′′ ≡T (B ⊕A′)′. By the Limit
Lemma, it suffices to satisfy the following requirements:

1. Re: ∃x ¬[(B ⊕ A′)′(x) = lims ϕ
B⊕0′
e (x, s)].

Note that the above requirement says that there is an x such that either
ϕB⊕0′

e (x, s) is not defined for some s, or the whole sequence 〈ϕB⊕0′
e (x, s)〉s∈ω does

not have a limit, or the limit is not (B ⊕ A′)′(x).

The left hand side of the equation will be controlled in a similar way as in Sasso’s
construction, except that here our “narrow subtree” also depends on A′. We will
give a detailed definition of this new “narrow subtree” in §VI.5.2 and §VI.6.1.

For the right hand side, without loss of generality, we first assume that ϕe only
takes values 0 or 1. Then we guess that the limit does not exist and take full subtree
systems along our construction to force the value to change infinitely many times.
Once we discover that we can no longer force the value to change, then we know
that it is time to do some type of “narrow subtree construction” to satisfy Re. The
major difficulty is to find a plan such that one can implement either of the two

59

types of subtree constructions (to keep B either on or off the “narrow subtree”) at
any subsequent stage after we define the “narrow subtree” for Re.

The other two requirements are handled in more or less standard ways:

2. Pe: either ϕA
e is not total, or recursive, or A ≤T ϕ

A
e .

3. Qe: either ϕB
e is not total, or recursive in A, or B ≤T ϕ

B
e ⊕ A.

An interesting feature of the construction is that requirements Qe have interac-
tions with requirements Re and a finite injury argument is used.

The requirement A ≤T B will be directly satisfied by our initial tree system
and the requirements that A is not recursive and B is not recursive in A are au-
tomatically satisfied since all minimal degrees, together with the recursive degree,
are GL2.

VI.5 One R Requirement

In this section, we are only handling a single requirement Re with other types of
requirements Pi, Qi for i ∈ ω. First we give the initial tree (T0, S0) and see how
A′ comes into play in the construction. Discussions in this section will provide an
introduction and a “local picture” about the full formal construction in the next
section. Sometimes we might be a bit vague about some notions and claims, and
may use terms before their formal definitions. The reader can refer to Section VI.6
for formal definitions, full constructions and detailed verifications.

VI.5.1 Initial tree system

In the initial tree system, T0 is simply the identity function on 2<ω, i.e., the full
binary tree. For every τ ∈ 2<ω, R = S0(τ) is defined to be a tree 22|τ | → 2<ω as
follows: First put R(∅) = ∅. Once we have defined R(µ) = ρ for |µ| = 2e < 2|τ |,
we let R(µ ∗ 0) = ρ ∗ (τ(e)) ∗ 0 and R(µ ∗ 1) = ρ ∗ (τ(e)) ∗ 1. On the 0 side, we
simply let R(µ∗0∗0) = ρ∗ (τ(e))∗0∗0 and R(µ∗0∗1) = ρ∗ (τ(e))∗0∗1. On the
1 side, we check whether ϕτ

e(e) converges, if not, then R(µ ∗ 1) is a leaf of R; if it
converges, then let R(µ∗1∗0) = ρ∗ (τ(e))∗1∗0 and R(µ∗1∗1) = ρ∗ (τ(e))∗1∗1.
From this point of view, we are actually defining the tree system in blocks.

In this setting, the 1-node of a block guesses that ϕA
e (e) converges, and it

eventually branches on S0(A) if and only if such guess is correct. We say that this
block is associated with index e. Note that by the Padding Lemma, for each index
e, one can uniformly find an infinite recursive set Ie = {e0, e1, e2, . . . } such that

for each i, ϕ
(·)
e (e) = ϕ

(·)
ei (ei) as Turing functionals. Here we abuse notation and

say that this block is also associated with each ei as well, but it is still true that if
a block is associated with e then its 1-node branches along path A if and only if
ϕA

e (e) converges.

Now for every index e, we can recursively find infinitely many blocks associated
with e above any even-node. We will make (a modified version of) this property
true for every tree system we construct. Each tree system (T, S) has at least
one recursive aiding functional fA(e, ρ, τ) which, given any path A ∈ [T] which

60

extends τ as oracle, any index e and any even-node ρ on S(τ) (more precisely, an
“accessible” one, see the detailed construction later and property (7) in Definition
VI.6.1), returns a τ ′ ⊃ τ which is an initial segment of A and a block above ρ
which is associated with e on S(τ ′). For example, our initial tree system easily has
a recursive aiding functional. Later we will divide all blocks into two (or more)
groups, and we will have one aiding functional for each group.

The following is easy to see, but it is convenient to mention it here.

Fact VI.5.1. If (T, S) has a recursive aiding functional f and ρ is an (unter-
minated) even-node on S(τ), then FSTS(T, S, τ, ρ) also has a recursive aiding
functional g.

Note that in the construction we might terminate some even-nodes so that they
will not continue to branch, and we do not require to have aiding functionals above
these nodes.

We will make this notion of aiding functionals explicit in Definition VI.6.1 for
the full construction.

Whenever we say “we find a block associated with index e above a node ρ (at
τ)”, we mean that we use the aiding functional to get such a block using the
leftmost path above τ as A. This process is recursive.

VI.5.2 Pruned subtree

Suppose we are given a tree system (T, S) (with a recursive aiding functional f)
and we want to handle the single requirement Re. As we mentioned before, we are
going to define a new notion of “narrow subtree” for B which depends on A′. This
is also the reason why we try to “code” A′ into the initial tree system, and we will
keep “coding” A′ into every tree system we construct in a similar way.

To avoid confusion, we use a new notion, pruned subtree, for the B and S part
of the construction and keep the notion of narrow subtree for the A and T part.

The key point in Sasso’s narrow subtree notion is a density property: for every
node τ on the narrow subtree Nar(T), there is an extension τ ′ of τ on the original
tree T but off Nar(T), i.e., the nodes that are off Nar(T) form a dense set with
respect to T . So in order to give a definition of pruned subtrees, we need to specify
a dense subset of nodes.

We first define a new subtree system (T̄ , S̄) and separate all blocks in this new
tree system into two groups of blocks P and N , which stand for, respectively,
“positive” and “negative” blocks for the requirement Re. The positive blocks will
be used later as coding positions for A′ for Re. The negative blocks are not used
as coding positions for this requirement Re, and we need them because in the next
section in proving the full theorem we will have to reserve these blocks for other
R type of requirements. In order to introduce a lemma (Lemma VI.5.3) which is
needed there, we use a “P and N” version of the construction already here.

At stage 0, we find a τ and a block B associated with 0 on S(τ); then we define
τ to be the root of our new tree T̄ and define S̄(τ) to have this single block (here
we mean a two level tree structure whose range is exactly the nodes on this block
B). We put this block into N .

61

At the next stage, first let τ ′ and τ ′′ be two extensions of τ on T . On the τ ′

side, we find a τ ∗ ⊃ τ ′ such that we can extend the top-nodes of the block B to
some other blocks also associated with 0 on S(τ ∗) (if we see that the 1-node of B
branches, then we also fill this block and find appropriate blocks above the 10 and
11-nodes of B). We then define τ ∗ to be T̄ (0) and define S̄(τ ∗) to have these two
levels of blocks (see Figure VI.2). Then we put all the blocks we find in the second
stage into P (note that they are still associated with 0). Here is an easy lemma
which summarizes this construction. (The proof is immediate from the existence
of an aiding functional.)

Lemma VI.5.2. Let e be any index. If ρ is an even-node on S(τ), then we can
find τ ′ ⊃ τ (in practice, we find such τ ′ along the leftmost path of T) and a block
associated with e above ρ along the leftmost path on S(τ ′).

Note that here we have actually changed the root of these second level blocks
(and inductively also every block except the bottom one) in the construction. Later
we will call these blocks in the old tree system old blocks and these in the new tree
system new ones. In some sense, the blocks are “new” but the nodes are “old”.

We do the same for the τ ′′ side and this finishes the construction at the second
stage. Then above all current top-nodes of these second level blocks, we can find
blocks associated with 1 and put them into N , and at the next level we have
P -blocks associated with 1, and so on. At the same time we check whether the
1-nodes in all these blocks branch in the old tree system: if any one branches, we
also extend it in the new system with the old 10-node and 11-node, and continue
the construction above them in the same way.

Following this, we build the new subtree system (T̄ , S̄) with alternating levels of
(new) blocks inN and P , with both having a full representation of blocks associated
with each e. Blocks in P (resp. N) are called P -blocks (resp. N -blocks). It is easy
to see that both P and N have their own recursive aiding functionals in (T̄ , S̄).
(See also the full construction of pruned subtrees in §VI.6.1.)

N -block

P -block P -block

Figure VI.2: P -N -block structure on S̄(τ ∗)

We define a dense set of nodes De for each A: for every P -block B on S̄(A),
note that it is associated with an index e; if ϕA

e (e) converges, then do nothing; if

62

it diverges, then put the 01-node of B into De. The density comes from the simple
fact that there are infinitely many indices e such that ϕA

e (e) diverges for every A.

More importantly, (T̄ , S̄) has the feature that, for every oracle functional ϕ
(·)
x , we

have on each S̄(A), a P -block associated with x and a 01-node which is in De

if the corresponding computation diverges with oracle A. We shall preserve this
property for every subsequent tree system and so we can implement certain types
of constructions at any time we need (see §VI.5.5).

All nodes in De are called witnesses (i.e., they witness the fact that B is off
the pruned subtree which we will define later). In a P -block B on S̄(τ), if the
associated computation does not converge at τ , then we call the 01-node of B a
potential witness at τ . So a potential witness is a node which looks like a witness
at this τ but may change to a nonwitness later at some τ ′ ⊃ τ , in which case the
corresponding computation converges at that τ ′.

A rough idea is that, if a P -block is full, then all its top-nodes are allowed to
be on the pruned subtree, otherwise only the 00-node is allowed.

The pruned subtree of S̄(A) is the tree formed by removing all nodes in De and
their extensions. We denote this subtree by Pru(S̄, A). It is easy to see that this
pruned subtree is recursive in A′. So the statement “B is a path on Pru(S̄, A)” is
Π0

1(B ⊕A′). Unlike Sasso’s narrow tree construction, this pruned subtree will not
appear in the real construction and we will start with (T̄ , S̄) at the next stage. In
fact, it cannot appear since it is recursive in A′ but not in A.

We let xe be such that xe /∈ (B⊕A′)′ if and only if B is a path on Pru(S̄, A), and
we are going to force (B ⊕ A′)′(xe) to be different from lims ϕ

B⊕0′
e (xe, s). We also

call the sequence 〈ϕB⊕0′
e (xe, s)〉s∈ω (or with B replaced by some ρ) an xe-sequence.

In the end, if lims ϕ
B⊕0′
e (x, s) does not exist, then we will keep B on the pruned

subtree of S̄(A). Slightly differently from the common usage, we say that the
limit exists if we only see finitely many changes in the xe-sequence, and so it is
possible that some entries diverge (if this happens, the requirement is automatically
satisfied). If the limit is 1, we also keep B on the pruned subtree. If the limit is 0,
we make B go off the pruned subtree. We always keep the root of any subsequent
tree system (i.e., S(T (∅))(∅)) on the pruned subtree unless the last possibility
happens.

VI.5.3 Satisfy Pi

Suppose we have a tree system (T ′, S ′) at some stage and we want to satisfy Pi.

To make A minimal, we only have to change T ′ without changing any S ′(τ). So
the P -N structure is preserved and we only need to take the restriction of S ′ to
the new domain as our new system.

This is handled exactly in the same way as in the standard Spector minimal
degree construction. We ask whether the following is true:

∃τ∀τ0, τ1 ⊃ τ [¬(τ0|iτ1)].

If so, we take T ∗ = FS(T ′, τ) and it is routine to show that ϕA
i is either partial

or recursive. Otherwise we take the standard i-splitting subtree T ∗ of T ′ and claim

63

that A ≤T ϕA
i (Lemma I.3.1). In both cases, we take S∗ to be the restriction of

S ′ to the range of T ∗ and pass (T ∗, S∗) to the next stage. It is easy to find new
P -aiding functional and N -aiding functional for the new tree system.

VI.5.4 Satisfy Qi

Suppose we have (T ′, S ′) and we want to satisfy Qi, and suppose that the require-
ment Re is still active.

The basic idea is as follows: we cannot ask the i-splitting question for every
node ρ, since some nodes are leaves, and some might lead us off the pruned subtree
permanently. We only want to consider some “good” nodes at this time, good
enough to be the root of a new tree system.

As we mentioned before, along our construction, we sometimes may terminate
some of the nodes on S(τ) and then these nodes cannot be extended on S(τ ′) for
any τ ′ ⊃ τ . We say τ terminates these nodes. See the construction of splitting trees
below (see also property (1) in Definition VI.6.1 for restrictions on termination).

An even-node ρ is accessible at τ if there is no potential witness below ρ on
S ′(τ), and ρ has not yet been terminated by any τ ′ ⊂ τ . Whenever we call a
node accessible, it is always assumed that the node is an even-node. Intuitively,
accessible nodes are these that we can use without worrying about whether we
might permanently get off the pruned subtree. We use Acc(τ) to denote the set of
accessible nodes at τ .

We will guarantee that in any splitting construction, we never terminate an
accessible node ρ at τ unless it was terminated by a previous node τ ′ (τ (at
which the node ρ was not accessible). So if ρ is accessible at τ , then it is accessible
at every τ ′ ⊃ τ . Note that there is no circular dependency between accessibility
and termination: we have the old tree system where accessibility and termination
have been defined, and in constructing the new tree system we may terminate some
nodes (by using the old notion of accessibility on the old tree system) and after
the construction we can define the new accessible nodes for the new tree system.

We will also ensure that, in a P -block, if the root is accessible, then all top-
nodes, except possibly the 01-node, are accessible. In a N -block, if the root is
accessible, then all top-nodes are also accessible.

Now whenever we say “find a block associated with e above ρ”, we always mean
that we find a block which is along the leftmost path of S ′(τ ′) above this ρ along
the left most path of T ′ above the τ with which we are currently working. So if
this ρ is accessible, the root of the block we find by this process is also accessible.
It is worth mentioning here that in Fact VI.5.1, if f can find such block along the
leftmost path, then so can g.

To satisfy our requirement Qj, we ask the following question:

∃τ∃ρ ∈ Acc(τ)∀τ ′ ⊃ τ∀ρ0, ρ1 ⊃ ρ; ρ0, ρ1 ∈ Acc(τ ′) [¬(ρ0|iρ1)].

Basically, the question is asking, in the “accessible part” of the tree system,
whether there is a pair (τ, ρ) such that there are no i-splittings above it.

If so, we take FSTS(T ′, S ′, τ, ρ) and claim that ϕB
i is either partial or recursive

in A, if Re never acts after this stage. In this case, we will know that B is finally

64

on the pruned subtree of S(A). Now if ϕB
i is total, we can simply search on S ′(A)

above this node ρ for an accessible node where ϕ
(·)
i (x) converges. This process will

stop and should give us the correct answer, since every node ρ′ ⊂ B is eventually
accessible at some τ ′ ⊂ A. Therefore ϕB

i is recursive in A.

If the answer is no, then we know that:

(†) : ∀τ∀ρ ∈ Acc(τ)∃τ ′ ⊃ τ∃ρ0, ρ1 ⊃ ρ; ρ0, ρ1 ∈ Acc(τ ′) (ρ0|iρ1).

Now we do an i-splitting construction to get a new tree system (T ∗, S∗). As we
assumed, the root of the tree system ρ is always accessible (at the root of T ′). So
we define T ∗(∅) = T ′(∅) and S∗(T ∗(∅)) to be a singleton tree consisting of ρ.

Then we take the two immediate successors τ ′, τ ′′ of T ′(∅) on T ′. Using (†) we
find a τ1 ⊃ τ ′ and two accessible i-splitting extensions ρ0, ρ1 of ρ at τ1. Extend τ1
to τ2 where we can extend ρ0 and ρ1 from the leftmost path to N -blocks B0 and B1

respectively, both associated with 0. Let ηj be the j-node in Bj extending ρj for
j = 0, 1. Note that η0 is not an even-node and so we cannot apply (†) directly, but
since we are taking the leftmost path, the 00-node ξ ⊃ η0 in B0 is still accessible at
τ2 (see Definition VI.6.1). Now apply (†) again with τ2 and ξ to get η0 extended by
two i-splitting accessible nodes (at τ3 ⊃ τ2) and use the same technique to extend
these two nodes along their leftmost extensions respectively to N -blocks associated
with 0 (at some τ4 ⊃ τ3), and take the corresponding 00-node and 01-node in each.
Let these be η00 and η01. Now at S ′(τ4), we check whether η1 is a leaf or not.
If it is not a leaf, then we know that the 10-node in B1 is accessible and do the
same thing extending η1, i.e., we can find accessible i-splitting nodes η10 and η11

(both in old N -blocks associated with 0) extending η1 in the same way. If it is a
leaf, then we do nothing. So now we are at some τ with five or seven nodes (the
root, η0, η1, η00, η01, and possibly η10, η11). We define τ to be the left immediate
successor of T ∗(∅) on T ∗ and define S∗(τ) to have one single N -block (associated
with 0) containing these five or seven nodes.

Here is a lemma which summarizes this construction.

Lemma VI.5.3. Let X be either P or N and let x be any index. If (†) holds,
then for any ρ accessible at τ , we can find a τ ′ ⊃ τ where there are (four or six)
appropriate nodes above ρ which are originally in corresponding positions in old
X-blocks associated with x (for example, the new 01-node we pick is originally a
01-node in an old block); and these nodes form a new i-splitting X-block associated
with x. Additionally, all these nodes are originally in old X-blocks whose roots are
accessible at τ ′.

It is crucial that the new 01-node is an old 01-node in a block associated with
the same index. When we try to satisfy the requirement Re and pick a 01-node
on a new tree system (see Plan II in Section VI.5.5), this property guarantees that
this 01-node is also a 01-node the old tree system where we defined pruned trees
and xe-sequences.

Then we do the same thing for the τ ′′ side, extend it to some other τ with
another i-splitting N -block defined. This finishes stage 1 of the construction. In
general, in our splitting tree system construction, blocks are new, but the nodes
are old ones in the old blocks. In this case, we do not say that we are redefining
the blocks, as it could be confused with another process in the injury argument in
the next section.

65

At the next stage, we see that η00 is accessible at τ as above, and we can do
almost the same construction, except that we now look for P -blocks associated
with 0 instead of N -blocks. In the end, we have one P -block extending each top-
node in the first level N -blocks. Also we check whether the 1-node η1, which is
previously a leaf, branches, if so we need to do a similar construction to branch it
by two nodes and fill the first level N -block.

The trouble comes at the next stage. A 01-node in a P -block might be a
potential witness and hence inaccessible. So we can no longer apply (†) to it to get
i-splitting extensions. In this case, we simply copy what is in S ′ block by block to
S∗ above this 01-node at subsequent stages, until we find out that it is accessible.

The most difficult part of the construction is when we find out that a potential
witness η (a 01-node of a P -block) is not a witness and so some inaccessible nodes
above it becomes accessible. At that time we have so far seen some levels of N and
P blocks above this η that we have copied down from the previous system S ′ (and
maybe we have already terminated some of the nodes in previous splitting tree
constructions). Suppose we are at τ in the construction and η is not a potential
witness at τ . On S ′(τ) above η as we have copied down so far, we terminate all
1-nodes above η which haven’t branched, and for every 01-node ρ in any P -block
which is still a potential witness at τ , we also terminate all extensions of such ρ.
That is to say, we are left with a finite number of accessible (at τ) top-nodes in
the highest level blocks on S ′(τ) above η. For these finitely many, we can apply
(†) some finite number of times to find an extension τ ′ of τ where we can extend
each top-node to a pair of a 0-node and a 1-node in appropriate N -blocks (we have
destroyed the P -N -block structure from η, so we start with the next N -block as
extending the P -block where η lives) where the roots of all blocks are accessible
at τ ′, and all these extensions pairwise i-split (see Lemma VI.6.7 for the detailed
construction). Then we continue the construction as before to finish the blocks.

So this new tree system is not strictly i-splitting but somewhat delayed in its
splittings, and we can control how this delay happens. More importantly, if Qi

is not injured in later constructions and B is on the pruned subtree Pru(S̄, A),
then we can compute B from ϕB

i ⊕A as follows. To find B, we simply go through
S∗(A): At first the tree is perfectly i-splitting so we will not have trouble finding
initial segments of B using ϕB

i ; If we ever meet a potential witness η, then, as we
know that B is on the pruned subtree Pru(S̄, A), this η will be accessible at some
τ ⊂ A. So we go along the construction of (T ∗, S∗) and find the first time when we
see such a τ on T ∗. At that time, as the construction proceeded, we terminated
a lot of nodes above η and only extended the nodes that were left, and we have
made all of their extensions i-split at the next level. So we can effectively find the
next initial segment of B.

It is not difficult to see that this new tree system also has aiding functionals.
Note that we only consider aiding functionals for accessible nodes, and above
an accessible η which was previously a potential witness as above, we need to
go beyond the terminated nodes and find a block such that the nodes are never
terminated (see Definition VI.6.1).

If we are dealing with requirement Qj with Re inactive, i.e., we believe that we
have satisfied Re permanently, the construction is very similar and much easier. We
will ask the key question without worrying about accessibility but only evenness.
There are no P -blocks to handle, and so we only construct appropriate N -blocks
level by level in the case that we get a negative answer. The tree system we
construct will be i-splitting and the final verification directly follows from Lemma

66

VI.3.1.

VI.5.5 Satisfy Re

We also want to (partially) satisfy the requirement Re at subsequent stages by
forcing infinitely many changes in the xe-sequence 〈ϕB⊕0′

e (xe, s)〉s∈ω. Similarly we
only want to go to accessible nodes, and so we ask the following (let λ be the root
of the given tree system (T ′, S ′)):

∃τ∃ρ ∈ Acc(τ)[ϕρ⊕0′

e has more changes in the xe-sequence than ϕλ⊕0′
e has].

If so we take FSTS(T ′, S ′, τ, ρ) and proceed to the next step. We make at least
one more change in the xe-sequence, and if this happens infinitely many times,
then the limit does not exist. In this case, we satisfy the requirement by infinitely
many attempts, and the requirement Re is always active. In the end B will be on
the pruned subtree Pru(S̄, A).

If we ever get a negative answer, then we know that we cannot have more
changes in the xe-sequence, at least for the nodes in the accessible part of the tree
system. This case is divided into two subcases, depending on the final value of the
xe-sequence we have seen so far in the accessible part.

(Plan I) If the final value is 1, then we want to keep B on the pruned subtree.
We can satisfy this by simply removing all P -blocks. More precisely, let B′ be the
N -block above a P -block B extending its 00-node, i.e., the 00-node of B is the root
of B′. We first remove B. Then we define a new N -block: the root is the root
of B, and every other node is the node in the same position in B′. From another
point of view, though it is not quite accurate, we “terminate” all (extensions of)
1-nodes and 01-nodes of every P -block (See Lemma VI.6.5). It is easy to see that
B is now forced to be on the pruned subtree and there will be no more P -blocks.
The requirement Re is permanently satisfied and becomes inactive.

(Plan II) If the final value is 0, then we want to take B off the pruned subtree.
First we take a narrow subtree Nar(T ′) of T ′ and let S ′′ be the restriction of S ′

to the range of Nar(T ′). As we saw before in Sasso’s construction, there is an x
such that x /∈ A′ if and only if A is on Nar(T ′). Now we find a τ on Nar(T ′) and
a leftmost P -block B associated with x on S ′(τ) (in fact, any P -block associated
with x with an accessible root works here). Let ρ be the 01-node of B. We take
FSTS(Nar(T ′), S ′′, τ, ρ) and remove all P -blocks above ρ as in Plan I above. The
new subtree system (T ∗, S∗) has no P -blocks and we only need to verify that the
requirement Re is permanently satisfied (hence we set Re to be inactive).

All the nodes in the new subtree system have only one common potential witness
ρ below them (from the viewpoint of (T ′, S ′)). Suppose that an even-node η ⊃ ρ
on S∗(τ ′) has at least one more change in the xe-sequence 〈ϕη⊕0′

e (xe, s)〉s∈ω. We
can then extend τ ′ to τ ∗ on T which is off Nar(T ′) and τ ∗ is long enough to see
that ϕτ∗

x (x) converges. On S ′(τ ∗), ρ is no longer a potential witness, and so η
becomes accessible at τ ∗, since there are no potential witnesses between ρ and η
in the original tree system (T ′, S ′). This of course contradicts the negative answer
to our key question above, which asserts that there is no such accessible η with
more changes in the xe-sequence. So the limit is forced to be 0. Noticing that by
induction this ρ is a 01-node in a block associated with x on the tree system (T̄ , S̄)

67

when we defined pruned subtrees in Section VI.5.2, it is easy to see that we have
forced B off the pruned subtree, since ϕA

x (x) diverges for any A ∈ [Nar(T ′)].

One useful intuition about the above argument is that we can take A off the
narrow subtree, and consequently drive B back on the pruned subtree.

Now this construction will injure all requirements Qi that have been satisfied
since we defined the pruned subtree for (T̄ , S̄): if we took a full subtree system
for Qi, we are now in the inaccessible part of it and so the key question does not
govern the situation; if we took a splitting subtree system, then we just copied the
previous tree system in the construction when we see that ρ is a potential witness
and not accessible, and so we do not guarantee splitting. Now the solution is, for
all these requirements Qi that we have injured, we just try to satisfy them again.
This is how an injury argument comes into the proof of the full theorem in the next
section. For Plan I, it seems here that it will not injure other requirements, but
it actually causes injury in the full construction (interestingly, it ought to injure
some other requirements so that they will not injure it later in the construction).

VI.6 Proving the Full Theorem

Now we add all requirements Re into the list. Note that no requirement Pe will be
injured, since our sequence of tree systems is nested and each Ti+1 is a subtree of
Ti. In addition, the satisfaction of Pe will not injure other requirements, basically
because our new system is just a restriction of the old one; so no S(A) will change in
the construction, and it will not injure any satisfied Qe or Re requirements (see also
Lemma VI.6.2). Therefore it suffices to consider all Pe requirements separately (in
fact, they are handled in the same way as in §VI.5.3 and we omit the construction
here) and only analyze the interaction between Re and Qe requirements.

Now we put all of them into a priority list:

Q0, R0, Q1, R1, . . . , Qe, Re, . . .

So each requirement must respect all requirements before it in this list. We will
keep in mind several ideas: (1) For each Re, we will define a new group of blocks
P e from the current N -blocks and define corresponding e-pruned subtrees, imme-
diately after we satisfy Qe. (2) Whenever we try to satisfy a requirement Qe, we
will cancel all current active or inactive (i.e., claimed to be satisfied) requirements
Ri for all i ≥ e we have considered, and redefine their P i-block groups and pruned
subtrees later. (3) Whenever we redefine P e-blocks for some e, we might also injure
the satisfaction of every Qi (i > e) since in their construction they have to respect
these old-version P e-blocks (see construction below for details). (4) In addition,
whenever we (claim to) permanently satisfy Re by following Plan I or Plan II as
in §VI.5.5, we might injure every Qi satisfied since we last defined the P e-block
group. Note that it is automatic that for any Qi injured in this way, i > e since
otherwise we would redefine a P e-block group after that.

One thing might be important to note again: we say that we define or redefine
P e-blocks at some stage if and only if (T, S), the tree system at the beginning of the
stage, does not have P e-blocks and (T ′, S ′), the tree system at the end of the stage,
does have P e-blocks. In our construction, we will often reconstruct the P e-blocks
in the sense that both (T, S) and (T ′, S ′) have P e-blocks, and these blocks might

68

be different on the two trees, but the new nodes in new P e-blocks are originally
nodes in old P e-blocks (in fact, in the same position in the blocks).

Finally the injury argument works as follows: Q0 will not be injured by any other
requirements so it is permanently satisfied at the first step. Then for R0, note that
the P 0-blocks are defined right after we satisfy Q0 and are never redefined. If R0 is
always active, then it will not injure other requirements, and so in particular, Q1

is not injured. If R0 is permanently satisfied at stage s, we then satisfy Q1 after
that and Q1 will not be injured again. It is easy to see that the construction works
by a typical finite injury argument (see §VI.6.5).

Our forcing notion actually consists of (1) a tree system (T, S), (2) a finite set
of nodes on each S(τ) terminated by τ and (3) also on each S(τ), the information
about the groups of blocks and the index (or indices) associated with each block
(and hence the aiding functionals). We will regard (2) and (3) as being recursively
embedded into the tree system. For the initial tree system (T0, S0), no τ terminates
any node and every block is an N -block associated with the index we specified in
the description.

VI.6.1 Pruned subtrees

We will define e-pruned subtrees and P e-blocks immediately after each time we
satisfy the requirement Qe. Suppose that we are given Re and a tree system (T, S)
where each S(τ) consists of, level by level, N -blocks, P e0-blocks, P e1-blocks,. . . ,
and P et-blocks, and each ei is less than e. In addition, we have defined the notions
of ei-pruned subtrees, ei-witnesses and ei-potential witnesses for each ei.

As in §VI.5.2 we separate a group of P e-blocks from N -blocks. Intuitively, the
set of N -blocks works like a cornucopia such that we can take out a full collection
(P e) of blocks associated with each index, and we are still left with such a full
collection in the new N . We note again that, each time we pick a block above
a node, we always go through the leftmost path to find one in order to avoid
ei-potential witnesses for Rei

requirements and interactions between different Re

requirements.

There is another thing to keep in mind. At this time, (like the believability
conditions in any priority tree argument) we believe that all requirements Re0 to
Ret are infinite, i.e., we will not satisfy them in a permanent way by Plan I or Plan
II later. Hence now we also believe that in the end B is on the ei-pruned subtree
for each ei.

We first construct a new subtree system (T̄ , S̄). We start from the root, pick an
N -block associated with 0, then extend these top-nodes to an P e0-block associated
with 0 and so on (in the same way as in §VI.5.2). At the t + 3-rd level, we then
extend the top-nodes to an N -block associated with 0 again, and rename it as
a P e-block. The only exception is that when we try to extend an ei-potential
witness, we will copy whatever is in S without change in the same way as in the
splitting subtree system construction in §VI.5.4. So above an ei-witness, there are
no P e-blocks defined, and above an ei-potential witness, we define P e-blocks only
if it becomes a nonwitness. When we see that an ei-potential witness η becomes
a nonwitness, we terminate the unbranched 1-nodes and ej-potential witnesses
above η as in §VI.5.4 and we are left with some top-nodes. Then we extend these
top-nodes by picking appropriate blocks above them and define P e-blocks there.

For example, along the leftmost path, the blocks we build are exactly (let X(i)

69

denote an X-block associated with i):

(∗) : N(0), P e0(0), . . . , P et(0), P e(0), N(1), P e0(1), . . . , P e(1), N(2), . . .

Let us describe this construction in detail at the inductive step: whenever we
put τ into T̄ and define S̄(τ), S̄(τ) is going to have the following finite sets:

1. a set X of top-nodes that are leaves on S̄(τ) with no ei-potential witnesses
(at τ) below any one of them, which need immediate handling;

2. a set Y of 1-nodes in different blocks that have not yet branched, for which
we shall wait to see what happens;

3. for each ei-potential witness ηj (such that no other node below it is an ej-
potential witness for some ej at τ), a subtree Z(ηj) of S̄(τ) above ηj, where
we continue copying from S until we see that this ηj is not an ei-witness.

Now on T , τ has two immediate successors τ ′ and τ ′′. We first pick τ ′. Applying
an easy modification of Lemma VI.5.2 (strictly speaking, we apply property (7) in
the next subsection) a finite number of times, we can find an extension τ ∗ ⊃ τ ′

where each leaf in X gets extended to appropriate blocks (here appropriate refers
to the correct N or P ei-block associated with the correct number, according to the
list (∗) above, and note that for a P e-block in the list, we first find an N -block in
S and rename it as a P e-block in S̄). Each time we remove the leaf from X. After
we have finished doing this for all leaves in X at τ ∗, we then check whether any
1-node ρ in Y has branched at τ ∗, if so we can simply fill the new block with the
10-node and 11-node in the old block extending ρ.

Now for each Z(ηj), we check whether ηj turns out to be a nonwitness or not
(at τ ∗): if not, we shall copy all blocks from S(τ ∗) above ηj to the new system to
extend Z(ηj); if so, we first copy everything from S(τ ∗) as in the other case, and
we terminate the following nodes above ηj:

1. any node that has been previously terminated by τ ∗;

2. any 1-node that has not branched at τ ∗;

3. any even-node that has an ei-potential witness (at τ ∗) below it for some ei.

So in the end we are left with a finite list of unterminated even-nodes which
are leaves above ηj on S(τ ∗). For convenience we call them key-nodes. We have
destroyed the block structure of S(τ ∗) from ηi to these key-nodes and begin our
new block-search accordingly at the next stage.

Finally we define τ ∗ to be the left immediate successor of τ on the new tree T̄ ,
and define S̄(τ ∗) to be the new tree we construct as above. Note that our new X
consists of new leaves that do not have any potential witness below them, including
all these 10-nodes and 11-nodes we found for 1-nodes in Y , and all the key-nodes
from the termination process.

On the τ ′′ side, we essentially do the same construction with τ ′ replaced by
τ ′′. This finishes the inductive construction of (T̄ , S̄). Now on each S̄(A), a 01-
node ρ on a P e-block associated with j is called an e-witness if ϕA

j (j) diverges;

70

ρ is called an e-potential witness at τ if ϕτ
j (j) diverges. The e-pruned subtree of

S̄(A), Prue(S̄, A), is defined as the subtree of S̄(A) with all e-witnesses and their
extensions removed.

Later, whenever we say e-pruned subtree, we always refer to the version of
Prue(S̄, A) at the last time it was defined.

On each tree system we construct, there will be different groups of blocks
P e0 , P e1 , . . . , P et , and there will be ei-potential witnesses for each ei. For sim-
plicity, if it does not cause any confusion, we will call a node ρ a potential witness
(resp. witness) at τ if it is an ei-potential witness (resp. ei-witness) at τ for some
ei. We carefully avoid interactions between different Re-requirements and so each
ρ can be an ei-potential witness for only one ei.

We then take xe to be such that xe /∈ (B ⊕ A′)′ if and only if B is on the
e-pruned subtree of S̄(A). Note that whenever we redefine the P e-blocks we also
redefine all other notions and change the value of this xe. In the end we will prove
that xe eventually stops changing.

We will refer the construction here as a “pruned subtree construction”, although
it is not quite accurate, as (T̄ , S̄) is not a “pruned subtree system” of (T, S).

VI.6.2 Special tree systems

We are going to construct a nested sequence of tree systems and we want to make
sure that, for example, whenever we take a full subtree system above a certain
node, the set of paths is not empty and the subtree system also has some nice
properties needed to continue the construction. So we introduce the notions of
accessible nodes and special tree systems to simplify the arguments and make our
proof smoother.

We give a list of properties that all of our tree systems will satisfy. Some of
the properties are redundant, i.e., they are direct consequences of other properties,
but it is more convenient to put them in the list and they provide a better picture
of special tree systems.

In a tree system (T, S), each S(τ) consists of N,P e0 , P e1 , . . . and P et blocks
level by level. From §VI.6.1 we have the notion of ei-potential witnesses for each
ei. Note that this notion applies not only to the nodes on the tree system but also
to other strings. However, we will guarantee the following:

0. For every ei, for every τ and for every pair of successive nodes ρ ⊂ ρ′ on S(τ),
no string in (ρ, ρ′) is an ei-potential witness at τ . In fact, only 01-nodes of
P ei-blocks can be ei-potential witnesses.

So whenever we say an ei-potential witness, we always refer to a node on the
tree system.

A node τ on T might permanently terminate some of the leaves on S(τ) (i.e.,
no extension τ ′ of τ can extend these leaves). Note that if τ terminates ρ, then for
τ ′ extending τ , we also say that τ ′ terminates ρ. We guarantee that this kind of
termination process only happens in the pruned subtree construction in §VI.6.1 or
in the splitting subtree system construction in §VI.6.3. In particular, we will need
a property that:

71

1. If an even-node ρ (on S(τ)) has at most one potential witness below it (at τ)
and it is not terminated at τ , then it is not terminated at any τ ′ ⊃ τ .

For example, in the primitive version of the splitting subtree system construction
in §VI.5.4, an even-node is terminated only if it has two potential witnesses ρ0 (ρ1

below it at some τ , and later ρ0 becomes a nonwitness before ρ1 does.

An even-node ρ is accessible at τ if for each ei, ρ has no ei-potential witness
below it at τ , and it is not terminated by any τ ′ ⊂ τ . Whenever we call a node
accessible, it is always assumed that it is an even-node.

It is immediate from this definition and properties (0) and (1) that:

2. If ρ is accessible at τ , then it is accessible at every τ ′ ⊃ τ .

3. If the root of an N -block is accessible at τ , then both its 00-node and 01-
node are accessible at τ . In addition, if its 1-node is branching, then both its
10-node and 11-node are accessible at any τ ′ ⊃ τ where it branches.

4. If the root of a P ei-block is accessible at τ , then the statement in property
(3) holds except for its 01-node. In addition, its 01-node is not terminated by
any τ ′ ⊃ τ .

We also guarantee that:

5. If ρ is an accessible leaf at τ , then it is not a leaf at any τ ′) τ , i.e., such ρ is
always branching along every path extending τ .

6. The root of the tree system is always accessible at the root of the tree T .

Finally we need recursive aiding functionals for each tree system.

7. For each group X (X is either N or P ei for some ei), there is a recursive oracle
functional f such that given any path A ∈ [T] (as oracle), an accessible node
ρ at τ ⊂ A and an index e, returns a τ ′ ⊂ A and an X-block associated with
e on S(τ ′) above ρ along the leftmost path of S(A) (hence the root of this
block is accessible at τ ′).

In practice, we only use f as a recursive function with the leftmost (hence
recursive) path on T extending τ . Note that if termination happens, we have
destroyed the block structure from the potential witness to the key-nodes left
after termination, but since ρ is guaranteed to be accessible, the termination has
happened and f returns a block from the leftmost path above the leftmost key-
node.

By properties (1) to (4), the block we find by f is proper : a block is proper if
its nodes will not be terminated by any τ on T (with respect to the current tree
system (T, S)).

8. The aiding functional f in (7) always finds a proper block.

Definition VI.6.1. A tree system (T, S) is special if it satisfies properties (0) to
(8) above.

72

Note that our initial tree system (T0, S0) is special and every block is anN -block.
Now we provide some technical lemmas for different subtree system constructions.

Lemma VI.6.2. If (T, S) is special and T ′ is a subtree of T which is also total,
and S ′ is the restriction of S to the range of T ′, then (T ′, S ′) is also special.

Proof. Property (6) follows from property (2). The other properties are immediate.

Lemma VI.6.3. If (T, S) is special and ρ is an accessible node at τ , then
FSTS(T, S, τ, ρ) is also special.

Proof. Immediate.

Lemma VI.6.2 is used for requirements Pe and Lemma VI.6.3 is used for all
full subtree system constructions. In addition, we need a lemma for the pruned
subtree construction in §VI.6.1.

Lemma VI.6.4. In §VI.6.1, if (T, S) is special, then the subtree system (T̄ , S̄) we
construct is also special.

Proof. Property (0) is still true since every time we extend nodes, either we stay
on the leftmost path so the root of the block we find is still accessible, or we
simply copy the previous tree system. Property (1) holds for (T̄ , S̄) directly by the
construction: none of the nodes on T̄ can terminate this type of ρ. For property
(7), the construction of the new subtree system guarantees that we can simply go
through the leftmost path of S̄(A) from any accessible node looking for the block
we want. The other properties are immediate.

Sometimes in satisfying Re for some e, we need to remove all P i-blocks for i ≥ e
in the same way as in Plan I or Plan II in §VI.5.5. Basically, first fix an r; for each
P r-block B, we shall link its root and its 00-node together, making the root of B
the new root of the block above B extending the 00-node, and discard its 1-node
and 01-node, together with anything above them. At each step, we remove all
P r-blocks for one r, and we can iterate this process some finite number of times
and get a tree system without any P r-blocks for any r ≥ e. We need to know that
doing this will not change specialness:

Lemma VI.6.5. If (T, S) is special and (T ′, S ′) is the new tree system we get after
removing all P e-blocks, then (T ′, S ′) is also special. (Hence any finite iteration of
this process preserves specialness.) In addition, in §VI.6.1, if ρ is a 01-node of
a P e-block on S̄(τ), then the tree system formed by removing all P e-blocks from
FSTS(T̄ , S̄, τ, ρ) is also special.

Proof. Property (0) follows from property (4). Property (1) might be confusing:
Strictly speaking, we are not terminating 1-nodes and 01-nodes in the “removed”
P e-blocks. Our new tree system does not reach any of these nodes and it does
not make sense to “terminate” them. All the terminations related to e-potential
witnesses are simply removed, so property (1) is still true. The other properties
are immediate.

For the second claim, since we only define P e-blocks above accessible nodes
of (T, S), this ρ is actually a 01-node of an old N -block whose root is accessible

73

at this τ in (T, S). Now the tree system FSTS(T̄ , S̄, τ, ρ) is simply a result of
an alternative version (i.e., we start from an index e instead of 0) of our pruned
subtree construction in §VI.6.1 for FSTS(T, S, τ, ρ), which is special by Lemma
VI.6.3. Then by removing all Pe-blocks, we make the root ρ accessible on the new
tree system, and other verifications follow the same idea as in the proof of Lemma
VI.6.4 and the first claim here.

In the following construction, at every stage, we always start with a special tree
system (T, S) from the previous stage and one requirement Pe (see §VI.5.3), Qe

or Re which is the highest unsatisfied one in our priority list, and we construct a
special subtree system (T ′, S ′) which satisfies or partially satisfies the requirement.

VI.6.3 Satisfy Qe

Suppose we are going to satisfy Qe with a given special tree system (T, S). We
know that, from our discussion, each S(τ) only consists of levels of N,P e0 , . . . and
P et-blocks, and each ei is less than e.

The idea is similar to the one in §VI.5.4. Now our requirement Qe must respect
all these Rei

requirements whose blocks are still in the tree system.

We ask almost the same key question as in §VI.5.4:

∃τ∃ρ ∈ Acc(τ)∀τ ′ ⊃ τ∀ρ0, ρ1 ⊃ ρ; ρ0, ρ1 ∈ Acc(τ ′) [¬(ρ0|eρ1)].

We take the full subtree system above (τ, ρ) if the answer is yes. Lemma VI.6.3
guarantees that the new subtree system is also special. If the answer is no, we
know that:

(†) : ∀τ∀ρ ∈ Acc(τ)∃τ ′ ⊃ τ∃ρ0, ρ1 ⊃ ρ; ρ0, ρ1 ∈ Acc(τ ′) (ρ0|eρ1).

So we do a similar e-splitting subtree system construction, creating N,P e0 , . . .
and P et e-splitting blocks level by level for accessible nodes, and copy from the
previous tree system above 01-nodes that are potential witnesses. We also handle
these potential witnesses in the same way, i.e., whenever we find out that they
are no longer witnesses, above these nodes, we terminate every 1-node that is not
branching and terminate every 01-node which is still a potential witness. Then we
are left with some finite number of top-nodes (key-nodes) all of which are accessible
at that step, and continue the construction by finding pairwise e-splitting accessible
nodes above them.

To simplify our description of the full construction, we provide a framework for
creating new e-splitting blocks similar to Lemma VI.5.3. There are a few notational
changes, and so we rewrite it here:

Lemma VI.6.6. Let X be N or P ei for some ei and let x be any index. If
(†) holds, then for any ρ accessible at τ , we can find a τ ′ ⊃ τ where there are
appropriate nodes above ρ which are originally in corresponding positions in old
proper X-blocks associated with x; and these nodes form a new e-splitting X-block
associated with x. Additionally, all these nodes are originally in old blocks whose
roots are accessible at τ ′.

Proof. See §VI.5.4.

74

In addition, as we mentioned there, we also need a lemma for pairwise e-
splittings above multiple nodes.

Lemma VI.6.7. If (†) holds, then for any τ and any finite set F of pairwise
incompatible accessible nodes at τ , we can find an extension τ ′ ⊃ τ where there
are a pair of accessible extensions for each η ∈ F and all these extensions pairwise
e-split.

Proof. A pair of nodes η0, η1 extending ρ is a 1-level e-splitting if they e-split.
A group Z of nodes above ρ is a (k + 1)-level e-splitting if there are two nodes
η0, η1 ∈ Z which form a 1-level e-splitting above ρ, Z0 = {ξ ∈ Z : ξ) η0} is
a k-level e-splitting above η0, and similarly Z1 = {ξ ∈ Z : ξ) η1} is a k-level
e-splitting above η1. In other words, if there is an n-level e-splitting above ρ, then
we can find an e-splitting binary tree with n many levels above ρ.

We prove this lemma by establishing the following claim: If |F | = k and each
ρ ∈ F has a k-level e-splitting above it on S(τ ′), then we can find one pair of nodes
at the top level of each k-level e-splitting above each ρ ∈ F and all of these nodes
pairwise e-split.

First we show how this claim is used: by (†), it is easy to find such τ ′ ⊃ τ
where we can find k-level e-splittings above each ρ ∈ F and all nodes we find are
accessible at τ ′. Then by the claim we are done.

We prove the claim by induction on k. For the base case k = 1, it is trivial. Now
assume that the claim holds for k, and we have k+1 nodes in F = {ρ0, ρ1, . . . , ρk}.
In each (k + 1)-level e-splitting above ρ, call a node first-class if it is in the top
level of the k+ 1 level tree structure, and call a node second-class if it is one level
below the first-class ones, i.e., k-levels above a ρ ∈ F .

Among all second-class nodes in all these (k+ 1)-level e-splittings, we first pick
one with the longest ϕe-image. Without loss of generality, let η0 above ρ0 be this
second-class node.

For the remaining nodes ρ1, ρ2, . . . , ρk ∈ F , we first ignore all the first-class
nodes above them and look at the remaining k-level e-splitting structures. By the
induction hypotheses, we know that we can find pairwise e-splitting extensions
ξi0, ξi1 above each ρi for i = 1, 2, . . . , k and all these ξ’s are second-class nodes.

Since η0 is a second-class node with the longest ϕe-image, and ξi0, ξi1 e-split,
we know that at least one of them e-splits with η0. Let ηi be one of ξi0, ξi1 which
e-splits with η0, for each i = 1, 2, . . . , k.

Now above each ηi for i = 0, 1, . . . , k, we can find two e-splitting first-class nodes
and it is easy to see that they pairwise e-split. This finishes the inductive proof of
the claim.

With these two lemmas in hand, let us describe the inductive construction in
detail. Suppose we have put τ into T ′ and defined S ′(τ) as a subtree of S(τ). As
in §VI.6.1, we have three types of nodes in hand:

1. X, which consists of all accessible leaves on S ′(τ) and which will be handled
first;

2. Y , which consists of all 1-nodes whose corresponding root is accessible (at τ),
for which we will keep waiting to see if they branch in the old system S;

75

3. Z(ηi) for each potential witness ηi (with no other potential witness below),
which is the subtree of S ′(τ) above ηi and also the subtree of S(τ) above ηi,
since we simply copied the tree there.

For each Z(ηi), we continue copying until we figure out that ηi is not a wit-
ness. At that time we terminate some nodes and do an e-splitting construction for
multiple nodes.

As before, there are two immediate successors τ ′ and τ ′′ of τ on T and we first
pick τ ′. We start with the leaves in X and apply Lemma VI.6.6 a finite number
of times to extend them to appropriate e-splitting blocks. Each time, we remove
the corresponding leaf node from X, and we end up with τ0 ⊃ τ ′.

Now at τ0, some of the 1-nodes in Y may have branched and we use the same
idea as in Lemma VI.6.6 applying (†) to extend each of these 1-nodes to e-splitting
accessible 10-node and 11-node in appropriate blocks to fill the new block where
the 1-node lives.

Also possibly some ηi which is a potential witness at τ might turn out to be a
nonwitness at the current τt, i.e., the corresponding computation converges at τt.
So we need to handle the subtree Z(ηi): as usual, we copy everything from S(τt)
above ηi, then terminate these three types of nodes above ηi:

1. any node that has been previously terminated by τt;

2. any 1-node that has not branched at τt;

3. any even-node that has an ei-potential witness (at τt) below it for some ei.

In the end, we have a finite list of key-nodes and it is easy to see that all of them
are accessible at τt. Now we apply Lemma VI.6.7 to extend τt to τt+1 at which each
key-node is extended by two accessible nodes such that all of them pairwise e-split.
Then we can apply Lemma VI.6.6 again to these extensions and get appropriate
blocks. Also note that we have destroyed the block structure from ηi to these
key-nodes, and so we shall start searching for blocks that work as the next ones in
the list (∗) in §VI.6.1, which extend the block where ηi lives as 01-nodes.

At each step, we check whether we should do these two types of constructions
(Y or Z(ηi)) and possibly extend the current τ to a higher one. It is nevertheless a
finite list and this process eventually stops (say at τ ∗). At that time, there might
be some remaining unbranched 1-nodes in Y and we do not have to take care of
them. There might be also some remaining ηi’s which are still potential witnesses
at τ ∗, and we just copy S(τ ∗) above ηi to the new system S ′(τ ∗).

We define τ ∗ to be the left immediate successor of τ in the new tree T and
define S ′(τ ∗) to be the tree constructed as above. Then we do the same thing for
the τ ′′ side. This ends one inductive step in the construction.

If the original tree system (T, S) is special, then it is easy to see that the
new one (T ′, S ′) is also special: Property (0) still holds since we either copy the
previous tree system, or make sure that the node to which we extend is in an
old block whose root is accessible at the corresponding τ . Property (1) is true
by our termination process. Property (7) holds naturally by our construction, as
we carefully pick nodes in appropriate blocks at each splitting step. The other
properties are immediate.

We say that Qe acts at this stage. In §VI.6.5, we will verify that the requirement
Qe is (permanently) satisfied in both cases when it acts for the last time.

76

VI.6.4 Satisfy Re

After we define P e-blocks for Re, we split the requirement Re into infinitely many
subrequirements, each asking whether we can force the values in the corresponding
xe-sequence 〈ϕB⊕0′

e (xe, s)〉s∈ω to change at least once more, and we insert these
subrequirements into the priority list in any reasonable way.

Note that at this time on (T, S) with N,P e0 , . . . and P et-blocks, it is not nec-
essarily the case that these ei’s are less than e. In fact, if Re is always active, then
it has to take care of P ei-blocks for arbitrarily large ei.

Now suppose we need to handle one of such subrequirements. We ask the same
question as in §VI.5.5, i.e., whether we can find one or more change in the xe-
sequence in the accessible part of the tree system. If the answer is yes, then we
take the full subtree system as before and force the values in the xe-sequence to
change at least once more. If the answer is no, then we do one of the following
constructions, claim that we have satisfied the requirement Re and declare Re to
be inactive (and then we remove all other subrequirements for the same Re from
the priority list).

(Plan I) If the final value is 1, and so we want to make B be on the e-pruned
subtree, then we remove all P e-blocks, or equivalently remove all extensions of 1-
nodes and 01-nodes in all P e-blocks. In addition, we remove all P ei-blocks for any
ei > e, cancel allQ and R-requirements of lower priority and reconsider them again.
The reason to do so is that later we might apply Plan II for an Rei requirement
and this would lead us to an inaccessible node on (T, S). So we need to avoid a
lower priority requirement injuring a higher one and simply try to satisfy all lower
priority requirements again.

The new tree system is special by Lemma VI.6.5.

(Plan II) If we want to make B go off the e-pruned subtree, then we first take
Nar(T), the narrow subtree of T and let S ′ be the restriction of S to the range
of Nar(T). Then we take a τ on Nar(T) where S(τ) has a leftmost P e-block B
associated with x where x /∈ A′ if and only if A is on Nar(T). Let ρ be the 01-node
of B. We then take FSTS(Nar(T), S ′, τ, ρ) and remove all P ei blocks above ρ for
all ei ≥ e (in fact, as we will see later, we only need to remove P e-blocks). In this
process we might injure some requirements Qi for i > e that have been satisfied
since the last time we redefined P e-blocks, but for simplicity we just reconsider all
requirements of lower priority as in Plan I.

First by Lemma VI.6.2, (Nar(T), S ′) is special, but we cannot directly apply
Lemma VI.6.3 since ρ is not accessible at τ . In fact, ρ is never accessible at any
extension of τ on Nar(T). Note that in this case, all of our constructions since
the last time we defined P e-blocks (say, at stage s) simply copied the tree system
from the previous tree above (τ, ρ). So the system part of FSTS(Nar(T), S ′, τ, ρ)
is as it was right at the end of stage s. The final tree system we get after removing
all P e-blocks is special by Lemma VI.6.5 and Lemma VI.6.2.

In both Plan I and Plan II, we say that Re acts. As we have mentioned, we
also cancel all lower priority satisfied Q or R type requirements or active R type
subrequirements, and put them back to the priority list to their original positions.

77

VI.6.5 Final verifications

As a common finite injury argument, we need show that each Qe will be eventually
satisfied and never injured again, and each Re is either always active after some
stage, or it is satisfied by either Plan I or Plan II at some stage and never injured
later by requirements of higher priority. First we show that every requirement
eventually stops acting.

Note that Q0 is trivially satisfied at the first step and never gets injured since
it has the highest priority. Now by induction, assume that the above claim holds
for every Qi and Ri−1 (i = 0, 1, 2, . . . , k). First we show that the claim holds for
Rk: find a stage s0 by which these higher priority requirements have acted for
the last time. Hence P k-blocks never gets redefined after this stage s0, and every
requirement acting after s0 should respect Rk. Now if Rk is not always active after
s0, we must have followed either Plan I or Plan II to (permanently) satisfy this
requirement. It never gets injured since all requirements of higher priority have
stopped acting.

If Rk is always active after stage s0, then Qk+1 is satisfied and is never injured
after s0. If Rk acts at some stage s1 > s0 then by construction we try to satisfy
Qk+1 after that and it then never gets injured again. This finishes the proof of
the claim. It follows that the notions of e-pruned subtrees, e-witnesses, e-potential
witnesses and the value of xe are eventually fixed. We always refer to their final
versions in the following arguments.

It is easy to see that B is off the (final version of an) e-pruned subtree only in the
case that we follow Plan II for the requirement Re in the end, because otherwise,
either (1) we follow Plan I and then B is forced to be on the e-pruned subtree, or
(2) Re is always active after some stage, all requirements after that must respect
Re and all roots of tree systems after that stage are accessible with respect to e.

Lemma VI.6.8. Every Qe is satisfied.

For every Qe, we consider the stage s when it acted for the last time (and so
it is never injured after that). The tree system (T, S) at the beginning of stage s
only has N -blocks and P ei-blocks for those ei < e such that Rei

is always active
after stage s. This means that B is on the ei-pruned subtree for each ei and every
node ρ ⊂ B is eventually accessible at some τ ⊂ A (with respect to (T, S)).

If we got a positive answer to the key question at stage s, then we took the full
subtree system of (T, S) above some (τ ′, ρ′). Now assuming that ϕB

e is total, we can
compute ϕB

e recursively in A as follows: for any x, we search in FSTS(T, S, τ ′, ρ′)
for an accessible node ρ∗ at some τ ∗ ⊂ A such that ϕρ∗

e (x) converges, and output
the value ϕρ∗

e (x). We must find such a convergent computation because ϕB
e (x)

converges with some use ρ ⊂ B and we can find a τ ⊂ A where ρ is accessible. We
cannot find different answers by the positive answer to the key question.

If we got a negative answer, then we have constructed an e-splitting subtree
system (T ′, S ′). We claim that we can compute B from ϕB

e ⊕ A. We start to
retrieve the construction of (T ′, S ′), easily follow the e-splitting structure of S ′(A)
and get initial segments of B as long as we are in the accessible part. Once we
reach a 01-node ρ of a P ei-block and ρ is not accessible at the current τ ⊂ A, we
know that this ρ cannot be a witness since B is on the ei-pruned subtree. Therefore
we wait until the construction reaches some τ ′ ⊃ τ and ρ becomes accessible at
τ ′ ⊂ A. At that time, according to our construction, we terminated a lot of nodes

78

above ρ and had in hand some top-nodes which are all accessible at τ ′. They do
not necessarily e-split, but in the construction, we made all of their immediate
successors pairwise e-split, and hence we can find the right initial segment of B
using ϕB

e . Now we are back to the accessible world and we can continue the
computation.

This finishes the proof that all requirements Qe are satisfied and B is a minimal
cover of A.

Lemma VI.6.9. Every Re is satisfied.

For each Re, the P e-blocks are never redefined and xe is never redefined after
some stage. If it is always active after that stage, then it is easy to see that we
have forced the xe-sequence 〈ϕB⊕0′

e (xe, s)〉s∈ω to have infinitely many changes, and
so the limit does not exist. Therefore Re is eventually satisfied in this case.

Suppose Re acted by following either Plan I or Plan II and is never injured after
that stage. Note that on the tree system (T ′, S ′) at the end of that stage, we only
had N and P ei-blocks for ei < e in the system, and by assumption these Rei

will
never act (i.e. they are always active) after that stage. So B is on the ei-pruned
subtree for every such ei and every node ρ ⊂ B is eventually accessible at some
τ ⊂ A, as before.

A node ρ is A-accessible if it is accessible at some τ ⊂ A with respect to
(T ′, S ′). In later constructions, we keep the root of any tree system A-accessible,
since all these Rei

requirements are always active. In particular, every ρ ⊂ B is
A-accessible.

So if we followed Plan I, then by the negative answer to the key question, we
have forced every A-accessible node on (T ′, S ′) to have a limit value 1 in the xe-
sequence. It is easy to see that we have forced B to be on the e-pruned subtree
Prue(S̄, A), so we have satisfied the requirement Re.

If we followed Plan II at that stage, the argument is slightly harder than, but
quite similar to, the one we used in §VI.5.5. Let (T, S) be the tree system at the
beginning of the stage (note again that (T ′, S ′) is the tree system at the end of that
stage). Suppose in the construction we took ρ as the 01-node in a block associated
with x where x /∈ A′ if and only if A is on Nar(T). It suffices to prove that no
A-accessible node on (T ′, S ′) can change the limit value of the xe-sequence from 0:
Suppose not. Let η ⊃ ρ be an accessible node (with respect to (T ′, S ′)) at some
τ ⊂ A and η has one or more changes in the xe-sequence than the root of (T, S)
has. Now on (T, S), η has only one potential witness ρ below it at τ , and so by
property (1) of Definition VI.6.1 it will not be terminated by any extension of τ .
One can then take a τ ′ ⊃ τ on T such that τ ′ is off Nar(T) and long enough to
see that x ∈ A′ (i.e., ϕτ ′

x (x) converges). Then η is accessible at τ ′ (with respect to
(T, S)), which contradicts the negative answer to the key question we asked.

So in this case, we have forced A-accessible nodes to have limit value 0 in the xe-
sequence and it is not difficult to see that B is off the e-pruned subtree Prue(S̄, A)
(since ρ as above is also a 01-node in a block associated with x in (T̄ , S̄) where we
defined the final version of e-pruned subtrees as in Section VI.6.1). Hence we have
also satisfied the requirement Re in this case. By our discussion in Section VI.4,
B is GL2. This finishes the proof of the main theorem.

Theorem VI.6.10. There is a 2-minimal degree which is not GL2.

79

VI.7 2-minimal GH2 Degree

In fact, by a small modification in our construction, we can make B be GH2.
Therefore we are just one step away from the highest possible class GH1. To make
(B ⊕ 0′)′′ ≤T B′′, it suffices to decide whether ϕB⊕0′

e is total by B′′. So in our
construction we can try to force ϕB⊕0′

e to be total step by step, in the same way as
handling the xe-sequence: if we can do this infinitely often, then we keep B on the
e-pruned subtree, otherwise when we discovered that we can no longer force ϕB⊕0′

e
to be total, we then take B off the e-pruned subtree by Plan II. There is a similar
finite injury argument. In the end, by using (B ⊕A′)′ we can decide whether B is
on or off the pruned subtrees, and so we can use B′′ to run the whole construction
and figure out the true outcomes for the finite injury argument as well as all the
coding indices for (B ⊕ 0′)′′.

In Chapter VII we will modify this construction and finally get a 2-minimal
degree which is GH1.

80

CHAPTER VII
2-MINIMAL GH1 DEGREE

VII.1 Introduction

In this chapter we combine the ideas in Chapter VI and several new ideas to build
a 2-minimal degree which is GH1. First we briefly describe the framework for our
construction.

We use a sequence of tree systems 〈Ti, Si〉i∈ω (not necessarily nested) to approx-
imate two sets A and B as before, i.e., we want to make A minimal and B minimal
over A. In addition, we want to guarantee that B is GH1, i.e., (B ⊕ 0′)′ ≤T B′.
So in the end we need to argue that we can compute (B ⊕ 0′)′ from B′.

At each stage, we also construct an admissible path through a priority tree (as
in various injury arguments of the constructions of r.e. sets). We will use α, β, γ
only for nodes on the priority tree, and keep other lower case Greek letters for the
nodes on the tree T or system S (and we use the same convention as in Chapter VI
that τ denotes the nodes on the tree and ρ denotes the nodes on the system). We
use “admissible” instead of the commonly used terminology “accessible” since we
will need the notion of accessible nodes in the tree system construction. Similar to
other priority tree constructions, in the end we will argue that there is a left-most
path (true path) visited infinitely often (in fact, cofinitely often since we only have
a finite injury argument). The minimality requirements will be satisfied along the
true path, however, the GH1 requirements will be satisfied at nodes possibly off
the true path, but will be translated to satisfaction conditions along the true path
(see details in Section VII.4).

Our convention is that, the priority tree grows downwards, i.e., the highest
priority node is at the top; whereas the tree systems used in the construction grow
upwards, i.e., the root is at the bottom.

Recall in Chapter VI, we define a notion of accessible nodes with respect to
the groups of blocks we have on the tree system, and in particular, the notion of
accessible nodes is changing from one tree system to another. In this chapter, we
will fix one common notion of accessibility (which is very similar to the one we
used in Chapter VI) and keep it in all tree systems we are going to construct.

VII.2 Initial Tree System, Accessibility and List of Requirements

The initial tree system is exactly the same as the one we used in Chapter VI,
i.e., the tree T0 is the identity function or say the full binary tree, and the system
part S0(A) tries to code A′ in the 1-nodes of blocks. A node on the system is an
even-node if it is the image of an even length string, i.e., it is a root or a top-node
of a block (see Figure VI.1).

We say an even-node ρ ⊃ ξ at S(τ) is accessible above ξ at τ if there is no
even-node ρ′ ∈ (ξ, ρ] which is a 01-node in a block associated with x where ϕτ

x(x)
diverges. This definition is consistent with the definition in Chapter VI that we
regard every block here as a P -block there. Moreover, the definition here addresses
the idea of relative accessibility, e.g., ξ or ρ might not be accessible at τ but there
is nothing between ξ and ρ which makes ρ inaccessible, then we call ρ (relatively)
accessible above ξ at τ . So in Chapter VI, the accessible nodes are accessible above

81

the root. Here we use the same notion that a node is accessible if it is accessible
above the root of the tree system. Note that this notion depends on the root of
the tree system. We use Acc(τ) to denote the accessible nodes at τ .

We have the following list of requirements to satisfy:

• Pe: either ϕA
e is not total, or recursive, or A ≤T ϕ

A
e .

• Q0
e: either there is an x such that ϕB

e (x) diverges, or ϕB
e is total.

• Q1
e: if ϕB

e is total, then either it is recursive in A, or B ≤T ϕ
B
e ⊕ A.

Note that we split the B-minimality requirement Qe into two requirements: Q0
e

forces totality and Q1
e forces splitting.

In addition, we want to make B be GH1, and we do this by forcing the jump
of B ⊕ 0′.

• Re: ϕ
B⊕0′
e (e) diverges, or it converges at the root λ of the tree system, i.e.,

ϕλ⊕0′
e (e) ↓.

At each stage s, we have an admissible path through a fixed priority tree. Each
node α is labeled by one of the requirements above and also labeled by (Tα, Sα),
the tree system before we try to satisfy the requitement labeled in α.

Each node has two outcomes: For Pe, it is either a nonsplitting outcome (left),
or a splitting outcome (right); Q0

e has nontotal (left) or total (right) outcomes, and
Q1

e has nonsplitting (left) and splitting (right) outcomes as well; Re has convergence
(left) and divergence (right) outcomes. For convenience we arrange a priority list
where each Q0

e is immediately followed by Q1
e along the right (total) outcome, and

there are no Q1
e nodes along the left (nontotal) outcome.

At each stage we ask a key question to the lowest admissible node. If it is a
Pe, Q

0
e or Q1

e node, we choose the outcome according to the answer to the key
question, pass a new tree system to the next node and continue to the next stage
(see Section VII.3). If it is an Re node, and if the answer (outcome) is convergence,
then we take a full subtree system to force convergence and proceed to the next
stage without doing anything special. If the outcome is divergence, we need to
implement a so-called “narrow subtree system construction” (which is very similar
to Plan II in §VI.6.4) to get a new tree system; in addition we need to go through
the admissible path and check whether we have chance of switching left at any of
the Q0

e or Q1
e nodes. If there is a node where we can switch left, then we do so and

we will never switch back again (see details in Section VII.4).

It is not difficult to see that there is a true path through the priority tree and
we will argue that the minimality requirements are satisfied along the true path;
moreover we will argue that each ϕB⊕0′

e (e) is forced at the first node we try to
force it (no matter whether the node is on or off the priority tree) and the GH1

requirement are satisfied by a slightly tricky “reconstruction”.

82

VII.3 Minimality Requirements

VII.3.1 Make A minimal

The Pe requirements are handled in the same way as in §VI.5.3 and we go to the
outcome corresponding to the answer we get for the key question.

VII.3.2 Force totality for ϕB
e

Given Q0
e at α with a tree system (Tα, Sα), we ask the following key question:

∃x∃τ∃ρ ∈ Acc(τ)∀τ ′ ⊃ τ∀ρ′ ⊃ ρ; ρ′ ∈ Acc(τ ′)[ϕρ′

e (x) ↑].

That is, we ask whether there is a ρ accessible at τ such that there is no

accessible node above it makes ϕ
(·)
e (x) converge. If the answer is yes, then we go to

the nontotal (left) outcome of α, take the full subtree system FSTS(Tα, Sα, τ, ρ)
and label it to the next node following the nontotal (left) outcome of α.

If the answer is no, then we can construct a tree forcing totality, as the negative
answer tells us that at least in the accessible part of the tree system, we can

always find nodes to force convergence of any ϕ
(·)
e (x). The problem is that, we are

only guaranteed to find such convergence in the accessible part of the tree system,
and above a potential witness, there might be no such node until it becomes a
nonwitness later.

The construction here is slightly different from the ones in Chapter VI. There
we simply copy everything above a potential witness, but here we regard it as a
forcing totality (or forcing splitting) requirement and try to search for convergence
(splittings) until we find such or the node becomes accessible (nonwitness).

Basically what we do is similar to a partial totality forcing tree construction
(as in Sacks minimal degree construction, see [Sac61]) where we try to find an
extension of the potential witness such that it converges at the next value x for
which we want to force convergence. If we find such a node then we take the two
appropriate successors (in the sense of in the correct block associated with the
index we want) of that node as our next level nodes; if not then the tree above
the potential witness is empty. This process of possibly partial search continues
until the potential witness becomes a witness, and if it happens we will do a similar
termination as in §VI.5.4 and extend the remaining nodes to force new convergence.

Adding some slight complication we are building block structures above the
potential witness, so we can have some node which is a potential witness above a
potential witness, etc. The basic rule is that, when we see a potential witness ρ
becomes a witness, then we terminate the remaining potential witnesses above ρ
and keeping tracking the status of the potential witnesses below ρ while we do the
searching.

While building new blocks we need to find appropriate old blocks extending the
node which already forces convergence of some x, and now it is not always the
case that we can find such appropriate old blocks since the system part might be
partial. One can extend the current node to the node forcing convergence first
and wait there for the appropriate blocks above it to appear, or an alternative

83

solution is to use a slightly different key question asking for an extension in an old
block associated with a fixed index e. The first plan seems to destroy some of the
binary tree structure, but if we opt to keep the binary tree structure, we can also
add in some extra information on tree systems and modify the key question asking
for nodes with certain properties to resolve the problem. The second plan works
here but makes a similar problem in multiple splitting harder to handle. So for
simplicity we will phrase our construction in terms of the first plan which allows
us to change a little bit of the tree structure.

We omit the details of this construction here since we will do a very similar one
in the following section.

VII.3.3 Force splitting for ϕB
e

multiple splitting

This is almost handled in a similar way as the totality requirements, and the only
major difference is that for the multiple splitting construction (Theorem VI.6.7),
we cannot wait for all these key-nodes to have a certain number of levels of split-
tings before we find their extensions. Alternatively we need to do pairwise splitting
step by step by the following lemma. In the end, we say that we finish the multi-
ple splitting construction. All requirements have to wait for (and copy from) the
constructions of higher priority ones to finish their multiple splitting or conver-
gence (at a node) before they try to find splitting or convergence for their own
purpose or before they can use any of the nodes appearing in the multiple splitting
construction.

Lemma VII.3.1. Suppose we have a tree system which already forces totality (in
the accessible part). Given two accessible nodes ρ0 and ρ1 (above ξ) at τ , then
either of the four cases happen along any extension of τ :

1. some potential witness ξ′ ⊂ ξ becomes a nonwitness;

2. ρ0 does not have accessible e-splitting extensions (above ξ);

3. ρ1 does not have accessible extensions (above ξ) which have ϕe-image longer
than some l, i.e., totality is not forced above ρ1.

4. we can find accessible extensions ρ′0 ⊃ ρ0, ρ
′
1 ⊃ ρ1 such that ρ′0|eρ′1.

Proof. Suppose no potential witness ξ′ ⊂ ξ becomes a nonwitness later in our
search, and suppose we can find two e-splitting accessible extensions ρ′0 and ρ′′0
of ρ0. Also suppose that we can always find accessible extensions of ρ0 with long
enough ϕe-image, then we can extend ρ1 along the left-most path to get a node ρ′1
with ϕe-image longer than the ϕe-images of both ρ′0 and ρ′′0. At least one of them
e-splits with ρ′1.

When we try to do multiple splitting, we start with a finite list of key nodes
ρ0, ρ1, . . . , ρk (after some terminations process similar to the one in §VI.5.4), and
we pick the first pair ρ0, ρ1. Use the lemma above to wait for (1) either some
potential witness below ξ turns out to be a nonwitness, in which case we terminate
the multiple splitting construction and do a “bigger” multiple splitting; (2) or wait
for e-splitting accessible pairs above ρ0 to show up (if they don’t show up then the
multiple splitting construction stops here); (3) or if an e-splitting pair shows up,

84

then extend ρ1 along the left-most path to some node with longer ϕe-image (if this
extension is not successful then the multiple splitting also stops here, but then we
have a node forcing nontotality); (4) finally use lemma to find two extensions of ρ0

and ρ1 which e-split with each other, and for convenience rename them as ρ0 and
ρ1 respectively. If we can finish this process then we pick the next pair and start
to find their e-splitting extensions, and if we can finish doing this for all pairs and
end up with pairwise e-splitting extensions of all these key-nodes, then we finish
the multiple splitting construction and continue the normal splitting construction
building blocks above these nodes.

construction details

Suppose we are given a requirement Q1
e at node α. We know that the previous

node is a Q0
e node and we believe that we can force totality. Now we ask the

following question:

∃τ∃ρ ∈ Acc(τ)∀τ ′ ⊃ τ∀ρ0, ρ1 ∈ Acc(τ ′); ρ0, ρ1 ⊃ ρ¬[ρ0|eρ1].

It asks whether there is an accessible ρ which forces nonsplitting in the accessible
part of the tree system. If the answer is yes, we take the full subtree system of
(Tα, Sα) above such a pair (τ, ρ) and proceed to the next node along the left
outcome of α.

If the answer is no, then we know the following:

(∗) : ∀τ∀ρ ∈ Acc(τ)∃τ ′ ⊃ τ∃ρ0, ρ1 ∈ Acc(τ ′); ρ0, ρ1 ⊃ ρ[ρ0|eρ1].

That is, starting from an accessible node we can always find e-splitting accessible
extensions. This allows us to build a splitting subtree. However, in the inaccessible
part (above a potential witness) we might not have chance to find splittings, and
so we simply wait for splittings to appear (as we described in the forcing totality
case).

For convenience say we are building (T, S) a splitting subtree of (Tα, Sα) and
at stage s we have already built a subtree T of Tα up to level s, and for each τ on
T up to level s we have S(τ) a subtree of Sα(τ).

Suppose we are given one τ and the corresponding system S(τ). We want to
find two extensions of τ and their corresponding systems. These two extensions
are extending respectively the left and right immediate successors of τ on Tα and
the constructions for finding them and defining the system part are essentially the
same. We only describe the construction on one side.

By induction hypothesis, S(τ) is a finite tree with the following information:
It consists of blocks level by level, and each block is associated with some index.
The roots of these blocks are all accessible above the root at τ . Some of the blocks
are full and others are not, i.e., the corresponding computation still diverges. In
addition, some nodes are potential witnesses and above these nodes, the tree looks
like a “miniature” of some tree structure similar to S(τ): in the sense that above
a potential witness ρ, we also have the tree system with blocks and the roots of
these blocks are accessible above ρ; we also see potential witnesses and above these
potential witnesses we again see a miniature of this kind of tree structure. One
can think of a matryoshka doll : a smaller doll which lives inside a bigger one looks

85

similar to the bigger one but it is not exactly the same as the bigger one, and there
are possibly even smaller ones inside the small doll. This chain of dolls (potential
witnesses and miniatures) will eventually end. Interestingly, we always know that
the biggest doll exists, but we don’t know that the other dolls exist until we open
the previous level dolls and see them, and the same happens here for S(τ): the
first level miniature is always total, but the remaining ones might be partial until
we go above the corresponding potential witnesses and find out that they are total.

In addition, at each level of miniatures, some of the nodes may be previously
potential witnesses (and had its own miniature), but they are no longer witnesses
at τ . Then we have done several levels of multiple totality or multiple splitting
constructions for these nodes (by some of the requirements above α and also R1

e
at α), and such construction destroys the corresponding miniature, but only up
to that level, in other words, such multiple totality or splitting construction can
also happen inside a miniature. Some of such multiple constructions have finished,
some have not. In the construction we need to make sure that the previous multiple
constructions have finished before we can start new multiple splitting construction
for our requirement Q1

e, at any level of miniatures.

By induction hypothesis, this S(τ) is e-splitting at each level of miniatures,
and we need to continue building this e-splitting structure. At the first level of
miniature, the construction is the same as Lemma VI.6.6, i.e., we use (∗) to search
for extensions of τ where we can find appropriate blocks extending the current
ones. At other levels of miniatures we simply do a partial tree construction: that
is, we wait for splittings to appear but not search for them.

Some of the potential witnesses might become a nonwitness and so we have done
some termination process and started some multiple constructions. If some higher
priority requirement has not finished its multiple splitting, then Q1

e is only going
to copy the tree without any modification. If every higher priority requirement
has finished its multiple totality or splitting construction, then Q1

e starts its own
multiple splitting construction right from where higher priority requirements finish
their construction. The construction proceeds as what we described before. The
most outer-layer level multiple splitting is total, i.e., we search for nodes to finish
it; and all other level multiple splitting constructions are partial, i.e., we wait for
splittings or appropriate nodes to appear.

If we haven’t done a termination process, then we first need to do some termina-
tion and get a list of key-nodes to do multiple splitting. Starting from the potential
witness ρ (which now becomes a nonwitness), we already have some partial tree
structure and in particular some even-nodes are waiting for splitting extensions
to appear. We first extend all these even-nodes by a full tree of Sα(τ ′) (suppose
we are now at τ ′), i.e., copy whatever is in Sα(τ ′) above these nodes to the new
system. Then we terminate all the following nodes (see also §VI.6.3): all 1-nodes
that have not yet branched; all nodes that still have potential witnesses between ρ
and these nodes; and all previously terminated nodes. In the end we are left with
a finite list of key-nodes that are accessible above ρ at τ ′. Then we can start our
multiple splitting process as above.

This finishes the splitting construction at the inductive step. In the end, we go
to the right outcome of α with the splitting subtree system (T, S).

86

VII.4 Force the Jump of B ⊕ 0′

Given Re at a node β with a tree system (Tβ, Sβ), we ask:

∃τ∃ρ ∈ Acc(τ)[ϕρ⊕0′

e (e) ↓].

If the answer is yes, we take the full subtree system above this (τ, ρ) and continue
to the left (convergence) outcome of β. If the answer is no, then we go to the right
(divergence) outcome and do the following narrow subtree system construction
(which is very similar to the Plan II in Chapter VI). Let S ′β be the restriction of
Sβ on the range of Nar(Tβ). Find a block (at some τ) along the left-most path
associated with index x where x ∈ A′ if and only if A ∈ [Nar(Tβ)]. Take the
01-node ρ of this block. Then take the full subtree of (Nar(Tβ), S ′β) above (τ, ρ).
For convenience we call this new tree system (T ′β, S

′
β). In this case we claim that

we have forced ϕ
(·)⊕0′
e (e) to diverge in the accessible part of the tree system (we

denote this claim by Ce). We will show, in the verification, that Ce is true for the
new subtree system we have and in fact true for all tree systems we will construct
later. Interestingly, the satisfaction of Ce will be automatically passed along the
construction if we go down or go to the left on the priority tree.

We need to do some additional queries here. It is easy to see that from the point
of view of all previous requirements, the nodes on the new subtree system are not

accessible (since they are above ρ and ϕ
(·)
x (x) diverges) and all the key questions we

asked may fail to work. For some of them we can argue that the forced divergence
or nonsplitting is still true, but for some others we need to check whether there is
a chance of switching to the left of the priority tree. In general we opt to switch
to left. The reason we can switch to left is as follows: note that ρ is inaccessible,
and so for splitting constructions above it, we only search for splitting extensions
but are not guaranteed that we can find such. Therefore it is possible above some
node we cannot find splitting extensions and so by taking the full subtree above
that we can force nonsplitting and hence go to the left.

We need the following lemma:

Lemma VII.4.1. For every accessible ρ′ at τ ′ on the new subtree system in the
Re-divergence construction above, and for every tree T labeled on the nodes above
β, there exists τ ′′ ⊃ τ on T such that ρ′ is accessible at τ ′′. In short, all accessible
nodes on the new tree system was previously accessible at a different node.

The proof is essentially the same as the argument in §VI.5.5. Since the new
tree we get is a narrow subtree, it is always possible to find an extension τ ′′ to get
off the tree. Then it is easy to see, from the choice of the associated index x, ρ
becomes a nonwitness at τ ′′. Therefore ρ′ becomes accessible.

So we go along the admissible path and check each node one by one. If it is a
Pe′ node, then we don’t have to do anything, since the tree part is always nested.
If it is an Re′ node, again we don’t have to do anything: if we previously forced
convergence then it is of course preserved; if we previously forced divergence, then
no accessible node here on the new tree system can make convergence since all of
them are accessible on the old one (at a different node).

If we have a Q0
e′ or Q1

e′ node, and if we previously went to left (nontotal or
nonsplitting) then again by the lemma above we do not have to anything, as the

87

nontotality or nonsplitting is still forced on the accessible part of the new tree
system. If we previously went to the right node, then we need to check whether
above this inaccessible ρ we have a chance of forcing nontotality or nonsplitting.
Take Q1

e′ (node α) as an example (the question for Q0
e′ is a natural analog and so

omitted here). Recall that (Tα, Sα) is the tree system labeled at α, i.e., the tree
system before we do the construction at α, and (T ′β, S

′
β) is the new tree system we

get from the narrow subtree system construction. Since we are dealing with two
or more tree systems here, it is better to make it clear which tree system we are
talking about when we address accessibility. We use AccS(τ, ρ) to denote the set
of accessible nodes above ρ at τ with respect to the system S, and so it is a subset
of nodes on S(τ). If we omit ρ then we mean the set of accessible nodes above the
root of S(τ). We ask the following:

∃τ on T ′β∃ρ ∈ AccS′
β
(τ)∀τ ′ ⊃ τ on T ′β∀ρ0, ρ1 ⊃ ρ; ρ0, ρ1 ∈ AccSα(τ ′, ρ)¬[ρ0|e′ρ1].

The intuition is as follows. We look at the current tree T ′β and we ask whether
there is an accessible node ρ on the current system S ′β such that the world above
ρ with respect to the new tree T ′β and the old system Sα has no e′-splittings.

If the answer is yes, then we can switch to the left at this Q1
e′ node α by taking

the full subtree system of (T ′β, Sα) above (τ, ρ) as in the key question. This forces
nonsplitting in the accessible part of the new tree system. We will check that all
previously satisfied P or R requirements will be automatically carried over to the
left outcome, and for the Q requirement below the right outcome of α, we can
satisfy them again below the left outcome.

If the answer is no, then we know that the e-splitting structure above the root is
still working on the tree system (T ′β, S

′
β) in the accessible part, as accessible nodes

above ρ still have accessible e′-splittings. So we do nothing here and continue to
check the next Q node.

We continue on this checking procedure and end up with either switching to
the left or staying at the same node β. If we finally end at the same node β, then
we can do the following construction to make the system part more “structured”.

Note that the answers from the checking procedure guarantee that, for every
accessible node on the system S ′β, it has accessible extensions, but it is not guar-
anteed that such accessible extensions exist along every path through T ′β. Now we
can build a new subtree system to force extensions in the accessible part, by simply
thinning out the tree and make sure that accessible nodes always have accessible
extensions along every path. Briefly, at the inductive step, given τ , we find two
extensions τ ′ and τ ′′ where all accessible nodes on S ′β(τ) have accessible extensions.
Finally the tree part is a subtree of T ′β and the system part is a restriction. In the
language of dolls, we are simply making the most outer-layer “doll” total.

This construction is not crucial and might not be necessary, if the next con-
struction involves system level constructions, then it will automatically do this
construction for us. If we choose not to do it, then if the next construction is a
tree level construction (such as a splitting tree construction), then we need to go
over the checking procedure again to see whether we have chances of switching to
the left at some Q node again.

This finishes the construction at an R node.

88

In the whole construction, we can make sure that the only case we allow a
witness ρ to be the root the new system is in this R-divergence construction. All
other constructions use accessible nodes as the root. So in the end, each witness
along B corresponds to one R-divergence narrow subtree system construction. This
allows us to read this coded information and retrieve the construction by only using
B ⊕ A′.

VII.5 Final Verifications

It is not difficult to see that there is a true path via a finite injury argument. The
P type of requirements are satisfied when we try to satisfy them at the first time,
since the tree parts of tree systems we build are nested.

Given a requirement Qe, we first check the unique Q0
e-node on the true path

(say α): if the true outcome at α is to the left, then we have forced divergence of

a fixed ϕ
(·)
e (x) in the accessible part. By Lemma VII.4.1 and our construction we

know that all roots of the tree systems extending α’s left outcome are accessible
on the tree system (Tα, Sα), so the divergence has been forced and the requirement
Qe is satisfied. In this case there are no Q1

e nodes on the true path.

If the true outcome at α is to the right, then we know that totality has been
forced, i.e., we are working on a tree system which forces totality along the path
B we build. Then we check the true outcome of Q1

e node α′ following α. If the
true outcome is to the left, then we know that (Tγ, Sγ) forces nonsplitting in the
accessible part where γ is the node immediately extending the left outcome of
α′. We can argue that in the end, if ϕB

e is total, then it is recursive in A: to
compute ϕB

e (x) we search on Sγ(A) an accessible node ρ at some τ ⊂ A (accessible
with respect to (Tγ, Sγ)) such that ϕρ

e(x) converges. There must be such a node
since totality has been forced, and we claim that this value is the same as ϕB

e (x).
Suppose not, then we can find an initial segment τ ′ of A extending τ long enough
to have nodes ρ and some ρ′ ⊂ B on Sγ(τ

′) where the corresponding values of

ϕ
(·)
e (x) are different. By Lemma VII.4.1 and our construction, each ρ′ an initial

segment of B is accessible at a node τ ′′ ⊃ τ ′ (τ ′′ is usually not an initial segment
of A); ρ is accessible at τ and so at τ ′′; this contradicts that nonsplitting has been
forced in the accessible part of (Tγ, Sγ).

If the true outcome at α′ is to the right, then we know that the e-splitting
structure always works along B and we can compute B from A⊕ ϕB

e quite easily
by following the splitting. The system is e-splitting at first, then when we see a
potential witness, either it is a witness or it will become a nonwitness later, but
in either case we can search above it for e-splitting pairs. Either we find such
an e-splitting pair, or we see that the potential witness becomes a witness and so
do multiple splitting. We can always follow the splitting structure to find initial
segments of B by A⊕ ϕB

e .

So the minimality requirements are all satisfied and we still need to show that
B is GH1, i.e., (B ⊕ 0′)′ ≤T B′. In fact we can show that (B ⊕ 0′)′ ≤T B ⊕ A′,
and this implies that B is in GL1(A).

Note that our construction is a 0′′ construction and here we can compute the
whole construction by B⊕A′. The key fact here is that with B and A′ we can tell
which nodes along B are witnesses: they are exactly the ones that are 01-nodes

89

on blocks that are associated with index e such that ϕA
e (e) diverges. In the con-

struction, these witnesses are exactly the ones coming from the narrow subtree
system construction in Section VII.4 chosen as codings of whether A ∈ [Nar(T)]
for some T . In addition, from the index x associated to the block of a 01-node
witness we can effectively retrieve the correct 0′′ construction, since the index x
codes the information of Nar(T) as being the iterations of (P requirements) full
subtree constructions, splitting subtree constructions; (Q requirements) full sub-
tree system constructions, totality subtree system constructions, splitting subtree
system constructions; and (R requirements) narrow subtree system constructions,
possibly with some recognizable padding added (as we used the Padding Lemma in
the construction). This means that B⊕A′ can retrieve the original 0′′ construction.

Now it suffices to show that each requirement Re is satisfied when we first try to
satisfy it at some β (not necessarily on the true path) as in Section VII.4. If we go to
the convergence outcome of β then the requirement is of course satisfied. If we claim
to force divergence then we generate a claim Ce which says that “ϕρ⊕0′

e (e) diverges
for any accessible ρ on the current tree system”. We will prove by induction that
this Ce is carried over to all following tree system we construct. The base case is
that Ce is true on (T ′β, S

′
β) (the tree system we get by the narrow subtree system

construction in Section VII.4, see Lemma VII.4.1).

In the construction we only go down or go to the left of the current node. If we
go down, in most cases when the new root is accessible on the old tree system, the
accessible nodes on the new tree systems are still accessible on the old one. The
only exception is the narrow subtree system construction, when the new root is
not accessible, but Lemma VII.4.1 is then used to show that accessible nodes on
the new tree system are accessible on the old one.

If we go to the left, then it must be the case when we do a narrow subtree
system construction for an R node β̃ and go left at the checking process as in the
construction. We can use the following lemma to finish the proof:

Lemma VII.5.1. Suppose we switch to the left outcome at a Q node α because
of the narrow subtree system construction at an R node β, also suppose the full
subtree system we get after switching left at α is (T ′α, S

′
α), then all nodes accessible

on (T ′α, S
′
α) are accessible on (Tβ, Sβ).

Proof. Let (T ′β, S
′
β) be the tree system we get from the narrow subtree system

construction. Let us assume that α is a Q1
e node (and the proof for Q0

e is essentially
the same). In the construction, we asked the following question at α:

∃τ on T ′β∃ρ ∈ AccS′
β
(τ)∀τ ′ ⊃ τ on T ′β∀ρ0, ρ1 ⊃ ρ; ρ0, ρ1 ∈ AccSα(τ ′, ρ)¬[ρ0|eρ1].

Since we switched to the left at α, we must had a yes answer, i.e., there is a τ
and a ρ accessible at τ on S ′β such that there is no e-splitting accessible pair above
ρ on Sα at any τ ′ ⊃ τ on T ′β.

This implies that, in the e-splitting subtree system construction along the right
outcome of α, we cannot find any e-splittings for τ ′ ⊃ τ on T ′β, i.e., the system
part extending ρ is empty.

Note that the new subtree system (T ′α, S
′
α) along the left outcome of α is the

full subtree system of (T ′β, Sα) above this (τ, ρ). Now given an accessible node ξ

90

at τ ′ on (T ′α, S
′
α), we can find an extension τ ′′ of τ ′ on Tβ and τ ′′ is off T ′β (this

is possible because T ′β is a subtree of the narrow subtree of Tβ). Then at τ ′′ we
see that ρ becomes a nonwitness and so accessible, so according to the splitting
tree construction (Section VII.3) we start a multiple splitting construction above
ρ. It is currently empty above ρ, and so we simply copy everything from Sα and
do termination and multiply splitting. In particular, ξ is accessible at τ ′′ on Sα

and so it will not be terminated in the construction. All following constructions
will follow the multiple splitting first and so ξ is still accessible at τ ′′ on Sβ.

By the above lemma, switching left does not change the accessibility of nodes.
So the claim Ce will be carried over if we switch to the left at some α for the narrow
subtree system construction at β̃. Combining the arguments above, we know that
(B ⊕ 0′)′(e) is forced the first time when we try to satisfy Re, so (B ⊕ 0′)′ ≤T

B ⊕ A′ ≤T B
′, i.e., B is GH1.

91

CHAPTER VIII
ITERATED FPF AND MINIMALITY (JOINT WITH

GREENBERG)

VIII.1 Introduction

We present here a preliminary version of some joint research with Greenberg. Our
main goal is to construct an initial segment of the Turing degrees, 0 = a0 < a1 <
· · · < an < . . . , an ω-chain of degrees where each ai+1 is a strong minimal cover
of ai, and each ai+1 is relatively FPF over ai, i.e., there is a function recursive in
ai+1 which is DNR relative to ai.

The motivation comes from reverse mathematics. There we want to study
the relative provability strength of sentences and systems. For example, does the
existence of a FPF degree imply that there are incomparable Turing degrees? If
we can find such an ω-chain as planned, then the answer is no (see [Sim10]). In this
chapter we use our established framework of tree systems to handle “two steps”,
i.e., a maximal chain 0 < a < b where a is FPF and b is relatively FPF over a.

The “bushy” tree structure was introduced in [KLxx] to construct a FPF min-
imal degree, i.e., the “first step”. Here we first give a simplification of their bushy
tree construction and use the similar idea to do our “second step”.

VIII.2 Kumabe-Lewis Construction: A Simplification

VIII.2.1 Basic set-up

A tree is a partial function from ω<ω to ω<ω. In this chapter we only consider
finite-branching trees, i.e., for each τ on the tree, there are only finitely many i’s
such that τ ∗i is on the tree. We will only use recursive trees with recursive domain.

A tree T is f -bushy for some function f if for each nonterminal node τ of
length n on the tree, τ has at least f(n) many immediate successors and all of its
immediate successors are of the form τ ∗ i for some i, i.e., one bit extensions of τ .

A tree T admits (g, h) if T is g-bushy and there is no h-bushy finite subtree S
of T such that every S-terminal node τ is also a T -terminal node. Intuitively, if
T admits some pair (g, h) and g(x) > h(x) for every x, then T is bushy while the
terminal nodes are not very bushy.

We use the following notions: f+ denotes the function 2f and f− denotes the
function f/2; we will also use notions like f++ or f+2, or f+l [f+l(n) = 2l(n)f(n)].
Given functions g and h with g > h+l, we will use a function which is in the middle
of g and h, i.e. something like

√
gh, or we can also use h+l− . That is, we pick a

function which is “far away” from both g and h.

In the construction, we build a nested sequence of trees 〈Ti〉 such that each Ti

admits (gi, hi). For each i, gi+1 is dominated by gi, and hi+1 dominates hi. In
addition, each gi ≥ hui

i where ui(n) is a recursive function related to the number of
nodes of length n. So at each step, we increase h and decrease g, but still guarantee
that they are far apart from each other.

92

We can guarantee that, before the values of g(l) and h(l) collapse, the root of
the tree has already grown up to level l, so we will not encounter the case that
g(l) < h(l). To note, the functions gi+1 and hi+1 will depend on the previous pair
(gi, hi) and the answers to the questions we ask in the construction.

VIII.2.2 Initial tree

Given a recursive function g0, we define the initial tree T0 as follows: First put
the empty string ∅ into the domain and define T0(∅) = ∅; at stage s, for each
unterminated unbranched σ in the domain, we put σ ∗ 0, σ ∗ 1, . . . , σ ∗ (g0(|σ| − 1))
in the domain and define T0 as the identity function on these strings; in addition,
we check whether some ϕe(e) converges at stage s for some e < s: if so we terminate
all nodes on the tree which are not DNR witnessed by such ϕe(e) (i.e., all τ such
that τ(e) = ϕe(e)).

In this definition, we use a recursive function g0 which we will specify later.
Intuitively, g0 has to grow fast enough such that after n steps in the construction,
gn(n) is still sufficiently greater than hn(n). Note that h0 is the constant 2 function
here since each ϕe(e) can only have one value.

VIII.2.3 Force totality

Given T which admits some (g, h), we want to force the e-th minimality require-
ment, i.e., for each A ∈ [T], ϕA

e is either nontotal, or recursive, or computes A.

Fix k in the middle of (g, h). We call a node τ on T accessible if there is no
finite subtree S above τ which is k-bushy and every S-terminal node is terminal on
T . For convenience, we will call S terminated if every S-terminal node is terminal
on T . Given a subtree S, a top-node on S is a terminal node on S which is not a
terminal node on T . So terminated subtrees do not have top-nodes.

The following lemma will be useful in our constructions.

Lemma VIII.2.1. Given a finite g-bushy tree S and color all the terminal nodes
on S by two colors, then there is a g−-bushy subtree S ′ of S which is homogenous,
i.e., all terminal node on S ′ have the same color.

Proof. We color the other nodes of S inductively by the majority color of its imme-
diate successors. That is, given a nonterminal node τ , by bushiness it has at least
g(|τ |) many immediate successors. By induction, every immediate successor has
been colored by either of the two colors, and then we can color τ by the majority
color of its immediate successors. Then by picking the nodes with the same color
as the root of S we get a subtree S ′ which is g−-bushy.

This lemma is widely used in the following way: in the construction we may
terminate some nodes and we want to make sure that we are not terminating too
many nodes. What we do is to make sure that the previous terminations do not
terminate some h-bushy many nodes (by induction), and in the new termination
we are not terminating h-bushy many nodes; then by the above lemma we know
that combining them together we are not terminating nodes that are h+-bushy.

93

Now we ask whether there is an x and an accessible node τ on T such that
there is no k-bushy finite subtree S above τ such that every top-node τ ′ on S has
ϕτ ′

e (x) ↓.
If the answer is yes, then we take the full subtree of T above such τ and terminate

all the nodes τ ′ which has ϕτ ′
e (x) ↓. It is easy to see that we are not terminating

k-bushy many nodes for this reason and so combining with the old terminal nodes
we are not terminating k+-bushy subtrees. In this case, we have satisfied this
requirement and process to the next step with this new tree admitting (g, k+).

If the answer is no, then we do the following construction to force the totality of
ϕe. Note that the negative answer says that for every τ , either it is not accessible,
i.e., we can find a k-bushy terminated subtree above it, or we can find a k-bushy
subtree above it where every top-node τ ′ has ϕτ ′

e (x) ↓. So we proceed our construc-
tion starting from the root searching for k-bushy subtree of either type: given any
τ on the new tree which has not been branched or terminated, we search above τ
on the old tree T for a k-bushy finite subtree S such that either S is terminated,

or all top-nodes on S have convergent ϕ
(·)
e (x) where x = |ϕτ

e |. It is easy to see that
our new tree admits (k, h) since all terminated nodes are old (i.e., they are already
terminated on the old tree). In addition, every infinite path A on the new tree has
total ϕA

e , i.e., we have forced totality. For convenience we replace the old tree T
with the new one and still call it T .

VIII.2.4 Force splitting

Following the construction above, we have a tree T admitting (k, h) and it forces
totality. We want to force splitting as in minimal degree constructions, but as
discussed in [KLxx], it is not possible to construct such a minimal degree using
direct splitting trees since it will automatically produce non-FPF degrees. So
what we shall expect for is a “delayed splitting” tree. Our notion of trees is
slightly different from that in [KLxx], but our delayed splitting construction is
very similar to their construction. In particular, the key ideas are the same: given
two incomparable nodes τ0 and τ1, we cannot expect that they e-split, but we can
wait for a level l such that all extensions of τ0 at level l pairwise e-split with all
extensions of τ1 at level l, i.e., if τ ′0 ⊃ τ0, τ

′
1 ⊃ τ0 both are long enough (above level

l), then they e-split.

Let k′ be in the middle of (k, h). Note that now the notion of accessible nodes
has changed from the old tree: a node is accessible if there is no k′-bushy terminated
subtree above it. We ask the following: is there an accessible node τ such that
there exist no pair of k′-bushy subtrees S0, S1 above τ where all top-nodes on S0

pairwise e-split with top-nodes on S1 (we denote this by S0|eS1).

If the answer is yes, we pick the full subtree above such τ , and do a termination
process as in [KLxx] to make sure that all remaining nodes give the same answer for

each ϕ
(·)
e (x). The tree is still k-bushy and the terminated nodes are not k′+-pushy,

i.e., the new tree admits (k, k′+). The key reason that we do not terminate too

many (bushy) nodes is that, the terminated nodes produce a different ϕ
(·)
e value

compared to the nonterminated ones (which is of course bushy enough). So if at
some step we discover that we terminate too many (bushy many) nodes, then we
can get two bushy e-splitting subtrees, which contradict the yes answer.

94

If the answer is no, we do a similar delayed splitting tree construction as in
[KLxx, Section 6]. The splitting tree we get admits (k′−2u, h) where u(l) is the
number of nodes of length l. See also our delayed tree system construction in
§VIII.3.4.

In summary, each construction will reduce the “distance” of the admissible
pair (g, h) by some amount (bounded by 2u), and on our initial tree, we only
need to guarantee that g is fast-growing enough that for each l, by l times of the
construction as above (in the worst case, i.e., the splitting subtree construction),
one still has gl(l) ≥ 2hl(l), then we can process the plan without a problem.

To note, in order to make sure that at each step we extend the root of the tree,
we need to take a one-bit extension of the root if we haven’t extended it. One can
always find a suitable one-bit extension such that the corresponding full subtree
admits the same pair, since otherwise the old tree would not admit the pair (g, h).

VIII.3 Work with Tree Systems: 2-minimal

VIII.3.1 Tree systems

Our notion of tree systems mainly follows that in Chapter VI, i.e., a tree system
(T, S) has two parts: the tree part T is a tree and the system part S maps the
nodes on the tree T to finite trees with some “coherence” property. However, since
we need to have bushy trees and systems, it is much more convenient to use finitely
branching trees instead of binary branching trees.

The bushiness notion is similarly defined for the system part. Note that in the
system part S(τ), the even positions code information from τ , so the bushiness is
defined correspondingly: S(τ) is p-bushy if every nonterminal node ρ of length 2n
has at least p(n) many immediate successors, each of the form ρ ∗ τ(n) ∗ i. One
can also think of it as a bushy tree in the first construction after removing all even
position codings. A tree system (T, S) is (g, p)-bushy if T is g-bushy and each S(τ)
is p-bushy.

We call (Γ,∆) a finite tree system above (τ, ρ) if Γ is a finite tree above τ and
for each terminal node τ ′ on Γ, ∆(τ ′) is a finite tree above ρ. Such a finite tree
system is (h, q)-bushy if Γ is h-bushy above τ and each ∆(τ ′) is q-bushy above ρ.
Given a tree system (T, S) and a finite subtree system (Γ,∆), note that a top-node
of Γ is a terminal node on Γ which is not a terminal node on T ; similarly a top-node
on the finite tree system (Γ,∆) is a top-node on some ∆(τ) where τ is a top-node
on Γ. In another words, top-nodes are these top level nodes which haven’t been
terminated (and which may or may not be terminated by later constructions along
different paths). We call (Γ,∆) terminated if it does not have top-nodes, i.e., every
(Γ,∆)-terminal node is also a (T, S)-terminal node.

One say that a tree system (T, S) admits (g, h, p, q) if and only if it is (g, p)-
bushy and there is no terminated (h, q)-bushy finite subtree above the root. We
call such (g, h, p, q) an admitting quadruple for the tree system. In a similar way,
we will guarantee that in the construction, (Ti, Si) admits a quadruple (gi, hi, pi, qi)
that satisfies some properties which allow us to continue the construction. We can
even guarantee that for each tree system (Ti, Si), Ti admits (gi, hi) and each Si(A)
admits (pi, qi) for each A ∈ [Ti] (note that this directly implies that (Ti, Si) admits
(gi, hi, pi, qi)).

95

The following lemma is essential in our argument.

Lemma VIII.3.1. Suppose (Γ,∆) is (g, h)-bushy above (τ, ρ), and we color the
terminal nodes of the tree system by two colors, then there is a subtree system
(Γ′,∆′) which is (g−, h−)-bushy above (τ, ρ) and which is homogenous, i.e., every
terminal node has the same color.

Proof. Given a terminal node τ on Γ, ∆(τ) is h-bushy, and we can apply Lemma
VIII.2.1 to get a homogenous h−-bushy subtree ∆′(τ) of ∆(τ). We then color τ
by the color of the nodes on the homogenous subtree we get. This gives a coloring
of the terminal nodes on Γ, then we can apply Lemma VIII.2.1 on Γ to get a
homogenous g−-bushy subtree Γ′. It is easy to see that (Γ′,∆′) is the subtree
system we want.

This lemma will be used mainly in the following case: if we terminate nodes
for two reasons and for each reason we are not terminating a (g, h)-bushy tree
system, then combining them together we are not terminating a (g+, h+)-bushy
tree system.

VIII.3.2 Initial tree system

As in the previous section, we pick our g0 and p0 to be fast-growing enough in the
construction of the initial tree system (T0, S0) to make it (g0, h0)-bushy. On the
tree, we terminate a τ on the tree if it is not DNR. On the system, note that each
ρ on S0(τ) is τ ⊕ ρ′ for some ρ′, and we want to make sure that ρ′ is DNR in τ , so
we terminate a ρ on the system at τ if such ρ′ is not DNR in τ . It is easy to see
that h0 and q0 are both constant 2.

VIII.3.3 Force totality

We will need the following accessibility notion. Given a tree system (T, S) which
admits (g, h, p, q) and let (k, l) be in the middle of (g, p) and (h, q), and given a ρ
on some S(τ), we say that (τ, ρ) is accessible if there is no (k, l)-bushy terminated
finite subtree system above (τ, ρ). For example, this implies that τ is DNR, there is
no k-bushy subtree above τ which is terminated, and there is no k-bushy subtree Γ
above τ such that ρ is terminated at each terminal node on Γ, etc. We always pick
the root of the new tree and the root of the new system which form an accessible
pair in the old tree system.

To force totality, we ask the following: whether there is an accessible pair (τ, ρ)
and an x such that for any k-bushy tree Γ above it, there is always a τ ′ a top
node on Γ such that the ρ′’s on S(τ ′) that the set of nodes that ϕρ′

e (x) ↓ does not
contain a subset which is l-bushy above ρ, or in other words, we ask whether there
is an accessible (τ, ρ) and an x such that there is no (k, l)-bushy tree system above
(τ, ρ) where every top-node converges at x.

If the answer is yes, then we take the full subtree above such (τ, ρ) and terminate
(in addition to those we have already terminated) all ρ′ such that ϕρ′

e (x) converges.
It is easy to see that we are not terminating a (k, l)-bushy tree system for this
reason, so the new admitting quadruple (g′, h′, p′, q′) is (g, k+, p, l+).

96

If the answer is no, then we construct a tree system forcing totality. It is
easy to see that by the negative answer to the question, for each accessible pair
(τ, ρ) and each x we can always find a (k, l)-bushy system above it which makes
ϕe(x) converge. By iterating this (see next paragraph) we can construct a subtree
system which forces totality. All terminations are old (i.e., we do not make new
terminations). The new admitting quadruple is (k, h, l, q).

The construction is as follows: we start from the root of the tree and the root
of the system: this pair is accessible, so we can find a (k, l)-bushy tree system
(Γ,∆) above it where every top-node converges at 0. Let (Γ,∆) be an initial
part of our new tree system. At the next step, say τ0, . . . , τn are the top-nodes
of Γ and at each τi, we have ρi0, . . . , ρim as top-nodes on ∆(τi). Next we try to
find extensions above (τ0, ρ00): if it is accessible, then we can find a (k, l)-bushy
tree system as its extension where every top-node converges at 1; if not, then by
the definition of accessibility we can find, also a (k, l)-bushy tree system but that
every terminal node there is terminated on the old tree system, i.e., a terminated
finite tree system, and we also take it as our extension for (τ0, τ00). Then we
have to find extensions for (τ ′0, τ01) where τ ′0 is the first top-node on the tree part
of the tree system we find extending (τ0, τ00), either forcing convergence at 1 or
forcing termination. Following that we try to handle (τ ′′0 , τ01) where τ ′′0 is the
second top-node following τ ′0. Nevertheless such recursive search will stop as either
one of these two types of subtree systems has to appear, and so by iterating this
procedure finitely many times we can find a tree system extending (Γ,∆) such
that every top-node converges at 1. It is easy to see how to handle the whole
construction inductively and the new tree system is (k, l)-bushy and also forces
totality. All terminations are from the old tree, so the new admitting quadruple is
(k, h, l, q).

VIII.3.4 Force splitting

Following the second case above (and for convenience we still use (T, S) to denote
the new tree system), we try to force splitting. Let (k′, l′) be in the middle of (k, l)
and (h, q); Note that our accessibility notion has changed to the one with respect
to (k′, l′) as we are in a new tree system.

To make B a strong minimal cover of A (as compared to only a minimal cover),
we need a (delayed) full splitting subtree system (T ′, S ′) of (T, S), i.e., for any two
incomparable nodes ρ0, ρ1 on the whole tree system, we can find a level l where all
extensions of ρ0 pairwise e-split with all extensions of ρ1 at that level l.

We ask whether there is an accessible (τ, ρ) such that for all k′-bushy subtree Γ
above τ , there is a top node τ ′ on Γ such that there is no pair of l′-bushy subtrees
Π0,Π1 of S(τ ′) above ρ such that Π0|eΠ1, i.e., the top-nodes of Π0 pairwise e-split
with the top-nodes of Π1.

If the answer is yes, then we first take the full subtree system above such (τ, ρ),
and along each S(A) we do something similar as in [KLxx] or in §VIII.2.4 to
terminate those nodes in the minority part with respect to the value being forced
(by the totality forcing tree). In the end, we cannot terminate a (k′, l′)-bushy
subtree system for the new reason because it would contradict the yes answer of
our question (and so the new tree system admits (k, k′+, l, l′+)). See argument in
§VIII.3.4.

If the answer is no, then we know that for any accessible node (τ, ρ) we can

97

always find a finite k′-bushy tree Γ above τ such that for every top node τ ′ of Γ
we can find two pairwise e-splitting l′-bushy Π0,Π1 on S(τ ′). This allows us to
do a (delayed) splitting tree construction. Similarly if we find out that the node
is not accessible, then we extend it with the (k′, l′)-bushy system where every top
node is terminated (to force termination). By the construction we will reduce the
bushiness of the tree by 2w2 levels and the system by 2w levels, where w(n) is the
number of nodes of length 2n on the system. So finally our new splitting subtree
system admits (k′−2w2

, h, l′−2w, q). See construction in §VIII.3.4.

So in a similar way, we can choose the bushy functions g0 and p0 to be sufficiently
large so that we can always continue the construction after finitely many steps of
reducing bushiness.

force ϕB
e ≤T A

In the case of getting a yes answer to our key question, we try to terminate some
of the nodes on (T, S) to force ϕB

e ≤T A, i.e., on each S(A), the values of ϕρ
e(x)

for all nonterminal ρ’s are the same. This is done simply by relativizing [KLxx,
Section 5] or §VIII.2.4 along each path on T . At the inductive step, suppose that

we have defined a new S ′(τ) for some τ where every top-node agree on ϕ
(·)
e (x) for

x < t, and on our forcing totality tree system, each of our next level τ ′ extending
τ has S(τ ′) where top-nodes converge at the next bit t, so we simply terminate the
minority part of these top-nodes, i.e., keep the part which has a l−-bushy subset.

In the end we need to show that we are not terminating a (k′, l′)-bushy tree
system for the new reason. That is, we need to argue that these nodes τ where we
terminate a l′-bushy system on S(τ) do not have a k′-bushy subset.

The argument here is the same as §VIII.2.4. Note that if τ is the first place
(from the root) where we terminate l′-bushy system, then by induction, we know
that at the previous level we are not terminating such a l′-bushy subtree system,
therefore the remaining top-nodes are still bushy (at least l−-bushy). So on such
S(τ) we are able to find two l′-bushy subsets Π0,Π1 which form a pairwise splitting
pair. This contradicts the fact that such τ ’s cannot be k′-bushy by the positive
answer to our question.

forcing B ≤T ϕ
B
e

If we have a no answer to our question, then we know that for every accessible pair
(τ, ρ) we can always find a finite k′-bushy tree Γ above τ such that for every top
node τ ′ of Γ there are two pairwise e-splitting l′-bushy Π0,Π1 on S(τ ′). We use the
following lemma to iterate the delayed splitting process. The proof is essentially
the same as the proof of [KLxx, Lemma 6.2] (construct a string ψi bit by bit and
argue by cases).

Lemma VIII.3.2. Let (τ1, ρ1) and (τ2, ρ2) be given. Above (τ1, ρ1), we have a
(u1, v1)-bushy tree system (Γ1,∆1), and above each top node τ ′ on Γ1, there is a
u1-bushy tree Γ such that for every top-node τ ′′ on Γ and every top-node ρ′ on
∆1(τ

′), there are two v1-bushy pairwise e-splitting pairs Π0,Π1 above ρ′ on S(τ ′′).
Let Π be the collection of all top-nodes on such Π0 and Π1. Above (τ2, ρ2) we have
a (u2, v2)-bushy subtree system Γ2,∆2 such that every top node on the system has

98

longer ϕe-image than any node in Π. Within these given nodes, we can find sub-
tree systems above (τ1, ρ1) and (τ2, ρ2) which are (u−−1 , v−−1)-bushy and (u−−2 , v−−2)-
bushy respectively, and such that all top-nodes on one tree system pairwise e-split
with all top-nodes on the other tree system.

In this lemma, note that all these bushy tree systems can have terminal nodes
(on (T, S)) and these terminal nodes do not have to satisfy the properties about
their ϕe-images, in the conclusion we get tree systems with possible terminal nodes,
and similarly these terminal nodes may not have e-splitting properties.

Now it is clear that we can iterate this lemma with the “no” answer of our
question to construct a delayed splitting subtree system. At the inductive step, we
have already constructed the tree system up to some finite part (Γ,∆). Let Π be
all the top-nodes on (Γ,∆). Then to get the next level system, we use the above
lemma to make sure that for any two strings ρ0, ρ1 in Π, all extensions of ρ0 e-split
with all extension of ρ1 at the next level tree system.

At the inductive step, above some nodes τ on Γ and ρ on S(τ) we may have
already set up some extensions, and we are going to shrink these extensions step by
step to finally reach the ones we want. We pick ρ1 at τ1 and ρ2 at τ2, two top-nodes
(Γ,∆) which we haven’t forced splitting. Note that we may have already picked
some of their extensions (Γ1,∆1) and (Γ2,∆2) as in the lemma. For the top-nodes
of (Γ1,∆1) we apply the negative answer to our key question to get e-splitting pairs
(if it is accessible) or terminated bushy subtree systems (if it is not accessible). For
(Γ2,∆2), we extend it to some tree system where the top-nodes have long enough
ϕe-images by totality forcing. Then apply the lemma we can get two tree systems
extending (τ1, ρ1) and (τ2, ρ2) respectively by shrinking the bushiness by a factor of
4 and make sure that all extensions of ρ1 and all extensions of ρ2 pairwise e-split.
We do not define them as extensions on the new subtree system until we finally
finish this whole process making every pair of top-nodes delayed e-splitting.

(If ρ1 and ρ2 are on the same S(τ), i.e., τ1 and τ2 are the same in the above
lemma, then we use [KLxx, Lemma 6.2] and the construction there instead to force
delayed splitting on the tree.)

Each iteration reduces the bushy number from f to f−−, and in the end the
tree part bushiness is reduced by 2w2 levels and the system part by 2w levels,
where w(n) is the number of nodes on the system of length 2n. All terminations
in the construction are old ones, and so the admitting quadruple is reduced to
(k′−2w2

, h, l′−2w, q).

99

CHAPTER IX
THE N-R.E. DEGREES: UNDECIDABILITY AND Σ1

SUBSTRUCTURES (JOINT WITH SHORE AND SLAMAN)

IX.1 Introduction

Turing reducibility (introduced in [Tur39]) captures the intuitive notion of one set
A ⊆ N being computable from another B, We write A ≤T B, A is Turing reducible
to or computable from B to mean that there is a Turing machine (program) Φ that
can compute A if given access to an “oracle” for B in the sense that the computing
machine is augmented by a procedure that allows it to ask for any number n it
computes if n ∈ B and to receive (on a tape) the correct answer. This reducibility
naturally induces a partial order ≤T on the set D of equivalence classes (called
Turing degrees or simply degrees) a = {B|A ≤T B & B ≤T A}. The structure of
D then captures that of relative complexity of computation of sets and functions
(on N). The study of this relation on all sets (functions), and on many important
subclasses of sets has been a major occupation of recursion (computability) theory
ever since its introduction.

In addition to the full structure, D, the most important substructures studied
have been those of the recursively enumerable degrees, R, and D(≤ 0′), the degrees
below the halting problem, K = {e|Φe(e) converges} whose degree is denoted by
0′. The recursively enumerable sets are those which can be enumerated (listed) by
a recursive (computable) function. They can also be seen as those sets A for which
there is a very simple approximation procedure, a recursive function f(x, s) to the
characteristic function A(x) of A such that ∀x(f(x, 0) = 0 & lim f(x, s) = A(x))
that changes its mind about membership in A at most once, i.e. there is at most
one s such that f(x, s) 6= f(x, s+1). Shoenfield’s Limit Lemma ([Shn59]) says that
the sets (or functions) computable from the halting problem 0′ are precisely those
with some convergent recursive approximation, i.e. the sets A such that there is
a recursive function f(x, s) such that ∀x(f(x, 0) = 0 & lim f(x, s) = A(x)). So,
while for each x there are only finitely many changes, the number of such changes
over all x may be unbounded.

In this chapter we study a natural hierarchy of intermediate classes of sets and
degrees. The n-r.e. sets are those for which there is a recursive approximation
f(x, s) as above for which there are at most n changes of value at each x. The
corresponding degree structures are denoted Dn, the degrees of the n-r.e. sets. (So
D1 = R the r.e. degrees.) This hierarchy was introduced by Putnam ([Put65]) and
Gold ([Gol65]). It was extended into the transfinite by Ershov ([Ers68a], [Ers68b]
and [Ers70]) who proved that the sets in the transfinite hierarchy he defined are
precisely those computable from 0′.

The early work on degree theories began with the investigation of local algebraic
or order-theoretic properties of the structures. This work continues in full force
to this day. In the past three decades or so, a more global approach has emerged
as well. Here one studies issues such as the decidability or, more generally, the
complexity of the theories of degree structures as well as related questions about
definability in, and possible automorphisms of, these structures.

For the first couple of decades, a major motivating idea was that (at least
some of) these structures should be simple and characterizable by basic algebraic
properties. Shoenfield’s conjecture ([Shn65]) would have been such a complete
characterization of R analogous to that of the rationals as the countable dense

100

linear order without endpoints. Even after the conjecture had been refuted by
Lachlan ([Lac66]) and Yates ([Yat66]), Sacks ([Sac66]) still conjectured that the r.e.
degrees were decidable. More recent results have produced a dramatically different
prevailing paradigm for D, D(≤T 0′) and R as well as many degree structures for
other notions of reducibility. Rather than seeing the complexity of the structures
as an obstacle to characterization, it suggests that a sufficiently strong proof of
complexity would completely characterize each structure. Instead of expecting the
structures to be decidable and homogeneous with many automorphisms (like the
rationals), one looks to prove that the theories are as complicated as possible, there
are definable degrees and that the structure has few automorphisms.

Typical results include the following:

Theorem IX.1.1. D, D(≤T 0′) and R are each undecidable by Lachlan ([Lac68]);
Epstein ([Eps79]) and Lerman ([Ler83]); and Harrington and Shelah ([HaS82]),
respectively.

Theorem IX.1.2. The theories of D, D(≤T 0′) and R are as complicated as pos-
sible, i.e. recursively isomorphic to true second order arithmetic for D and to true
first order arithmetic for D(≤T 0′) and R by Simpson ([Sim77]); Shore ([Sh81]);
and Harrington and Slaman and then Slaman and Woodin (both unpublished) (see
Nies, Shore and Slaman ([NSS98]) for a proof and stronger results), respectively.

Theorem IX.1.3. All relations invariant under the double jump that are definable
in arithmetic are definable in D, D(≤T 0′) and R where for D we mean second
order arithmetic and for the others first order by Slaman and Woodin ([SW01]) (see
[Sla91] for an announcement and [Sh07] for a quite different proof that applies to
various substructures of D as well), essentially Shore [Sh88] (but see also [NSS98],
Theorem 3.11 and the remarks following it) and Nies, Shore and Slaman ([NSS98]),
respectively. (The converse holds by the definability of these degree structures in
arithmetic.)

A survey paper for this area is [Sh06].

We take the first steps on this road for the structures Dn by proving that they
are all undecidable. We conjecture that our work can be extended along the lines
of [NSS98] to show that their theories are also all recursively isomorphic to that
of true arithmetic. Perhaps one can even prove definability results as done there
for R. Basic survey papers on the structure of the Dn are [Ars09], [Ars10] and
[SYY09].

Another important theme in the study of these degree structures has been
delimiting the similarities and explicating the differences among them. While it is
relatively easy to distinguish among D, D(≤T 0′) and R in many way the issue
becomes particularly compelling when we turn to the Dn. It is easy to imagine,
and was proved early on, that moving from R to all sets or even to the unlimited
approximations characterizing those below 0′ introduces many differences. For the
Dn, however, the question is what does the ability to change precisely one more
time buy us in terms of additional degrees, algebraic structure and complexity.

Of course, the first question is are the Dn actually distinct. Indeed, there are, for
each n, (n + 1)-r.e. degrees which are not n-r.e. ([Coo71] with the stronger result
that they can be found not even n-REA in [JSh84]). While the one quantifier
theory of all the degree structures from R to D are the same since one can embed
all finite (even countable) partial orderings into R (and so all the rest as well),
there were many early results establishing elementary differences between R and

101

the other Dn with cupping, density and lattice embedding properties playing the
featured role (as in, for example, [Ars85], [CLLSS91] and [Dow89], respectively).
Differences between any of the other Dn, however, seemed hard to find. [Dow89]
even conjectured that they might all be elementarily equivalent, i.e. all sentences
(in the first order language with ≤) true in any Dn for n ≥ 2 is true in all of them.
This conjecture was not refuted until quite recently. Arslanov, Kalimullin and
Lempp ([AKL10]) provide an elementary difference between D2 and D3. In fact,
the sentence they exhibit on which the structures differ is at the smallest possible
level: two quantifiers (∀∃). They conjecture (as one would now expect) that the
Dn are pairwise not elementarily equivalent. They also conjecture that this level
of difference (∀∃) is as small as possible in the strong sense that every ∃∀ sentence
true in any Dn is true in every Dm for m ≥ n.

Now an ∃∀ sentence is true if there are choices (parameters substitutable) for
the existentially quantified variables such that the resulting universal sentence is
true of these parameters. The strongest way that their conjecture could be true is
for the same parameters to work in both structures. This view brings to mind a
much earlier question raised about other pairs of our degree structures. Are any
Σ1 substructures of any others. (M is a Σ1 substructure of N , M �1 N , if for
any Σ1 formula ∃ȳϕ(x̄, ȳ) where ϕ is quantifier free and any choice of elements ā
from M, M � ∃ȳϕ(ā, ȳ) ⇔ N � ∃ȳϕ(ā, ȳ).)

Slaman ([Sla83]) proved early on that this fails at the extreme ends: R �1 D(≤
0′) (and so, a fortiori, Dn �1 D(≤ 0′) for any n ≥ 1. Slaman and then others
raised the natural question of whether it could be that Dn �1 Dm for any n < m.
Yang and Yu ([YY06]) provided a negative answer for n = 1 and m = 2 (and so for
any m ≥ 2). We complete the picture by showing that Dn �1 Dm for any n < m.
(We have just heard that Arslanov and Jamaleev are preparing a different proof
for the case n = 2.)

Turning now to our proofs, we begin with undecidability. As usual (see for essen-
tially our situation §2 of [NSS98] or for a more general model theoretic treatment
[Hod93, §5.3]), we have a formula ϕD(x, p̄) which, for each choice of parameters
p̄, defines a subset D of our structure Dn and another formula ϕR(x, y, p̄) which
defines a binary relation R on D. To prove undecidability it suffices to show that,
as the parameters vary over Dn, a sufficiently rich class of structures (D,R) are
coded in this way. In our case, we code partial orders. As the (r.e.) set of theorems
of the theory of partial orders is recursively inseparable from the (r.e.) set of sen-
tences (of the language of partial orders) that are false in some finite partial order
([Ta62]), it suffices to code any collection of relations containing all finite partial
orders. The point here is that if Dn were decidable then the set of sentences true
in every partial order coded by ϕD and ϕR as the parameters p̄ range over all ele-
ments of Dn would be recursive. Of course, it contains the theorems of the theory
of partial orders and, if we code all finite ones, is disjoint from the set of sentences
with finite counterexamples. As it turns out, it is no more difficult to prove that
one can code all recursive partial orders than all finite ones. This is what we do
explicitly in our proof of Theorem IX.1.4.

Theorem IX.1.4. Given a recursive partial order (ω,≤∗) and an n ≥ 1, there
exist uniformly n-r.e. sets Gi for each i ∈ ω, an n-r.e. set L and r.e. sets P and
Q such that:

1. Each gi is a maximal n-r.e. degree below a such that q � gi ∨ p where A =⊕
iGi.

102

2. gi ≤ gj ∨ l if and only if i ≤∗ j.

Thus the required formulas ϕD and ϕR defining our domains and order relations
have parameters a, p and q. The first says that x is a maximal degree below a
such that q � x∨p. The second says that x ≤ y∨ l. so we have the desired result.

Theorem IX.1.5. The theories of Dn are undecidable for every n.

If instead of recursive inseparability, we wanted to rely only on the undecidabil-
ity of the theory of partial orders, we should code all partial orders recursive in
0′ as every sentence which is not a theorem (of the theory) has a counterexample
recursive in 0′ by the effective version of the completeness theorem.

One can with only minor modifications not affecting the structure of our proof
handle partial orders recursive in 0′.We precisely describe the modifications needed
in IX.6.5. With some additional work and a serious reorganization of the priority
tree, one can get all partial orders recursive in 0′′. One puts in a new type of
node which guesses in a ∆3 procedure at each bit of information about this partial
order and bases later work on these guesses. The added complexity is considerable
without much gain for applications. It seems that one can even get any Σ3 partial
order by a slightly more complicated procedure. We briefly describe this procedure
in IX.6.5 as well.

It is worth remarking that our proof works for n = 1 as well as all larger n.
Indeed, it can be significantly simplified for n = 1 by omitting all items that
consider the possibility that the Gi and Wi (the list of n-r.e. sets recursive in A)
are not r.e. This gives a considerably simplified proof of the undecidability of R
along the lines suggested in Harrington and Shelah but with a simpler statement
using fewer parameters and a significantly easier construction. We do not believe
any proof even for R along these lines has been published before.

We next turn to Σ1 substructures.

Theorem IX.1.6. Dn �1 Dm for n < m.

The technical result needed here is the following generalization of Theorem 1.12
in [YY06] who do the case n = 1:

Theorem IX.1.7. For any n ≥ 1, there are r.e. degrees g,p,q, an n-r.e. degree
a and an n+ 1-r.e. degree d such that:

1. For every n-r.e. degree w ≤ a, either q ≤ w ∨ p, or w ≤ g.

2. d ≤ a, q � d ∨ p, and d � g.

This theorem shows directly that Rn is not a Σ1 elementary substructure of
Rn+1 in the language with ∨ as well as ≤: In Rn, no w below a has the property
that q � w ∨ p and w � g while in Rn+1, d ≤T a has both properties. We can
elimnate ∨ by rephrasing the property of w as ∃z(w,p ≤ z & q � z) & w � g
which is Σ1 in just ≤ and so the existence of a w with this property is true in Dn+1

(i.e. d) but false in Dn. Of course, as d is in Dm for every m ≥ n+ 1, Dn �1 Dm

as well.

Much of the construction and verification is the same for Theorems IX.1.4 and
IX.1.7. We treat the first theorem as primary. In §IX.2 where we cover basic

103

notions and conventions common to both, we use curly brackets { } to indicate
changes (usually alphabetic only at this stage) for the second theorem. The rest
of the chapter is divided into two parts, one for each of the theorems. Each part
describes first the requirements (§IX.3, IX.7), then the priority tree (§IX.4, IX.8),
the construction (§IX.5, IX.9) and finally the verifications that the construction
succeeds (§IX.6, IX.10). We describe everything in full detail for the first theorem
and then for the second describe only the changes needed. In our descriptions
of the constructions, material enclosed in square brackets [] is meant to convey
intuition or describe aspects of the construction that will only be verified later. It
is not part of the formal definition of the construction procedures.

As might be expected from the types of requirements, both constructions are 0′′′

arguments even for the case n = 1. As these constructions go, however, ours are
at the simpler end: the priority tree is finitely branching, there is no backtracking
and only one type of requirement is injured along the true path. The key idea
for carrying the arguments from the r.e. case (n = 1) to the n-r.e. one (n > 1)
in Theorem IX.1.4 is what we call shuffling (§IX.5.2). Roughly speaking, at the
crucial 0′′′ determined nodes, we are attempting to construct functionals ∆ that,
to working towards the maximality of the gi, try to compute some given n-r.e. set
W = Φ(A) from one Gi that we are building over the full construction. The most
delicate part of the verification of the first construction is the correctness of these
functionals (Lemma IX.6.8). We argue that the cause of an incorrect computation,
say of ∆(u), must be that some number z entered A for the first time and allowed
W (u) to change. Another delicate argument shows that if W also changed for the
first time, we could correct the functional ∆ (or see that we are not on the true
path). If the change in W was not that u entered for the first time, we argue that
we can shuffle A between two past values (giving, via Φ, two different values for
W (u)) by repeatedly taking z out and putting it back in as necessary so as to
eventually show that W 6= Φ(A).The point here is that z has entered A for the
first time while the change in W is not a first change. Thus as Wl can make no
more than n changes overall, it can make no more than n− 2 additional changes.
On the other hand, as z has entered A for the first time, we can make n− 1 more
changes in A and so eventually guarantee that W 6= Φ(A).

In the second construction (§IX.9.2), the correctness of the functionals ∆ be-
comes immediate as we simply change Gi when necessary. The crucial problem
then becomes guaranteeing the correctness of computations from Gi diagonalizing
against D (§IX.10). Here we take advantage of the fact that D can change one
more time than any other set by using a procedure like one used in [YY06] to
remove a number (that entered for the first time) from D. In our case it allows
us to either cure some problem we are facing or start a shuffling procedure for A
diagonalizing against the offending W .

IX.2 Basic Notions and Conventions

Given a set A, let A � u be the initial segment of A of length u.

In this chapter, we use upper case Greek letters to denote Turing functionals.
For any Turing functional ∆, the use of a convergent ∆(A;x) is defined as the least
number u such that ∆(A � u;x) ↓. We use lower case Greek letters corresponding
to the Turing functional to denote the use, e.g. δ(A;x) denotes the use of ∆ at x.
More importantly, we injure the computation by adding δ(A;x) − 1 into A, but

104

not by adding δ(A;x) into A. If it doesn’t cause confusion, we may omit A and
write δ(x).

We will have families Ψ, Π, Θ and Φ which specify standard enumerations of
all the Turing functionals. We follow the usual conventions for such standard enu-
merations such as the approximations to these functionals for any (approximation
to an) oracle set at stage s asks questions about (makes use of) only numbers less
than s and converges only at inputs less than s. We also assume, without loss of
generality, that for the standard enumerations with two oracles such as Θ(G⊕P ;x)
the uses on both are always the same and we denote it by θ(x).

We will also construct two families of Turing functionals ∆(G) and Γ(W ⊕ P).
For the ones with two oracles, we do not require that the uses of W and P are
the same. Hence we can write γ(W ;x) and γ(P ;x) to denote the W and P parts
of the use, respectively. Although for simplicity we generally work as if we are
specifically defining these oracles at each individual x with the associated uses,
we really are assuming that the uses are monotonic in x and make all changes
to keep them that way, usually without explicit mention. As Q is r.e., when we
are computing it from W ⊕ P by Γ, except for this monotonicity condition, we
only need to produce computations (axioms) that at x give output 0 when x /∈ Q.
These may be injured and new ones put into Γ (perhaps with larger use). In the
case that x /∈ Q and we are expecting Γ to compute Q, we must eventually settle
on a convergent computation (axiom) applying to Wi⊕P . If x ∈ Q, when x enters
Q it suffices to kill any current computation of 0 from Wi ⊕ P . We do this by
putting a number less than the P -use into P . We can then simply keep the value
of Γ at 1 without changing the use (remembering that P is r.e.).

In our two constructions, we specify priority trees which grow downward. At
each stage s of the construction, we build a path of length s {at most s} of accessible
nodes along the priority tree. Our convention is that, the nodes to the left of, or
above, a node α have higher priority. We always preserve the information used at
previous stages by the nodes that are to the left of the accessible ones by initializing
the nodes that are to the right of the accessible ones, i.e., remove all information
from previous stages such as witness numbers, defined functionals and imposed
restraints.

Nodes can impose two types of restraint: a permanent one or an alternating one.
Permanent restraint means that no node of lower priority can act so as to injure the
restraint by changing a set where restrained. By convention permanent restraint
imposed at stage s restrains the initial segments of length s of L and all the Gi {A,
D and G}. Any permanent restraint on P must be mentioned specifically. [We
never need to restrain Q.] Alternating restraints are caused by the announcements
of A-stages or P -stages which we describe later in the construction. Basically,
during A -stages, we remove the alternating restraint for L and the Gi {A and
D} allowing numbers to enter (or leave) these sets and we impose an alternating
restraint on P and Q {and G} so that no numbers can enter P or Q {or G} at this
stage. During P -stages, we do the opposite (except that no numbers ever leave
the r.e. sets P or Q {or G}).

IX.3 Requirements I

We now begin the proof of our main technical result.

Theorem IX.3.1. Given a recursive partial order (ω,≤∗) and an n ≥ 1, there

105

exist uniformly n-r.e. sets Gi for each i ∈ ω, an n -r.e. set L and r.e. sets P and
Q such that:

1. Each gi is a maximal n-r.e. degree below a such that q � gi ∨ p where A =⊕
iGi.

2. gi ≤ gj ∨ l if and only if i ≤∗ j.

First, for the negative order facts, we have requirements for each pair i �∗ j
and each e:

Ψe,i,j : Ψe(L⊕Gj) 6= Gi.

Similarly for each triple (i, j, e) with i 6= j, we also want:

Πe,i,j : Πe(Gj) 6= Gi,

i.e., the Gi’s are pairwise incomparable.

Then for each pair (i, e) we need:

Θe,i : Θe(Gi ⊕ P) 6= Q.

We also need the main requirements that each gi is a maximal n-r.e. degree
g ≤T a such that q � g ∨ p. We let Wi be an effective list of all the n-r.e. sets.

Φe,i : Φe(A) = Wi → [∃Γ(Γ(Wi ⊕ P) = Q) ∨ (∃k(Wi ≤T Gk))].

• Note that these Φ requirements by themselves do not ensure that each gi

is maximal. That is why we need the Π requirements to make all the Gi’s
pairwise incomparable. The Φ requirements then do guarantee that the gi

are maximal.

If it does not cause confusion, we may omit the subscripts of the requirements
and sets in our argument to simplify the notation.

Finally, we have to deal with the positive order facts, i.e., Gi ≤T L ⊕ Gj for
i <∗ j. We will guarantee that, for x > i, j, x ∈ Gi ⇔ x ∈ L or x ∈ Gj. Putting
numbers into a Gi is initiated only by a Ψ or Π requirement. For Π action, we
simply put a witness x that is going into Gi (for diagonalization) into L as well.
When action is initiated for diagonalization by Ψ at stage s, we put x into Gi and
also into each Gl with l >∗ i for each l < x. As, in this case, i �∗ j, this action does
not add elements to Gj and so it does not injure the Ψ computation initiating the
action. We say that each witness x (for a Ψ or Π requirement) has an associated
block of sets (the Gl such that l < x and i ≤ l or Gi and L, respectively). During
the construction x moves into or out of all the sets in its block simultaneously.

106

IX.4 Priority Tree I

We put all the Ψ,Π,Θ and Φ requirements into one priority list. Our priority tree
consists of nodes and branches. Each node is associated with a requirement in the
list and each branch leaving a node is assigned an outcome. We label each node
with its associated requirement and each branch with the assigned outcome. When
we list outcomes of a node we do so in a left to right order that specifies the left
to right order on the priority tree of the branches leaving that node

A Ψ or Π node has two outcomes: d and w, which stand for “diagonalization”
and “wait” respectively.

A Φ node has outcomes sn−1, sn−2, . . . , s1, i and w. Outcome si stands for
“shuffle” for the i-th time. We will explain what this means in detail in the
construction. Roughly, it means that we expect to shuffle between two versions
of A (by removing numbers from A and then possibly putting them back in) as
we cycle back to this node. The expected result of this shuffling is to guarantee
that Φ(A) 6= W by a diagonalization. Outcome i stands for “infinite” agreement
between Φ(A) and W and outcome w stands for “wait”.

A Θ node β has outcomes d, gα1 , gα2 , . . . , gαk
and w. As usual, d and w stand

for “diagonalization” and “wait” respectively. Each αi is a Φ node above β which
has outcome i along β. If γ is a node below β extending the gαi

branch from β,
then we say that γ sees an αi − β pair. [The intuition here is that γ believes that
αi and its associated requirement is satisfied by β.]

A Φ node α is active at γ ⊃ α if α has outcome i along γ and γ does not see
an α′ − β′ pair such that α′ ⊆ α ⊂ β′ ⊂ γ. For there to be a gαi

outcome of a Θ
node β, we also require that αi be active at β. We order these gαi

’s from left to
right in descending order going down the tree to β, i.e., α1 ⊂ α2 ⊂ · · · ⊂ αk. [This
choice of left to right order comes into play at the very end of the proof of Lemma
IX.6.16.]

The priority tree is defined recursively as follows: suppose τ is an immediate
extension of σ, we associate τ with the highest priority requirement among all
requirements which either have not appeared above τ or are Φ requirements that,
above τ , have appeared only at nodes δ with outcome i such that τ sees an α− β
pair with α ⊂ δ ⊂ β. [So δ looks inactive but not really satisfied, i.e. if satisfied
at some earlier point it has since been “captured” by some other pair.] Then we
add the corresponding number of branches (outcomes) below τ . It is easy to see
that this tree is recursive.

IX.5 Construction I

At stage s of the construction, we build a path of length s of the accessible nodes
along the priority tree. It is possible that at some accessible node we will announce
that s is an A-stage or a P -stage. All later nodes accessible at s must respect this
announcement by acting according the the rules governing A-stages or P -stages:
no changes in A can occur once a P -stage has been announced and none in P or Q
once an A-stage has been announced. In the construction, we will make sure that
the first accessible Θ node with a type g outcome (if any) makes the announcement
for the stage s. An over-riding rule is that permanent restraint imposed by a node
(not since initialized) is not violated by action at any node of lower priority (i.e.

107

below it or to its right). If any instruction below leads to any such situation, we
do not carry it out and instead go to outcome w [and do nothing].

In this section, we first describe the construction at stage s for each node when
there has been as yet no announcement for the stage and then specify the modifi-
cations for when there has already been one.

IX.5.1 No announcement, Ψ or Π node

The actions at Ψ and Π nodes are quite standard: If it is the first time we come to
this node (after it was last initialized), then we pick a witness number x which is
fresh, i.e., larger than any number we have seen by this point in the construction.
In general, at a Ψ (Ψ(L ⊕ Gj) 6= Gi) or a Π (Π(Gj) 6= Gi) node with a witness
x already assigned (and not yet canceled by initialization), we check whether the
computation at x converges to 0. If it diverges or converges to a nonzero number,
then we do nothing and go to the w outcome. If it converges to 0 and x /∈ Gi, then
we do a diagonalization: put x into Gi and into all the other sets in its block as
described in Section IX.3, impose permanent restraint [to preserve the use of the
computation] and go to the d outcome. If x is already in Gi, then we (again) go
to outcome d [and keep the restraint already imposed].

IX.5.2 No announcement, Φ node

At a Φ node α (Φ(A) = W) if we have not yet had a type s outcome (since α
was last initialized) let t be the last stage at which α was accessible (since last
initialized). If there is a such stage and a u < lα(t), lα(s) such that Φ(u) (and so
W (u)) differ at t and s with the difference not being that u has entered W for
the first time and the only change in A � φ(u) at t is that some z has entered its
block of sets for the first time because of the action of a node extending α then
we initiate a shuffle on z by removing z from its block of sets, impose permanent
restraint and go to outcome s1. We call this shuffle strategy Plan S with shuffle
points sp1(= t) < sp2(= s). [Note that these shuffle points have the property that
Asp1(= Asp1 � sp1) and Asp2(= Asp2 � sp2) differ below sp1 only in that z is in its
block of sets in Asp2 and out of them in Asp1. More crucially, they produce different
values for Φ at some u, i.e. Φ(Asp1;u) 6= Φ(Asp2;u).] If we had an outcome of type
s at the last stage t at which α was accessible, we check whether W (u) is different
at s than at t. If so, restore the initial segment of A to the version of A which
is different from the current one (by putting z into or taking it out of its block
of sets), impose permanent and let the outcome be si+1. If not, we stay at the si

outcome. [This maintains any previously imposed permanent restraint.]

If we haven’t initiated shuffling, let lα(s) be the length of agreement between
the current versions of Φ(A) and W . Note that whenever we initialize this node
α, we also initialize the values of this function to be 0. If this is the first time that
lα(s) > 0 after it has last been initialized, or lα(s) > lα(t) where t is the last stage
when α had an i outcome, then we go to the i outcome; otherwise we go to the w
outcome.

If we go to the i outcome, we continue to define a functional Γ [aiming to
make Γ(W ⊕ P) = Q]. At this point, we enumerate a new axiom making Γ(W �
lα(s) ⊕ P � v;w) = Q(w), where v is a fresh number and w is one more than the

108

largest number where we have previously defined Γ (since it was last initialized).
If P has changed on its Γ-use at some x < w and the change was caused by the
action of a node βˆgα [necessarily extending αˆi] with witness x as in §IX.5.4,
then we redefine Γ(x) to be the current value of Q(x) with W -use lα(s) and fresh
P -use. [As P is r.e. this change permanently invalidates the previous axiom for
Γ(x).] Similarly, if W has changed on its use u1 (where its old P -use is v1) so as to
make Γ(x) divergent but x has not entered Q, we see if x is currently the witness
for some Θ node β below α (for G). If so, we look at the last stage t at which β was
accessible and see if its outcome was gα. If G has not changed on θ(x) as defined
at the point of stage t at which β was reached and the change in W includes one
at some u making it different from the common value of ∆(u) and W (u) at t, then
we redefine Γ(x) with W -use lα(s) = u2 and fresh P -use. In all other cases of a
W or P change on γ(W ;x) or γ(P ;x), respectively, that makes Γ(x) divergent we
redefine Γ(x) with the same uses as it last had but for the new values of W and P
(subject, of course, to our monotonicity requirements on the use).

IX.5.3 No announcement, Θ node

At a Θ node β accessible for first time after it has been last initialized, we pick a
fresh witness x for diagonalizing Θ(Gi ⊕ P) 6= Q. In general, if we have a witness
x already assigned (and not yet canceled by initialization), we check whether the
computation converges at the witness x. [As usual when there are higher prior-
ity requirements that are expected to put infinitely many numbers into a set, we
restrict our attention to computations that are consistent with our beliefs as pre-
scribed by our actions in §IX.5.4. Here this means the following:] We also require

that the computation be believable, i.e. for every requirement Θ̂ assigned to a node
α with witness x̂ and αˆgα̂ ⊆ β for some α̂, θ(x) < γα̂(P ; x̂) and if γα̂(P ; x̂) has

been previously increased by a Ŵ change (as described at the end of §IX.5.2) from
say u1 to u2 and v1 − 1 is not yet in P then θ(x) < v1 as well. If Θ(x) does not
converge with a believable computation or so converges to a nonzero number, then
we go to the w outcome and do nothing.

[If the believable computation Θ(Gi ⊕ P ;x) converges to 0 with P -use θ(x),
then we would like to diagonalize, i.e., put x into Q and preserve the P and Gi

use of the computation. However, we must worry about whether doing so injures
some already defined Γ computation at a node above β. For example, if there is
a such a Γ(W ⊕ P) = Q which computes Q(x) = 0 with γ(P ;x) ≤ θ(x), then our
desired diagonalization would falsify this computation of Q while correcting the Γ
computation (by putting its use into P and redefining the functional) would injure
our Θ computation for diagonalization. Our plans must be more subtle.] If Θ(x)
converges with a believable computation we proceed as follows:

Let α1 ⊂ α2 ⊂ · · · ⊂ αk be all the active nodes above β with each αj defining
its functional Γj(Wlj ⊕ P). Let γj(P ;x) be the P -use of Γj at x, if it has already
been defined.

Plan D: diagonalization

If θ(x) < γj(P ;x) for all j for which γj(P ;x) is defined, we do a modified diag-
onalization: We enumerate x into Q and also enumerate γαj

(P ;x) − 1 into P for

109

each j. [This allows us to correct the Γj(x) when αjˆi is next accessible.] We now
impose the usual permanent restraint but also one on P � θ(x) [to preserve the
Θ computation] and go to outcome d. Until β is initialized, it has outcome d at
every later stage at which it is accessible.

IX.5.4 Stage announcements

If we cannot follow Plan D, i.e., θ(x) ≥ γj(P ;x) for some j, then we take the
largest j such that θ(x) ≥ γj(P ;x) [and are likely to go to outcome gαj

where
we build a functional ∆ computing Wlj from Gi]. [The choice of j is relevant at
the very end of the proof of Lemma IX.6.8 but our choice of the largest j (rather
than say the smallest) doesn’t make any difference in this construction. It does,
however, matter in the at the end of the proof of Lemma IX.10.1 for our second
theorem.]

Plan A: A-stage announcement

If this is the first time (since the last initialization) that we would go to the gαj

outcome or the last time we went there we announced a P -stage then we go to
outcome gαj

and announce an A -stage [and so allow elements to be enumerated
into or taken out of A].

Otherwise, let t be the last stage when βˆgαj
was accessible. By our construction

and case assumption, t must have been announced as an A-stage at βˆgαj
. (If some

node to the right or left of βˆgαj
made an announcement at stage t then β would

not have been accessible at t . If some node α above β made an announcement at t
then one would also have to be made above β at s contrary to our case assumption
that no announcement has been made at this stage before we reached β.)

Plan P: P -stage announcement

We now go to the gαj
outcome and extend ∆ by adding axioms computing Wlj(u)

from Gi with fresh use for any u < lαj
(s) for which ∆ has not previously been

defined. In addition, we put γj(P ;x)−1 into P to injure the current Θ computation
(since γj(P ;x) ≤ θ(x)). [This kills the current computation of Γ(x) and as P is
r.e. it can never apply to W ⊕P again.] Moreover, if γj(P ;x) has been previously

increased by a Ŵ change (as described at the end of §IX.5.2 from say u1 to u2

and v1 − 1 is not yet in P then we also put v1 − 1 into P . [This kills the old
computation of Γj(x) as well as and guarantees that it too will never again apply
to W ⊕ P .] [We will redefine Γj with axioms using the new version of P with a
fresh P -use and Wlj use lαj

(v) when we next get to αjˆi at v. The result of this
action is that we increase the Γj use from P and Wlj and so the next time when
this β is accessible with the gαj

outcome, the use θ(x) must be larger than that of
this stage. If this happens infinitely often Γj(x) diverges but we expect to satisfy
the associated Φ requirement by building ∆(Gi) = Wlj at βˆgαj

. We then also
satisfy the Θ requirement associated with β as Θ(x) diverges as well.] We now
announce that the current stage is a P -stage.

110

If there has been a change in Gi that leaves ∆(u) undefined where it had previ-
ously been defined, we put in a new axiom computing the current value of Wlj(u)
with the old use.

[We shall argue for β on the true path with true outcome gαj
that we build ∆

consistently and correctly compute Wlj at each stage (Lemma IX.6.8). Typically, it
turns out that, along the true path, if Wlj has changed where previously computed,
then Gi must have changed at the corresponding part used in the computation.]

IX.5.5 Modifications with a stage announcement

When there has already been a stage announcement before we reach β , the node
β has to obey the appropriate rules. For a Ψ, Π or Θ node, we see what we
would have done if there had been no stage announcement as yet. If that action is
compatible with the current stage announcement (no announcement of an A-stage
or change in A if a P -stage; no change in P or Q and no announcement of a P -stage
if an A -stage), we proceed as if there had been no announcement. If not, we do
nothing and go to outcome w.

For a Φ node, the modification is slightly trickier. [Later we will need the fact
that each node along the true path passes down alternating A and P restraints
in the construction.] Here in order to go to the i outcome, we need to wait (with
outcome w) for a stage when the stage announcement is different from the last
stage t when we had an i outcome, and also the length of agreement is longer than
its last value. [In this way, the Φ node passes down alternating A and P restraints
along the i outcome.] When we have already initiated shuffling, we act as before
at A-stages and at P -stages we go to outcome w. [This maintains the permanent
restraint imposed when we initiated shuffling or last shuffled as the nodes that
imposed it are now to our left.]

IX.6 Verification I

IX.6.1 True path and true outcome

First of all, as in usual priority tree arguments, there is a leftmost path accessible
infinitely often. (Each node has only finitely many outcomes.) This is the true
path and the outcomes along it the true outcomes.

Lemma IX.6.1. Numbers enter or leave A or L only when permanent restraint
is imposed by a Π, Ψ or Φ node. When such nodes β impose permanent restraint,
we move to the left of any previous outcome that has been accessible since β was
last initialized.

Proof. By inspection of the construction.

Lemma IX.6.2. At most one node acts to change A at any stage s.

Proof. If we first act at α to change A at s then we move to an outcome to the
left of all previously accessible ones (since α was last initialized) by Lemma IX.6.1.
So all later nodes accessible at s that can change A are accessible for the first

111

time since last initialized and so at most appoint fresh witnesses or (for Φ nodes)
begin their construction of Γ anew. None of these witnesses can go in at s as no
convergences can be seen at numbers larger than s. No shuffling can been initiated
for any of the Φ nodes by construction.

Lemma IX.6.3. If a node α is initialized at stage s then it never later acts to
change any set below s.

Proof. If α is a Π, Ψ or Θ node it only acts to put numbers at least as large as
its witness x into A or P and any witness appointed after s is larger than s. For
Π and Ψ nodes this is immediate. For Θ, its action puts numbers of the form
γ(P ;x)− 1 into P and by construction γ(P ;x) > x. For Φ nodes, the only action
changing sets is shuffling. This shuffling only involves numbers appointed below α
at stages when α was accessible since it was last initialized.

Recursively along the true path, we now determine the actions of the nodes on
it after no node to their left is ever accessible and prove that all the requirements
are satisfied along it. For any node β on the true path we let s(β) be the first stage
at which β is accessible but after which no node to its left is ever accessible again.

Lemma IX.6.4. Any permanent restraint imposed by a node β at any s ≥ s(β)
is never injured by any other node.

Proof. The only actions that can injure such restraint after s(β) are ones by nodes
above it on the true path. None can change A or L by Lemma IX.6.1. As for P ,
the only permanent restraint imposed on P is by Θ nodes when we go to outcome
d and restrain P � θ(x). Now nodes β̂ above β of type Θ with outcomes gα̂ may put
numbers into P but they only put in ones of the form γα̂(P ; x̂) and our believability
requirement on the computation of Θ(x) guarantees that all of the current values
of these γα̂(P ; x̂) are larger than θ(x). The only way one of them could decrease
is if it had previously been increased from u1 to u2 by a change in W as described
at the end of §IX.5.2 and then W changes back to the old value before the old
computation is killed by v1 − 1 going into P . However, our believability condition
also requires that θ(x) is less than these v1 as well. Any later change increases the
use above the previous values Thus no changes every occur in P below θ(x).

Lemma IX.6.5. The final witness for any node β chosen at s(β) is larger than
any permanent restraint of higher priority than β.

Proof. By construction the witness is chosen fresh and so larger than anything
previously seen. The only nodes of higher priority that can impose permanent
restraint later are ones above β. None of type Π, Ψ or Φ can do so by Lemma
IX.6.1. One of type Θ also imposes permanent restraint only when it moves left
to outcome d contradicting our definition of s(β).

Before we show that the requirements are satisfied we analyze the alternating
restraint.

112

IX.6.2 Alternating A and P -stages

Lemma IX.6.6. Every node along the true path above the first Θ node β with type
g outcome on the true path never sees or makes a stage announcement (imposes
alternating restraint) when accessible. For the other nodes α on the true path, their
true outcomes, o, are accessible at infinitely many A and P -stages. Indeed, after
s(αˆo) , the stages at which αˆo is accessible alternate between A and P ones (the
node passes down alternating A and P restraints along its true outcome).

Proof. For any node above β the claim is immediate from the rules of the con-
struction. For a Π or Ψ node below β, it is immediate from the construction that
after s(β) either we always have outcome w or, whenever we are at β after the first
time we have outcome d we also have outcome d. So for these nodes the Lemma is
obvious. For a Φ node below β, either the true outcome is shuffling (s), or waiting
(w), or infinitary (i). In the two former cases, the outcome is again eventually
constant: Once we move to a type s outcome, the construction guarantees that we
can move only to the left to another type s outcome. Thus the outcome is eventu-
ally constant at some type s outcome. As for outcome w, any rightmost outcome
that is the true outcome of a node β on the true path is the outcome at almost
every stage at which β is accessible. In the third case, our construction in §IX.5.5
ensures that it passes down alternating A and P restraint along the outcome i as
required.

The Θ node β which first makes the announcements along the true path must
have true outcome some gα. Then according to our construction, if it announced a
P -stage the last time it was accessible, we follow Plan A and make an A-stage an-
nouncement. If it last announced an A-stage, then we follow Plan P and announce
a P -stage.

Finally for any other Θ node β′ on the true path, the claim is also immediate
for true outcome d or w as above. In the case of a gα outcome, the construction
automatically guarantees that it always waits for an alternation in the type of
restraint to move again to the true gα outcome.

We next analyze the functionals ∆ and Γ that we construct.

IX.6.3 The functionals are well-defined and correct

Lemma IX.6.7. The functionals Γ built at nodes αˆi on the true path starting
at s(αˆi) are well-defined, i.e., we do not add contradictory axioms in the con-
struction and when defined give the correct current value for Q. They are defined
on arbitrarily large initial segments of ω and so, if convergent at every x, they
correctly compute the desired sets.

Proof. It is clear by construction that we define Γ(x) at least once for each x: As
αˆi is on the true path, lα(s) is going to infinity on the stages at which αˆi is
accessible. On each of these stages we define Γ on a new number. Once defined
Γ(x) is then defined at every stage at which αˆi is accessible by construction. As for
consistency and correctness, note first that it is immediate from the construction
that at any stage at most one axiom in Γ applies to the current value of W ⊕ P .
Now, the only way any problem could arise is if Q(x) has changed for some x but
W and P have not changed on the corresponding use or they change and then

113

W reverts back to a previous value that applies to some older computation (with
value 0). However, in our construction, Q(x) can change only when we implement

Plan D to put x into Q at a some stage v for a Θ node β̂. Any number x put into
Q by such nodes to the right of αˆi must be both appointed fresh and then put in
while we are to the right of αˆi without αˆi becoming accessible in between. Thus
when αˆi is again accessible Γ has not been defined at x and so when we define
Γ(x) we set it equal to 1 with the first axiom and all later ones as well. Any x
put in by nodes to the left of αˆi are in by s(αˆi) and so we define Γ correctly on
them as well.

Thus we can assume that β̂ is below αˆi. If α is active at β̂, then when x
enters Q at v we put γ(P ;x) − 1 into P by construction and so kill the current
computation and put in a new one giving the correct answer when we next reach
αˆi. If α is not active at β̂, there must be a first β′ ⊂ β̂ with β′ˆα̂ ⊂ β̂ for some
α̂ ⊆ α. So in particular, α is active at β′. Now β′ has a witness x′ necessarily
less than x (as x is appointed later) and at stage v when we reached β′ˆgα̂ we put
γ(x′) < γ(x) into P and so kill the current computation of Γ(x) and correct it
when we next reach αˆi. Note that both P and Q are r.e. so γ(P ;x)− 1 has never
been in P before and x will never leave Q. As we impose permanent restraint
when we go to outcome d and diagonalize, no later change in W can return us to
any old computation.

Lemma IX.6.8. The functional ∆ defined at the true gα outcome of a Θ node
β (for Gi) on the true path starting at s(βˆgα) is well-defined. When ∆(u) is
convergent while we are at βˆgα, it always give the current value of W (u) on an
initial segment of ω. Indeed, ∆(Gi) = W as desired. (For notational convenience
we assume that α is assigned the Φ requirement for W which is constructing the
functional Γ at its i outcome.)

Proof. As for the final claim, note first that by construction if ∆(u) is ever defined
it is defined at every u′ < u and then it is defined there at every later P -stage
at which βˆgα is accessible. Moreover, at these stages we extend its domain of
definition to lα(s) which is going to infinity since αˆi ⊆ β is on the true path.
Once ∆(u) is defined, its use never changes by construction and so if, at every
stage when defined at βˆgα, it correctly computes W (u), it does so in the end.

For correctness, we argue by induction on the stages at which βˆgα is accessible
beginning at s(βˆgα) that ∆(u) = W (u) at every u at which ∆ is defined. This
is obviously true by construction if s is the first stage at which ∆(u) is defined.
Suppose it is true at s and the next stage at which βˆgα is accessible is t and the
problem occurs at u.

Note that no change in A � s or P � θ(x) can occur between s and t. No node
to the right of βˆgα can make such a change by Lemma IX.6.3. No node to its
left can do so as they are never accessible after s(βˆgα). No node above βˆgα can
change A at all by Lemma IX.6.1. Nodes above βˆgα may act to put numbers of
the form γα̂(P ; x̂) into P via other Θ requirements β̂ above β with outcome gα̂

but by our believability condition on the Θ(x) computation, at stage s none of
them are below θ(x) at s. The only way one of them could decrease is if it had
previously been increased from u1 to u2 by a change in W as described at the end
of §IX.5.2 and then W changes back to the old value before the old computation
is killed by v1 − 1 going into P . However, our believability condition requires that
θ(x) is also less than these v1.

114

If s was a P -stage then no change occurred in A � s at s so none has by stage t.
Thus if W (u) at t is different from its value at s it would be different from Φ(A;u)
at t since that is the same as it was at s. This would move us to outcome w at α
and so βˆgα would not be accessible for a contradiction.

Suppose then that s was an A-stage. No change in P � θ(x) occurs at s as
no node above the one announcing the A-stage can change P without declaring a
P -stage or moving left and none after it can because it is an A-stage. Moreover,
none can occur before t as above. If no change occurs in A at s then, as none
occurs before t, Φ(u) and ∆(u) would be the same at t as at s. If this value is not
that of W (u) at t then αˆi would again not be accessible at t for a contradiction.
Thus there has been some change in A at s. By Lemma IX.6.2, there is precisely
one z that entered or left its block of sets at s. By Lemmas IX.6.1 and IX.6.3 , the
node σ causing the change must extend βˆgα as we are after s(βˆgα) and βˆgα is
accessible. Now if there is no change in W (u) between s and t, then the only way
we could have a disagreement with ∆(u) at t (so the old axiom for ∆(u) at s is no
longer valid but we cannot simply put in a new one with the same value) is that
the change for z returns us to a previous computation of ∆(u) giving a different
value. However, such a change in z can be caused only by σ shuffling z. Such a
shuffle returns A � v to its value at a previous stage v. If ∆(u) was defined at v
then by induction it would have the same value as Φ(u) and W (u) and no change
can have happened in any of these when we reach t. Thus we would still have
agreement at t as required. So we may also assume that W (u) is different at s and
t.

Suppose first that z < θ(x) and Gi is in its block of sets. Next, suppose the
change occurred because of some shuffling procedure at σ . If ∆(u) was first defined
before the shuffling began at σ, then we would have a contradiction as above.

If ∆(u) was first defined after the shuffling began, say at v ≤ s with, for the
sake of definiteness, z ∈ G, then its use is fresh at v and so larger than z. Let
v′ ≥ v be the next stage after v at which we shuffle z at σ. If v′ = s then z has
been in Gi from v to s and is removed at stage s by our action at σ ⊃ βˆgα. Thus
when we next return to βˆgα at t we have z /∈ Gi for the first time since ∆(u)
was defined and we redefine it to be the current value of W (u) as required. So we
may assume that v′ < s and at stage v′ we have Φ(u) = W (u) = ∆(u) at βˆgα

by induction. When we reach σ at v′ we remove z from its block of sets including
Gi and impose permanent restraint. When βˆgα is next accessible, say at v′′ ≤ s,
we redefine ∆(u) = W (u) = Φ(u) with z /∈ Gi (and its block of sets) but with the
rest of A � v′ the same as it was at v′ (because of the permanent restraint imposed
at v′ which, by Lemma IX.6.1, could be violated only by moving to the left of σ
which could then not cause our problem at s). If v′′ = s then at stage s we shuffle
z back into Gi (and its block of sets) at σ and impose permanent restraint. We
next return to βˆga at t and have Φ(u) and ∆(u) and so W (u) the same as they
were at stage v′ at βˆgα, i.e. they all agree as required. Finally, if v′′ < s then later
at stage s we shuffle at σ between the values for all of these sets and functionals
that we had at v′ and v′′. Thus once again when we reach βˆgα at t all agree.

Thus the change that has occurred is that z entered Gi for the first time at s.
If the change in W (u) is not that u has entered for the first time, then we would
have initiated a shuffling procedure at α at stage t and so move to αˆs1 hence to
the left of βˆgα ⊃ αˆi for a contradiction.

Thus through stage s, W (u) = 0. Suppose ∆(u) was first defined at s′, of course
with value 0 and fresh use q. We claim that z < q and so its entry into G allows

115

us to correct ∆(u) at t as desired. If not, it was chosen fresh as a witness for σ
at a point in the construction during a stage s′′ ≥ s′ after ∆(u) was defined at s′

but before s. In this case, however, z > s′′ and so z > φ(u) at s′′. Note that Φ(u)
is defined at s′′ because z is appointed at σ ⊃ β ⊃ αˆi. Now from the point of
stage s′′ at which αˆi is accessible to stage s any change in A � s′′ would initialize
σ and so z could not enter A at s. (At s′′ no node between αˆi and σ can change
A without moving left of σ. Then at σ all nodes to the right of σ are initialized
and so cannot make any changes below s′′ by Lemma IX.6.3. As σ appointed a
witness at s′′, this is the first stage at which σ has been accessible since it was
last initialized so all A action by nodes below σ also involve only numbers larger
than s′′. Finally, any A action after s′′ by a node of higher priority than σ would
also initialize it by Lemma IX.6.1.) Thus at s, φ(u) and A � φ(u) are the same as
they were at s′′, i.e. Φ(A, u) = 0 = W (u) at s with the same computations as at
s′′. Now the only changes in A during stage s is that z enters its block of sets but
z > s′′ and then no changes occur in A � s before stage t. Thus at stage t we also
have Φ(A, u) = 0 and so if W (u) = 1 at t, the outcome of α would not be i, for a
contradiction.

Finally, suppose z ≥ θ(x) or Gi is not in its block so no change occurs in
Gi � θ(x) at s and so none before t. When ∆(u) was defined at the P -stage v
(necessarily before the A-stage s), u < lα(v) and so after v, u < γ(W ;x) whenever
it is defined. In fact, at each P -stage during which we reach βˆgα (starting with
v) we put γ(P ;x) into P and subsequently increase γ(W ;x) to lα(v′) > lα(v) when
we are next at αˆi (at v′ > v). Each computation of Γ(x) killed in this way can
never to reapply to W ⊕ P as P is r.e. As we cannot reach βˆd , the only other
way γ(x) can change requires a W change that causes a difference between the
previously computed common values of ∆ and W . By our induction assumption
this cannot have occurred before s. So all axioms for Γ(x) provided before s are
invalid by the end of stage s.

As W (u) has different values at s and t, the change in W introduces a value of
W (u) that we see at αˆi at some first stage v′′ after s but no later than t. As we
have argued, no old computation of Γ(x) is still valid at v′′. Thus by construction
we would increase γ(P ;x) at v′′ to a fresh value larger than θ(x). When we return
to βˆgα at t, γ(P ;x) is now larger than θ(x) which has not changed since s. Thus
by construction, gα cannot be the outcome of β at t for a contradiction.

IX.6.4 All requirements are satisfied

Finally we want to show that all requirements are satisfied.

The positive order requirements are easily verified by our construction.

Lemma IX.6.9. If i <∗ j then Gi ≤T L⊕Gj.

Proof. Consider an x > i, j. To decide if x ∈ Gi go to stage x of the construction
and see if x has been appointed as a witness for some Π or Ψ requirement with
Gi in its block. If not, then x /∈ Gi. (Indeed x is not in any Gk.) If it is in the
block for a Π requirement then L is also in its block. If for a Ψ requirement then
Gj is in the block. In any case, as once appointed x moves into or out of all sets
in its block during the entire construction, x ∈ Gi ⇔ x ∈ L in the Π case and
x ∈ Gi ⇔ x ∈ Gj in the Ψ case.

116

We now move to the negative (diagonalization) requirements.

Lemma IX.6.10. The Π and Ψ requirements are satisfied.

Proof. Suppose the requirement is assigned to the node β on the true path. If,
after s(β), we ever go to outcome d and so diagonalize, the result is immediate
from the construction and Lemma IX.6.4. If not, it must be that the outcome is
always w after after s(β). If the relevant computation converged to 0 the correct
computation would be available from some point on and so by Lemma IX.6.6 we
would eventually see it at an A-stage and so move to outcome d by Lemma IX.6.5.
If not, then x never enters Gi and we also satisfy the requirement as desired.

We next consider the Θ requirements.

Lemma IX.6.11. If a Θ node β on the true path has true outcome d then the
associated requirement is satisfied.

Proof. Consider the stage s(βˆd) when β has outcome d (and is never again ini-
tialized). We put the witness x into Q and impose permanent restraint to preserve
the computations Θ(Gi ⊕ P ;x) = 0 . Lemma IX.6.4 shows that this computation
is preserved.

Lemma IX.6.12. If a Θ node β on the true path has true outcome gα, then its
requirement is satisfied. Indeed, for x the final witness for β, both θ(x) and γα(x)
go to infinity on the stages when βˆgα is accessible. Moreover, any time we increase
γα(x) because of a W change as at the end of §IX.5.2, we later kill the P -use of
the old computation as well by putting v1 into P .

Proof. In this case, by our construction (and Lemmas IX.6.5 and IX.6.6), we
infinitely often put numbers (γ(P ;x) − 1) into P and redefine Γ(Wi ⊕ P) with a
fresh P -use. (The first of these Lemmas implies that the numbers we want to put
into P are larger than any permanent restraint as they are of the form γ(P ;x)
which is larger than the witness x for β.) So by our criteria for going to outcome
gα, we infinitely often see θ(x) > γ(P ;x), so θ(x) must go to infinity (when βˆgα

is accessible) along with γ(P ;x) and the computation Θ(Gi ⊕ P ;x) diverges. As
for any increase in γ(x) because of W change as in §IX.5.2, the next time we are
at βˆgα we put the associated v1 into P by construction.

Lemma IX.6.13. If a Θ node β on the true path has true outcome w then the
associated requirement is satisfied.

Proof. Note that if the outcome of β were d at any stage after s(β) then d would
be the true outcome by construction. Thus in our case, we never put the final
witness x for β into Gi. So our only concern is that Θ(Gi⊕P ;x) = 0. In this case,
there is a stage after which it always converges to 0 and with a fixed use. By the
previous Lemma this computation is believable at almost every stage when we are
at β. Thus by construction and Lemmas IX.6.5 and IX.6.6, as in Lemma IX.6.12,
we would eventually have outcome d for a contradiction.

We now turn to the Φ requirements.

Lemma IX.6.14. If a Φ node β on the true path has true outcome of type s, then
the associated requirement is satisfied.

117

Proof. The nature of the shuffling points guarantees that, at every stage with out-
come of type s, Φ(A;x) ↓6= W (x) and so this is true at the end of the construction
as well and the requirement is satisfied. The crucial point here is that the perma-
nent restraint imposed by β which are increasing as we move left among the type
s outcomes can never be injured (other than by the shuffling done by β itself) by
Lemma IX.6.4.

Lemma IX.6.15. If a Φ node β on the true path has true true outcome w then
the associated requirement is satisfied.

Proof. If Φ(A) = W then the length of agreement would go to infinity and so,
by construction and Lemma IX.6.6, we would eventually move to outcome i after
s(βˆw) for a contradiction.

Finally, we have to deal with the case that every Φ node on the true path has
true outcome i.

Lemma IX.6.16. Every Φ requirement is satisfied.

Proof. As usual in a 0′′′ priority tree argument, we want to consider the last node
α along the true path assigned to a given Φ requirement. To see that there is such
a node, argue by induction on the Φ requirements. The point here is that any Φ
requirement, once assigned to a node that is never again initialized, can return to
the list of requirements from which we draw to make assignments of requirements
to nodes (along the true path) only when a strictly higher priority node becomes
inactive. So once no node with a higher priority Φ requirement assigned ever
becomes inactive again, the next node β assigned to Φ either becomes inactive
once along the true path (by being satisfied by action at a lower Θ node on the
true path) and then remains inactive or it never becomes inactive on the true
path. In either case, Φ is never assigned to a node below β by the definition of the
priority tree.

Let α be the last node along the true path assigned to the Φ requirement
(Φ(A) = Wi). By the previous two Lemmas, we may assume that its true outcome
is i. If there is an Θ node β (Θ(Gk ⊕P) 6= Q) on the true path with true outcome
gα, then we have built a functional ∆ at βˆgα that computesWi from Gk by Lemma
IX.6.8.

If there is no such Θ node β, then we claim that we have successfully built
Γ(Wi ⊕ P) = Q starting at s(αˆi). By Lemma IX.6.7, we only have to verify that
γ(x) is eventually constant for each x. We begin to define our Γ at s(αˆi). Assume
inductively that γ(x̂) has stabilized for x̂ < x. Thereafter, once Γ(x) is defined,
our construction allows γ(x) to increase because of a change in P at most once
for each time some βˆgα below αˆi is accessible and the Θ requirement assigned
to β has witness x or once when βˆd is accessible (again with witness x for β).
It can increase because of a W change at most finitely often for each such βˆgα

and stage. (At worst only when W changes on the domain of ∆ at that stage.)
At most one β has x assigned as a witness. If β is not on the true path, it can be
accessible with witness x at most finitely often. If β is on the true path, once βˆd
is accessible, βˆgα cannot be accessible again unless β is initialized and so chooses
a new witness. If βˆgα is accessible infinitely often, then some gα̂ (possibly to the
left of gα) would be its true outcome and so α̂ ⊆ α. If α = α̂ we contradict our case
assumption. If α̂ ⊂ α then α would be come inactive and Φ would be reassigned

118

later to a node below βˆgα on the true path contradicting our choice of α. Thus
Γ(x) can change at most finitely often as required.

IX.6.5 ∆0
2 and ∆0

3 partial orders

To handle partial orders recursive in 0′ we make the following changes in the
construction:

We begin with a recursive approximation f(i, j, s) to the (characteristic function
of the) relation i ≤∗ j. We now have requirements Ψe,i,j for every e, i, j with a new
additional leftmost outcome n. At stage s at a node α for Ψe,i,j, if f(i, j, , s) = 1
(so we think we do not want to diagonalize) we go to outcome n and do nothing. If
f(i, j, s) = 0 we act as before with a new definition of the block for our witness x.
When x (necessarily larger than i and j) is appointed as a witness, we determine its
block by calculating f(k, l, t) for each k, l < x and t > x until we reach a t at which
either f(i, j, t) = 1 or the relation on numbers k, l < x defined by f(k, l, t) is a
partial order �. In the first case, the outcome is again n and we do nothing. In the
second case, we put Gk into the block for x if and only if i � k (i.e. f(i, k, t) = 1).
Note that f(i, j, t) = 0 by our case assumption and so Gj is not in the block.

To see that this modification works, note that if i �∗ j then from some point on
f(i, j, t) = 0 and so we never again have an outcome n for Ψe,i,j and so satisfy the
negative order requirements as before. For the positive ones, suppose k ≤∗ l and
for t ≥ t0, f(k, l, t) = 1. For any witness x ≥ k, l, t0, if its block does not contain k
then, of course, x /∈ k. If it does contain k it also contains l and so x ∈ Gk if and
only if x ∈ Gl. (The case for Π requirements is as before.)

The modifications needed for partial orders recursive in 0′′ are more complicated.
For each i, j we insert a requirement into the priority order used for the ∆0

2 case
and so on each path of the priority tree a node ε that guesses in a ∆0

3 way whether
i ≤∗ j, i.e. the node has infinitely many outcomes 〈x, k〉 with x ∈ w and k ∈ {0, 1}
ordered lexicographically. We organize determining the outcome of ε at each stage
s so that if 〈x, k〉 is the leftmost outcome accessible infinitely often then x is the
least witness to the Σ3 formula which says that i ≤∗ j if k = 1 and the least witness
to the Σ3 formula which says that i �∗ j if k = 0. In addition we coordinate
this guessing with the stage announcements so that the true outcome passes on
alternating restraint as before. We then act at nodes as in the ∆0

2 case but using at
each node only the information about the ordering coded on the outcomes of the
ε type nodes above it. So for for a Ψ type requirement, if the relation given in this
way is not a partial order � or says that i � j, we go to outcome n. (We put the
ε nodes on the tree so that any node for a requirement Ψe,i,j has an ε type node
above it assigned to i ≤∗ j.) If it is does specify a partial order with i � j, then we
act as before but now the block of sets for a witness x consists of all Gk with i � k.
One can now verify that the construction works. The argument for the positive
order relations runs as follows: If i ≤∗ j, find the node σ on the true path by which
that fact has been decided. Nodes to the left of σ put only finitely many x into Gi

and can be ignored. For nodes to its right that appoint any witness x (necessarily
before stage x), we can wait for the node to be initialized to see if x enters Gi. For
nodes below σ in the tree assigned to any Ψ requirement, any witness x that puts
Gi in its block also puts Gj and so for those x, x ∈ Gi ⇔ x ∈ Gj. Of course, for
witness x for Πe,i,k type nodes, x ∈ Gi ⇔ x ∈ L as before. Of course, for any x
not appointed as a witness for one of these type nodes, x /∈ Gi.

119

If the partial order is only Σ3, then one adjust the previous procedure by instead
of single nodes with ∆3 guessing at i ≤∗ j putting in individual nodes for each i
and j guessing that a particular number is the (least) witness to the Σ3 fact that
i ≤∗ j. Along a path with the Π0

2 outcome that the witness is correct, one follows
a coding stratgey incorporating this individual fact. If it is true, then some node σ
on the true path has the correct witness and all nodes below it obey the required
coding strategy. Nodes not below this one, are handled as above. For each node
guessing a witness for the Σ3 fact, where we see that it is false, i.e. along a path
with the Σ0

2 outcome, we put in one more Ψ requirement for i �∗ j. So if i �∗ j,
then along the true path, we will put in Ψe,i,j requirements for every e and so
satisfy the requirement.

IX.7 Requirements II

We now turn to our second technical result:

Theorem IX.7.1. For any n ≥ 1, there are r.e. degrees g,p,q , an n-r.e. degree
a and an n+ 1-r.e. degree d such that:

1. For every n-r.e. degree w ≤ a, either q ≤ w ∨ p, or w ≤ g.

2. d ≤ a, q � d ∨ p, and d � g.

Our list of requirements is very similar to the one used for our first technical
theorem:

1. Ψe : Ψe(G) 6= D;

2. Θe : Θe(D ⊕ P) 6= Q;

3. Φe,i : (Φe(A) = Wi) → [∃Γ(Γ(Wi ⊕ P) = Q) ∨ ∃∆(∆(G) = Wi)].

In addition, we need to make D ≤T A. Note that we only add elements into
D by diagonalization for Ψ requirements. Whenever we pick a witness x for D, x
is fresh at that stage, and we reserve the pair (x, x + 1) for coding D into A. If
x enters D for the first time, then we also put x into A. If x leaves D later, we
either take x out of A or put x+ 1 into A. In the first case, we may shuffle x into
and out of A and D simultaneously but allowing at most n changes. In the second
case, we may shuffle x+ 1 into and out of A and D simultaneously again allowing
at most n changes in A (but this may make for n + 1 changes in D altogether).
Therefore in the end x is in D if and only if x is in A and x + 1 is not in A. No
numbers other than these Ψ -witnesses enter or leave D in our construction, and
so D is recursive in A, A is n-r.e. and D is (n+ 1)-r.e.

IX.8 Priority Tree II

Our priority tree here is almost the same as the one used in the first theorem. Of
course, we do not have Π nodes. For any Θ node β, we put a new [temporary]
outcome rαj

to the left of each gαj
. So the outcomes of β are d, rα1 , gα1 , rα2 , . . . ,

gαk
and w. We do not add nodes below these type r outcomes. [So a stage s may

120

terminate at such an outcome before we reach level s of the priority tree. We show,
however, in Lemma IX.10.1 that no node of type r can be on the true path.] The
notions of active Φ nodes, α − β pairs are defined in the same way as in Section
IX.4.

IX.9 Construction II

We only specify the construction at stage s when there is no stage announcement.
In the case when there is a stage announcement, we act as in §IX.5.5. Note that
in this construction we only change G during P stages. The default permanent
restraint is on A, D and G while for P it must be specifically mentioned.

IX.9.1 Ψ node and Φ node

At a Ψ node, the action is the same as the one in §IX.5.1 with G for L ⊕ Gi and
D for Gi.

At a Φ node α, we follow almost the same procedure as we did in §IX.5.2. The
only difference is in how we revise the computations from old Γ-axioms. As in the
first construction, if P has changed and the change was caused by some β with
gα outcome by putting the old use into P , then we increase the W -use to ls(α)
and P -use to be fresh. If a W change caused some Γ(x) to be undefined, then we
check whether x is a diagonalization witness for some β below α, if so, we also
check whether D has changed by putting in some number for the first time at the
previous stage when β was accessible (and β has not been initialized since). If so,
we then redefine Γ(x) with W -use up to ls(α) and fresh P -use. In all other cases
we redefine the axiom without changing the uses.

IX.9.2 Θ node

[At a Θ node, the obvious difference from the first construction is that we use D in
our Θ computation but use G in our ∆ computation. So the arguments in IX.6.3
are no longer valid. In the case that W changes, we have no reason to expect a G
change. In fact, so far we have no requirements or procedures that put numbers
into G. Here we actively put numbers into G to correct ∆ computations. We will
make full use of the fact that D is n+1-r.e., i.e., it has one more chance to change
than A and the Wi. We may remove a number from D while leaving it in A but
putting z+ 1 into A. This will afford us the opportunity to produce a situation in
which we may initiate shuffling.]

At a Θ node β accessible for first time after it has been last initialized, we
pick a fresh witness x for diagonalizing Θ(D ⊕ P) 6= Q. If we have a witness x
already assigned (and not yet canceled by initialization) at β, we check whether
the Θ computation converges at the witness x. If we do not have a believable
(defined in the same way as in our first theorem) computation Θ(D ⊕ P ;x), we
go to outcome w. If we do, we follow Plan D as in §IX.5.3 if we can. If not, we
have a planned outcome gαj

as in §IX.5.4 and check whether we have not been at
this outcome since β was last initialized or whether the previous stage t when we
went to this outcome was a P -stage. If so we announce an A-stage and continue
the construction below β.

121

Otherwise, we have two possibilities.

Plan R: removal

Let t be the last stage at which β was accessible. If there is a y < γ(W ;x) such
that W (y) has different values at t and s and the only change in A � t is that some
element z entered D and A for the first time at stage t because of the action of a
node below β [necessarily a Ψ node], we remove z from D and add z+1 into A [so
we restore the version of D at stage t up to the θ use]. We go to the rαj

outcome
and terminate the current stage of the construction. We call the least such y the
key witness for the removal plan.

[The idea here is that, before β can become accessible again without being
initialized, we would see at αj if y has left W . If so we would initiate a shuffle
there on z + 1 and initialize β. If not, we will argue that we must go to the left
of gαj

and rαj
. Roughly, the idea is that the computation Θ(D⊕ P ;x) will be the

same as that at stage t while γj(P ;x) will have been increased above θ(x) by y
entering W .]

Plan G: change G

If we satisfy none of the above criteria, we go to the outcome gαj
and continue to

build ∆ consistently. For each u, if ∆(u) was defined at the last stage t at which
βˆgαj

was accessible and W (u) has not changed since then, we simply update the
∆ axiom with the current version of G (if necessary) without changing the use.
If ∆(u) was defined at t but W (u) is now different, then let δ(u) be the use of G
in the old ∆ computation. We add δ(x) − 1 into G and redefine ∆ with a fresh
use in G. [We preserve the consistency of ∆ by doing this as G is r.e.] Then we
also define a new computation ∆(u) for the next u which was undefined with fresh
G-use. Finally, we follow Plan P to add γ uses into P as in Section IX.5.4 and
announce a P -stage.

IX.10 Verification II

We can go through most of Section IX.6 and show that we have a leftmost path
visited infinitely often (that it is actually infinite follows from Lemma IX.10.1), and
each node along the true path is passing down alternating A-stages and P -stages
along the true path. There are obvious alphabetic changes needed In Lemmas
IX.6.1-IX.6.6 – no L or Π. Otherwise, note first that Plan R action for Ψ nodes
are an exception to Lemma IX.6.1. Next, Lemma IX.6.2 applies to D as well as
A and we have to remark that if we implement Plan R no node is even accessible
thereafter, while Plan R action cannot be the second type to change A (or D) at
s by the arguments given in the proof of Lemma IX.6.2. Finally, for the proof
of IX.6.3 note that G-uses for ∆ are also chosen fresh. It is then not difficult to
see that functionals are well-defined and complete the job we assigned if they are
along the true path. For the Γ’s, use Lemma IX.6.7. For the ∆’s, it is directly
guaranteed by our construction. [The complicated argument for Lemma IX.6.8 is
not needed but see the proof of Lemma IX.10.1 for some remnants of it.]

122

For the verification that all the requirements are satisfied we continue as in
§IX.6.4. The positive order requirements (Lemma IX.6.9) are simply replaced by
the requirement that D ≤T A. Our construction guarantees that x is in D if and
only if x is in A and x+1 is not. Except for the satisfaction of the Ψ requirements
(Lemma IX.6.10) in the case of d outcome all the other verifications proceed as in
§IX.6.4.

As for the Ψ requirements, the major issue is that here we add elements into
G (when we construct ∆) and this action might, a priori, injure some apparently
satisfied Ψ requirement of lower priority. To show that the Ψ requirements are all
satisfied, we first need a few lemmas.

Lemma IX.10.1. No outcome of type r can be on the true path.

Proof. The argument is similar to the one in the end of the proof of Lemma IX.6.8.
Consider any Θ node β on the true path and suppose, for the sake of a contradic-
tion, that its true outcome is rα.

Let s = s(βˆrα) and, as in the construction, let t be the previous stage at which
β had outcome gα; x, the diagonalization witness at β; y, the key witness for Plan
R at s; and z, the unique element that entered D for the first time at t. We remove
z from D at s following Plan R. Let s′ be the next stage at which β is accessible
with a believable Θ computation. If y was ever out of W between s and s′ (when
α was accessible) then, we would have initiated a shuffle plan at α and so moved
left of β ⊇ αˆi for a contradiction. (As we terminate stage s at βˆrα with no
action, there is no change in A at s. Between s and s′ Lemma IX.6.3 shows that
A � s is preserved. So if W (y) changes we satisfy the conditions for shuffling at α.)
Thus we also assume that y remains in W at every stage at which α is accessible
through stage s′.

Now at stage s we restored the computation Θ(D⊕P, x) of stage t by removing
z from D: z is the only change to D up to θ(x) at t by Lemma IX.6.2, and P is
preserved by the A-stage announcement at t. Between t and s, D � t is preserved
by Lemma IX.6.3 and P � θ(x) is not injured by nodes to the right. Finally, our
believability condition guarantees that P � θ(x) is also not injured by nodes above
β. Thus at stage s′ we still have the same computation of Θ(x) as at stage t.

Now consider the Γ computation we build at αˆi. At stage s the conditions for
Plan R guarantee that y < γ(W ;x) (at t) has entered W for the first time after t
and by s. So when this happens and we are at α we see a change in the W part of
Γ(x) which makes Γ(x) undefined. Therefore, by our construction, we add a new
axiom with W -use the current length of agreement and P -use fresh, which is larger
than θ(P, x) at t. This γ(P, x) remains large since y remains in W , therefore at
stage s′ we will see that γ(P, x) > θ(P, x).

For other active αl’s between α and β, the corresponding γl(Wl;x) are larger
than θ(P, x) at stage t by the rules for going to outcome gα. The only way that
anyone of these uses can decrease is by Wl changing at some stage v ≤ s′ from its
value on γl(Wl;x) at t back to an older version. If this happens, then when αl is
accessible at v ≤ s′ we initiate a shuffle at αl by shuffling z+1 which we added into
A by Plan R at t with shuffle points t and v. This would move us to the left of β
for a contradiction. Therefore these uses cannot decrease, and at stage s′ they are
still larger than θ(P, x). Hence at stage s′ we will go to the left of the rα outcome
by our construction for the desired contradiction.

123

Lemma IX.10.2. In the construction at a Θ node β, if we change G as in IX.9.2
at a stage s > s(β), then it must be the case that at the previous stage t when βˆgα

was accessible, we followed either Plan S or Plan R to change D at some node σ
below β.

Proof. By our construction, if we must change G by putting in some δ(u) − 1 ,
then W (u) and therefore A � φ(u) must be different at stage s from stage t. By
Lemmas IX.6.3 (for nodes to the right), IX.6.2 (for nodes below), IX.6.1 (for nodes
above not of type r) and IX.10.1 (to see that there are no type r nodes above),
such a change in A can only happen at stage t. Thus we must have changed A
and D at stage t below β since β was accessible.

We can change A and D in only three ways: diagonalization at a Ψ node, Plan
S or Plan R. By Lemma IX.6.2 if we have applied diagonalization at a node below
β, then it is the only change at stage t, so at stage s according to our construction
we would want to apply Plan R to remove the element added into D at stage t
[and restore the Θ computation]. Depending on the current stage announcement
we would then have outcome either r or w. Since by assumption the outcome at s
is gαj

, we must have followed either Plan S or Plan R at t.

Now we can prove that Ψ requirements are not injured by Plan G.

Lemma IX.10.3. If σ is a Ψ node (Ψ(G) 6= D) on the true path and we go to
outcome d after stage s(σ), then the diagonalization will not be injured thereafter,
i.e., the Ψ-use in G is preserved and the diagonalization witness x is not removed
from D and so the Ψ requirement is satisfied.

Proof. Suppose at stage s > s(σ) we diagonalized at σ by putting x into D and
so impose permanent restraint on D. First of all, x cannot be taken out of D at
subsequent stages, since only nodes above σ could do so and then only if we follow
either Plan S or Plan R at a node above σ. Plan S action would move us to the
left for a contradiction and there are no outcomes r above σ by Lemma IX.10.1.

Next we claim that the G-use is also preserved. No node below or to the right
of σ can add elements below this G-use into G after stage s, since their ∆-uses
are defined to be fresh. The only worry is that some Θ node β with βˆgα above σ
might follow Plan G (at stage s1 > s) to add δ(y)−1 into G for some changed u in
W in order to correct some ∆ axiom. The ∆(G;u) axiom being killed must have
been enumerated before stage s, since its use was chosen fresh. So W (u) = Φ(A;u)
at stage s.

By Lemma IX.10.2, the only circumstances under which we change G at stage
s1 in response to this change in W is that D has already changed by some other
node τ below βˆgα following Plan S or Plan R at the previous stage t at which
βˆgα was accessible. Such a τ cannot be above σ as we would then move to its
left, so it must be to the right of, or below, σˆd.

Then there must be another Ψ′ node σ′ (below τ) which added a number into D
after stage s (since at stage s we initialized all nodes to the right of τ , any change
before s cannot be used in shuffling or removal) and the number is taken out by
τ . However, σ′ cannot be below, or to the right of, σ, as its witness would then be
larger than s and so could not affect the value of W (u) which agrees with Φ(A;u)
at stage s. So we get a contradiction.

124

In another words, once we apply diagonalization for σ, we (automatically) im-
plement restraints for A and D and hence to W ’s up to the part that we have
coded in. So we can guarantee that there can be no change in W which makes us
change G on the uses we have already seen, and in particular, the Ψ-use of G is
preserved.

125

CHAPTER X
THREE THEOREMS ON N-REA DEGREES: PROOF-READERS

AND VERIFIERS

This chapter will appear as a paper in Computability in Europe 2011.

X.1 Introduction

In this chapter, we first show that an n-REA degree is array recursive if and only
if it is r.e. traceable. This gives an alternate proof that an n-REA degree has a
strong minimal cover if and only if it is array recursive. Then we prove that an
n-REA degree is strongly jump traceable if and only if it is strongly superlow.
These two results both generalize corresponding equivalence theorems for the r.e.
degrees. In these proofs, we provide an interesting technique to handle n-REA
degrees, which also gives a new proof of an old result that every FPF n-REA
degree is complete.

Our story begins with array recursive degrees. The term array recursive degrees
actually comes from its complement, the array nonrecursive (ANR) degrees, which
were defined in [DJS96] to generalize GL2 degrees. In particular, ANR degrees
share a lot of nice properties with GL2 degrees. Examples of their common prop-
erties include the 1-generic bounding property, the cupping property and relative
recursive enumerability (see [DJS96] and [CSh12]).

Recall in degree theory, a degree a is a strong minimal cover of b if D(< a) =
D(≤ b), i.e., every degree strictly below a is below b. It is a very difficult and
long-standing question to characterize all the degrees which have strong minimal
covers. The notion of ANR degrees comes into play in the following theorem:

Theorem X.1.1 ([DJS96]). No ANR degree has a strong minimal cover.

In particular, this lead to the first major progress on the question of strong
minimal covers: In [Ish99], Ishmukhametov gave a characterization of the r.e.
degrees with strong minimal covers by introducing the notion of r.e. traceability.
Recall that We stands for the e-th r.e. set in any uniformly recursive indexing of
r.e. sets, and |X| denotes the number of elements in X.

Definition X.1.2. A degree a is r.e. traceable if there is a recursive function f(n)
such that for every function g(n) ≤T a, there is a recursive function h(n) such that
for every n, g(n) ∈ Wh(n) and |Wh(n)| ≤ f(n).

We call Wh(n) an (r.e.) trace for g(n) (admitting f). It was shown in [Ish99]
that:

Theorem X.1.3. Every r.e. traceable degree has a strong minimal cover.

Theorem X.1.4. An r.e. degree is r.e. traceable if and only if it is array recursive.

Together with Theorem X.1.1 one can easily get:

Corollary X.1.5. An r.e. degree has a strong minimal cover if and only if it is
array recursive.

A natural generalization of r.e. degrees is the notion of iterates of the r.e. rela-
tion: A degree is 1-REA if it is r.e.; A degree is (n + 1)-REA if it is r.e. in and

126

strictly above an n-REA degree. In [Cai12] (see also Chapter III), we generalized
Corollary X.1.5 to the n-REA degrees.

Theorem X.1.6. An n-REA degree has a strong minimal cover if and only if it
is array recursive.

Interestingly, the proof of Theorem X.1.6 in [Cai12] does not follow from the
corresponding generalization of Theorem X.1.4. In fact, it was not known whether
Theorem X.1.4 has a generalization to the n-REA degrees. Greenberg asked
whether it is true that an n-REA degree is array recursive if and only if it is r.e.
traceable. Here we give a positive answer.

Theorem X.1.7. An n-REA degree is r.e. traceable if and only if it is array
recursive.

In addition, it is not difficult to see that r.e. traceable degrees are downward
closed in the Turing degrees, so we can actually get a little bit more from this
result (compared to Theorem X.1.6):

Corollary X.1.8. If a degree is below an array recursive n-REA one, then it has
a strong minimal cover.

Our second theorem is related to some recent research on two lowness notions,
namely strongly jump traceable degrees and strongly superlow degrees. They were
introduced aiming to give combinatorial characterizations of the K-trivials, an im-
portant notion in randomness. For details of the motivations and other examples,
see [Nie08].

An order function is an unbounded nondecreasing recursive function. A degree
a is strongly jump traceable if for every order function r(n) there is a trace Wh(n)

admitting r(n) such that ϕA
n (n) ∈ Wh(n) whenever ϕA

n (n) converges (it is easy to
see that this definition does not depend on the choice of the set A in the degree a).
A degree a is strongly superlow if for every order function r(n) there is a recursive
limit approximation λ(n, s) of A′ (i.e., lims λ(n, s) = A′(n)) such that the number
of changes through the n-th column 〈λ(n, s)〉s∈ω is bounded by r(n). In other
words, a is superlow with arbitrary order function as the recursive bound on the
number of changes.

It is known that every strongly superlow degree is strongly jump traceable, and
the other direction holds for the r.e. degrees (see [Nie08, Section 8.4]). In [Ng09],
this is generalized to the n-r.e. degrees, which form a proper subclass of the n-
REA degrees. In Section X.4, we continue to generalize this result to the n-REA
degrees, and interestingly the proof has a flavor similar to that of Theorem X.1.7.

Theorem X.1.9. An n-REA degree is strongly jump traceable if and only if it is
strongly superlow.

The third theorem is a generalization of Arslanov’s Completeness Criterion that
FPF r.e. degrees are complete ([Ars81]). This was already generalized to the n-
REA degrees in [JLSS89], i.e., every FPF n-REA degree is above 0′.

Recall that a function f is fixed-point-free if ϕe 6= ϕf(e) for any index e, and
a degree is fixed-point-free (FPF) if it computes a fixed-point-free function. It
is a classical result that a degree is FPF if and only if it computes a diagonally
nonrecursive (DNR) function: f is DNR if f(e) 6= ϕe(e) for any e with ϕe(e) ↓.

127

We will show the following theorem, which is a variation of the generalized
completeness criterion in [JLSS89]:

Theorem X.1.10. Suppose a is an n-REA degree, then the following are equiv-
alent:

1. a computes a function f which is DNR;

2. a computes a function f which dominates ϕe(e), i.e., f(e) ≥ ϕe(e) holds for
any e with ϕe(e) ↓.

Note that (2) implies (and so is equivalent to) a being above 0′: For every ϕe(e),
one can effectively find an e′ such that ϕe′(e

′) converges to the number of steps
in the computation of ϕe(e) if it converges, and diverges if ϕe(e) diverges. Then
using f(e′) one can effectively tell whether ϕe(e) converges or not. Moreover, it
is trivial that (2) implies (1), and so we only need to show that (1) implies (2).
We use Lewis’ characterization of non-FPF degrees in terms of a weaker notion of
traceability (see [Lew07]):

Theorem X.1.11. For every degree a, the following are equivalent:

1. a is not FPF;

2. there is a recursive function f(n) such that for every function g(n) recursive
in a, there is a recursive function h(n) such that |Wh(n)| ≤ f(n) for every n,
and g(n) ∈ Wh(n) for infinitely many n.

For simplicity we say that a is weakly r.e. traceable if (2) holds (and similarly
Wh(n) is a weak trace for g(n)). Now we only need to show the following:

Theorem X.1.12. Given an n-REA degree a, if for every function f recursive in
a there are infinitely many e such that f(e) < ϕe(e), then a is weakly r.e. traceable.

In the setting of Theorem X.1.10, this shows that the negation of (2) implies
the negation of (1). We will give a proof of the above theorem in Section X.5.

A final remark is that, the n-REA degrees seem to be strongly related to
different notions of traceability. We hope that research along these lines may
suggest other connections between the n-REA degrees and various combinatorial
properties.

X.2 Basic Conventions and Notions

We use W σ
e to denote the recursive enumeration with the index e and the oracle

σ in |σ| many steps. Without loss of generality, we can assume that no number x
can be enumerated before step x + 1, and we always let W σ

e be a string of length
|σ|.

It is worth noting here that we always regard W σ
e as a string, so the notation

W τ
e ⊃ W σ

e means that W τ
e extends W σ

e as a string, not as a set.

For A an m-REA set, we put ∅ = B0 <T B1 <T B2 <T · · · <T Bm = A where
each Bi+1 is r.e. in Bi. We say that Bi is at the i-th level of the enumeration.

128

Similarly any binary string σ which is assumed to be an initial segment of Bi is
said to be at the i-th level, or simply an i-th level string. In this chapter, we always
use the subscript of a string to denote its level. Given an m-REA set A with the
sets Bi’s as above, an i-th level string τi is true if it is an initial segment of Bi,
and a string is wrong if it is not true.

When we say “let x (σ ⊂ Bi) be large (long) enough to have property P”, we
actually mean to find the least x (shortest σ) which has property P . Another y
(τ) is large enough (long enough) with property P if it is larger than or equal to x
(extends σ) in this setting.

For convenience, we use 0t to denote the binary string of t zeros, and use W t
e

to denote W 0t

e .

X.3 Proof of the First Theorem: Proof-readers

For A an m-REA set, we first give detailed proofs for m = 2 and m = 3 to
supply some intuition. Based on this intuition, we then sketch a full proof for any
m. The following Lemma will be very useful and we present it explicitly here for
convenience. The proof is almost obvious by the Limit Lemma.

Lemma X.3.1. If a is array recursive, then for every function l(n) ≤T a, there
is a recursive function λ(n, s) such that lims λ(n, s) exists and is greater than l(n)
for each n; in addition, the number of changes in each column of approximation
〈λ(n, s)〉s∈ω is bounded by n.

X.3.1 m = 2

Since r.e. traceable degrees have strong minimal covers and hence are array recur-
sive, we only need to show that every array recursive 2-REA degree a is r.e. trace-
able, i.e., there is a recursive function f(n) such that for every function g(n) ≤T a,
there is an r.e. trace Wh(n) for g(n) admitting f(n).

We pick A ∈ a a 2-REA set, i.e., A = B2 >T B1 >T B0 = ∅ with B1 = W ∅
i = Wi

and B2 = WB1
j = WWi

j .

Now for a function g(n) = ϕA
e (n), we first define a function l0(n) ≤T A as

follows: Let σ2 ⊂ B2 be long enough to compute the value g(n), i.e., ϕσ2
e (n) ↓=

g(n). Then we let σ1 ⊂ B1 be long enough to enumerate all elements in σ2, i.e.,
W σ1

j ⊃ σ2 (note that it is not necessary and usually not the case that W σ1
j ⊂ B2).

Finally let l0(n) be large enough to enumerate all elements in σ1, i.e., W
l0(n)
i ⊃ σ1.

Now by Lemma X.3.1 we have a recursive function λ0(n, s) whose limit is greater
than l0(n). We first try to use values from this function to compute g(n): let x be
the first value greater than or equal to l0(n) in the column 〈λ0(n, s)〉s∈ω. It is easy
to see that W x

i extends σ1, but it might contain some wrong information after the

σ1 part. So if we simply use W x
i in the next level enumeration and find W

W x
i

j , we
might get something which is wrong, since the wrong “tail” of W x

i could enumerate
something which is not in B2. If we use this wrong string in the computation, we
might get a wrong answer for g(n).

129

The solution is to define another function l1(n) ≤T A to “correct” or to “proof-
read” the wrong information in W x

i . Now we fix functions l0 and λ0 as above. For
each n, let x be the first value greater than or equal to l0(n) in the corresponding
column of λ0. Now W x

i might contain some error, so we let t be the first number
such that W x

i (t) 6= B1(t) (if such t does not exist, then let t be the first number
enumerated into B1 which is greater than |W x

i |). The only possible situation is
that W x

i (t) = 0 and B1(t) = 1. We then let l1(n) be large enough to enumerate t

into B1, i.e., t ∈ W l1(n)
i . This function l1 is recursive in A, and so by Lemma X.3.1

there is a recursive function λ1(n, s) whose limit is greater than l1(n).

We say that W x
i requires proof-reading and we call W

l1(n)
i (or any later enumer-

ation which sees t ∈ B1) a proof-reader for W x
i .

With these two limit functions λ0, λ1 in hand, one can give a uniform enumer-
ation of Wh(n) as follows: Fix n; for each pair (p, q) such that 0 ≤ p, q ≤ n, we
go through the columns 〈λ0(n, s)〉s∈ω and 〈λ1(n, s)〉s∈ω respectively for the p-th
change and the q-th change. If we cannot find either one, the computation simply
diverges. Now let x be the value of λ0(n, s) after the p-th change and y be the
value of λ1(n, s) after the q-th change. Take the longest common initial segment
of W x

i and W y
i , say τ1, then enumerate τ2 = W τ1

j and compute ϕτ2
e (n). If this

computation does not converge, do nothing. If it converges, then enumerate the
value into Wh(n). It is easy to see that if p is the number of changes in the column
when it is the first time that the value of λ0(n, s) is greater than or equal to l0(n)
and q is similarly the number of changes in the column when it is the first time
that the value λ1(n, s) is greater than or equal to l1(n), then this computation
must give us the correct answer g(n). So g(n) ∈ Wh(n) and |Wh(n)| ≤ (n+ 1)2, i.e.,
Wh(n) is a trace for g(n) admitting (n+ 1)2.

X.3.2 m = 3

Now we have A = B3 >T B2 >T B1 >T B0 = ∅, B1 = WB0
i , B2 = WB1

j and

B3 = WB2
k .

Given a function g(n) = ϕA
e (n), similarly we first define a function l00(n) ≤T

A as the number large enough to enumerate σ1 ⊂ B1, which is long enough to
enumerate σ2 ⊂ B2, which is long enough to enumerate σ3 ⊂ B3, which is long
enough to compute g(n).

Now we have, by Lemma X.3.1, a limit function λ00(n, s). Using the same idea
as in the previous case, we get a function l01(n) and a limit approximation λ01(n, s)
such that with λ00 and λ01 one can get a true initial segment τ1 of B1 which is
longer than σ1.

For a similar reason, now if we use τ1 in the enumeration, it might produce
something with a wrong tail, and so we cannot use W τ1

j in the next step enumera-
tion. Then we need another (second-level) proof-reading process. The problem is
that now we are at the second level of the enumeration and a proof-reader of W τ1

j

requires some true initial segment of B1, which is not recursively given.

We fix such λ00 and λ01, and we define a new function l10(n): for each n, use the
first values in the approximations λ00(n, s) and λ01(n, s) which are greater than or
equal to l00(n) and l01(n) respectively, and find τ1 as above, then let l10(n) be large

130

enough to enumerate some ξ1 which is long enough to enumerate a proof-reader
for W τ1

j . With a limit function λ10(n, s), a similar recursive enumeration process
gives us a different η1 instead of ξ1 and this η1 itself needs proof-reading, i.e., it is
long enough but may contain some wrong information which we cannot use in the
next level enumeration. So we have another function l11 (and the corresponding
limit function λ11) which is large enough to enumerate a string at the first level
to proof-read η1 and give a true initial segment of B1, which is long enough to
enumerate some initial segment of B2 which proof-reads W τ1

j . After this second
level proof-reading process, we have a true initial segment of B2 and this initial
segment is long enough to enumerate some string at the third level to compute
g(n).

So finally we have four functions recursive in A and four corresponding recursive
approximations. It is easy to find a trace Wh(n) for g(n) in the same way and the
recursive bound for the number of elements in Wh(n) is (n+ 1)4.

X.3.3 General case

With the above ideas in mind, we sketch the proof.

Now we have A = Bm >T Bm−1 >T · · · >T B0 = ∅ and each Bi+1 = WBi
ei

. For
simplicity of notions, we write Wi instead of Wei

. We can show the following claim
by induction on i ∈ [1,m− 1]:

Claim X.3.2. To get a true and long enough τi in the procedure of computing
g(n), one needs 2i functions recursive in A in its proof-reading process.

The base case is §X.3.1. For the inductive step, to get a true and long enough
τi, we need two strings at the i-th level: a recursively-generated one (W

τi−1

i−1) which

is long enough but may contain errors in its tails, and a proof-reader (W
ξi−1

i−1) which
corrects the first mistake in the first string. These two i−1-th strings τi−1 and ξi−1

must be true and long enough. So by induction hypothesis, we need 2i−1 functions
to generate each one. Therefore we need 2i functions for a true and long enough
τi.

In the end, note that to correctly compute g(n), we only need a long enough
string at the m-th level, so we need a true and long enough initial segment at
the m− 1-th level. Finally we have 2m−1 functions recursive in A and each has a
corresponding recursive limit approximation as in Lemma X.3.1. The construction
of Wh(n) is analogous to these in §X.3.1 and §X.3.2, and the recursive bound for

|Wh(n)| is f(n) = (n+ 1)2m−1
.

X.4 Proof of the Second Theorem: Verifiers

We will follow the same strategy: we first present a detailed proof for m = 2 and
sketch a proof for m = 3, then the general case will be clear by following the same
pattern. We again do not try to write out a detailed full proof, because it is neither
necessary to write out nor easy to read.

We will need the following lemma, which is quite easy to prove.

131

Lemma X.4.1. A degree a is strongly jump traceable if and only if for every order
function r(n) and every partial function ϕA

e (n) there is a trace Wh(n) admitting
r(n) such that if ϕA

e (n) ↓ then ϕA
e (n) ∈ Wh(n).

X.4.1 m = 2

We only need to show that strongly jump traceability implies strongly superlow-
ness. Following the same notion, let B1 = Wi and A = B2 = WWi

j . To show that
A is strongly superlow, we need to give a limit computation of A′ and guarantee
that the number of changes in the approximation can be bounded by any given
order function r(n).

We first define a partial function ϕA
e2

(n) as follows: given n, we try to compute
ϕA

n (n): If it diverges then ϕA
e2

(n) diverges; if it converges then let ϕA
e2

(n) be the
initial segment A � u where u is the use of the computation. Applying Lemma
X.4.1, we can get a trace Wh2(n) for ϕA

e2
(n) admitting some recursive r2(n) which we

will specify later. For each σ enumerated into Wh2(n), we can use it as an oracle and
try to compute ϕσ

n(n). If it converges then we might guess that ϕA
n (n) converges.

However, it is possible that some wrong σ enumerated into Wh2(n) makes ϕ
(·)
n (n)

converge and so we might have a wrong guess on whether ϕA
n (n) converges.

Now the solution is to use a verifier of such σ at a lower level of the enumeration.
Given any σ at the second level, let B1 � u be the initial segment of B1 which is
long enough to enumerate a true initial segment of A = B2 of length |σ|, and we
call such B1 � u a verifier of σ. We define another partial function ϕA

e1
(n, k) as

follows: Enumerate Wh2(n) and wait for the k-th element to appear. If such element
does not appear then ϕA

e1
(n, k) diverges; if the k-th element is σ, then let ϕA

e1
(n, k)

be the verifier of such σ.

Then by Lemma X.4.1 again we have a trace Wh1(n,k) for ϕA
e1

(n, k) admitting
some recursive r1(n, k) which we will also specify later. The intuition is that, for
each σ enumerated into Wh2(n) as the k-th element, we need to enumerate a verifier
of it in Wh1(n,k) for us to believe that σ is true.

To give a limit computation of A′, we shall have, at each stage s, a guess as to
whether n ∈ A′, and guarantee that our guess is eventually correct. At stage s,
we can enumerate Wh2(n) up to s steps and let σ0, σ1, . . . , σi be all the elements
appeared in Wh2(n), in the enumeration order. For each σj, we can enumerate
Wh1(n,j) up to s steps. For each τ enumerated, we say that it is verified if τ ⊂ W s

i ,
i.e., it is the initial segment of our current guess as to Wi = B1.

We say that σj is verified (at stage s) if for the longest verified τ in W s
h1(n,j), we

have σj ⊂ W τ
j , i.e., σj looks like a correct initial segment of A at this stage. We

also call Wh1(n,j) the verifier set for σj.

So at this stage s, we guess that n is in A′ if there is such a verified σj with
ϕσj

n (n) ↓. Now we need to show two facts: 1, this is a limit computation of A′;
2, we can arrange r1 and r2 to make the number of changes in each column be
bounded by any given order function r(n).

132

For the first claim, if ϕA
n (n) converges, then eventually a true initial segment

σ of A which is long enough to make ϕn(n) converge will be enumerated and it
will eventually be verified (though not necessarily by its verifier), since eventually
only true initial segments of B1 are verified at the first level and the longest such
is long enough to verify that σ is a true initial segment of A by our construction.
In the other direction, if ϕA

n (n) diverges, then for any σ enumerated into Wh2(n),
eventually it cannot be verified, since the longest true initial segment τ in its
verifier set Wh1(n,j) is long enough to see that σ is wrong.

Given a σ in Wh2(n) as the j-th element, we know that |Wh1(n,j)| ≤ r1(n, j) and
so we switch our mind at most r1(n, j) times for this σ. Then the total number
of changes in the approximation of A′(n) is bounded by r1(n, 0) + r1(n, 1) + · · ·+
r1(n, r2(n)) ≤ r2(n)r1(n, r2(n)) (the pairing function is monotone).

Now in order to make r2(n)r1(n, r2(n)) ≤ r(n), we can first find an order func-

tion r2 such that r2(n) ≤
√
r(n), and we pick an order function r1 such that

r1(n, r2(n)) ≤
√
r(n). The number of changes in the limit approximation above is

then bounded by r(n).

X.4.2 m = 3

To simplify our notations (and to save some letters for other uses) we have A =
B3 = WB2

3 , B2 = WB1
2 and B1 = W1.

We first define a partial function ϕA
e3

(n) which outputs an initial segment of
A which is long enough to compute ϕA

n (n). Then we have a trace Wh3(n) for this
partial function. Similarly we define ϕA

e2
(n, k): for the k-th element σ3 enumerated

into Wh3(n), we output its verifier τ2 at the second level, and we also get a trace
Wh2(n,k) for it.

Now for any such verifier, we again need to verify it by a string at the first level.
We define another ϕA

e1
(n, k, l): for the k-th element σ3 enumerated into Wh3(n) and

for the l-th element τ2 enumerated into Wh2(n,k), we output a verifier of τ2 at the
first level of the enumeration. Then we can get a trace Wh1(n,k,l) for it admitting
r1(n, k, l).

Our limit computation is as follows: At each stage s, we enumerate every trace
up to s steps. We say that a first level string σ1 is verified (at stage s) if σ1 ⊂ W s

1 .
An i-th level string σi is verified if σi ⊂ W

σi−1

i where σi−1 is one of the longest
verified strings in the verifier set of σi. We guess that ϕA

n (n) converges if there is

a verified third level string which converges at ϕ
(·)
n (n).

Similarly one can show that this is a limit computation for A′: we prove by
induction that eventually true initial segments and only true initial segments at
each level can be verified: at the first level this is obvious; for level i, we eventu-
ally have, at level i − 1, only true initial segments that are verified by induction
hypothesis, and then according to our construction, the longest such true σi−1 in
each verifier set extends the verifier of the corresponding i-th level string σi−1 is
verifying, therefore only true initial segments at the i-th level can be verified in a
long run.

In addition, it is easy to see that the number of changes in the column n of this

133

limit computation is bounded by r3(n)× r2(n, r3(n))× r1(n, r3(n), r2(n, r3(n))). In
order to make it bounded by r(n) we can easily make each term in the product
bounded by the cubic root of r(n).

X.4.3 General case

With the discussion above, the construction and the verification in the general case
are clear. Shortly speaking, we will define partial functions ϕA

ei
with their traces

level by level. In the limit approximation, we guess at stage s that ϕA
n (n) converges

if there is a verified m-th level string which makes ϕ
(·)
n (n) converge. The number

of changes is bounded by a product of m terms and one can bound each by the
m-th root of r(n). The details of the proof are omitted.

X.5 Proof of the Third Theorem: Proof-readers again

In this section we prove Theorem X.1.12. With the idea of the previous two
theorems, we only sketch the proof for m = 2 and leave the other parts to the
reader.

Again we let B1 = Wi and A = B2 = WWi
j . Given g(n) = ϕA

e (n), we first
define l0(n) exactly the same way as in the proof of the first theorem in Section
X.3, i.e., it is large enough to enumerate some first level string which is long
enough to enumerate a second level initial segment of B2 which computes the
value g(n) = ϕA

e (n). By the property given, we know that ϕn(n) > l0(n) infinitely
often, and so at these n’s where ϕn(n) > l0(n) we may expect to use ϕn(n) to
give a correct value of g(n). However, we have a similar problem that ϕn(n) may
enumerate some string with a “wrong tail”, and so we need to define a proof-reader
for it.

The trick here is that ϕn(n) is not total, so we need to modify our strategy.
Recursively in A, we define a sequence xi as follows: let x0 be the first number
n that ϕn(n) converges and is greater than l0(n); given xi, let xi+1 be the first
number n > xi that ϕn(n) converges and is greater than l0(n). It is easy to see
that this sequence is infinite, strictly increasing and recursive in A. Then we define
a function l1(n) recursively in A such that l1(n) is large enough to enumerate a
proof-reader for ϕxn(xn). Then similarly ϕn(n) > l1(n) infinitely often.

We can now find a weak trace Wh(n) for g(n) as follows: Given n, we try
to compute ϕn(n) and in addition, every ϕm(m) for m ≤ n simultaneously. If
ϕn(n) ↓= x and if any ϕm(m) converges to y, then we use W x

i with a proof-reader
W y

i (i.e., find their longest common initial segment) to enumerate a second level

string to compute ϕ
(·)
e (n), and finally enumerate the value intoWh(n) if it converges.

It is easy to see that |Wh(n)| ≤ n.

Then we need to show that infinitely often g(n) ∈ Wh(n): for these n’s with
ϕn(n) > l1(n), it is easy to see that n ≤ xn and g(xn) is in Wh(xn) by a correct
proof-reading process.

In general, for an m-REA degree A, we need a similar proof-reading process as
in Section X.3, and our construction gives a recursive bound f(n) = n2m−1−1 for

134

the weak r.e. traces.

135

CHAPTER XI
A NOTE ON STRONG MINIMAL COVERS: TREE

TRACEABILITY

XI.1 Introduction

In this chapter, we discuss a notion of tree traceability which extends r.e. trace-
ability introduced in [Ish99]. We show that a tree traceable degree has a strong
minimal cover if and only if it is array recursive. This result gives new examples
of degrees with strong minimal covers. In addition, we discuss the connections
between this notion and an old question of Yates.

In classical recursion theory, minimal degrees and minimal covers are among the
most interesting topics, typically because that they are naturally definable from
the partial order of Turing degrees (see definitions in §I.1.1).

By studying minimal degrees and minimal covers, one can get some interesting
definability results. A typical example is that all arithmetic degrees are definable
in the language of partial orders in the Turing degrees by analyzing Sacks’ minimal
degree construction (see [JSh84]).

Spector first proved the existence of minimal degrees, and he noted that a natu-
ral relativization gives a minimal cover over any given degree, but the construction
does not yield a strong minimal cover. It becomes a very interesting and difficult
problem to classify all the degrees that have strong minimal covers. Simply saying,
we are interested in the following class of degrees:

C = {a : a has a strong minimal cover}.

The problem is actually two-fold: we are looking for properties which guarantee
the existence of a strong minimal cover, and also for properties which make the
degree have no strong minimal covers. For the latter, actually all degrees we know
that do not have strong minimal covers do have the cupping property : a has the
cupping property if for every b > a, there is a c < b such that b = a∨ c. Typical
examples of the cupping property results are the following two (see definitions in
Chapter I):

Theorem XI.1.1 (Kučera [Ku94]). Every PA degree has the cupping property.

Theorem XI.1.2 (Downey, Jockusch, Stob [DJS96]). Every ANR degree has the
cupping property.

From another point of view, if we try to find degrees with strong minimal
covers, then we can automatically assume that the degree is array recursive (i.e.,
not ANR) and not PA. Interestingly, if we strengthen both conditions, they imply
the existence of strong minimal covers. Recall that being hyperimmune-free is a
strengthening of being array recursive and being FPF is a natural weakening of
being PA. We have the following:

Theorem XI.1.3 (Lewis [Lew07]). Every hyperimmune-free degree which is not
FPF has a strong minimal cover.

However, it is not known whether either strengthening is sufficient. Another
general result about having a strong minimal cover is related to r.e. traceability,

136

also known as weak recursiveness. A degree a is r.e. traceable if there is a recursive
function f such that for every function g ≤T a, there exists a recursive function
h such that for every n, |Wh(n)| ≤ f(n) and g(n) ∈ Wh(n), where We denotes the
e-th recursively enumerable set and |X| denotes the cardinality of the set X.

Theorem XI.1.4 (Ishmukhametov [Ish99]). Every r.e. traceable degree has a
strong minimal cover.

Moreover, we have the following:

Theorem XI.1.5 (Ishmukhametov [Ish99]). An r.e. degree is array recursive if
and only if it is r.e. traceable.

Therefore in the r.e. degrees, the notion of r.e. traceability or array recursiveness
completely characterize the degrees with strong minimal covers.

Another interesting and related question is the following:

Question XI.1.6 (Yates). Does every minimal degree has a strong minimal cover?

It is well-known that minimal degrees are neither ANR nor PA, so neither of
the cupping property theorems above can be used to produce a negative answer.
In addition, a lot of minimal degree constructions give minimal degrees which
satisfy conditions in either Theorem XI.1.3 or XI.1.4, hence they all have strong
minimal covers. It seems that it is the highly-specified tree constructions we use
to produce these minimal degrees that make them have strong minimal covers. In
this chapter we partially confirm this assertion by showing that some certain types
of tree constructions automatically produce degrees with strong minimal covers. In
particular, this narrows down the possible ways of constructing a minimal degree
without strong minimal covers, i.e., if we want to construct such a degree, we must
avoid these certain types of tree construction.

In Section XI.3 we define a new notion of tree traceable degrees and continue
our discussion there.

XI.2 Definitions and Notions

We write σ− to denote the string formed by removing the last number from σ. We
can regard each Turing functional Φ as a function on the set of finite strings, and
we call a string σ Φ-proper if Φ(σ−) (Φ(σ).

As usual, ω<ω (resp. ωω) denotes the set of all finite (resp. infinite) strings and
2<ω (resp. 2ω) denotes the set of all finite (resp. infinite) binary strings.

We use ≤llex to denote the length-lexicographic order on the strings.

There are commonly two different representations of trees: one as (downward
closed) subsets of ω<ω, the other as (possibly partial) functions from ω<ω to ω<ω

with order-preserving and nonorder-preserving properties. In a specific construc-
tion, one notion might be easier to implement than the other.

In this chapter, we will mainly use the notion of function-like trees and occa-
sionally we will (automatically) transform these to set-like trees in the discussion.

A tree is a partial function T : ω<ω → ω<ω with the following properties:

137

1. (Length-lexicographic order property) (σ ≤llex τ ∧ T (τ) ↓) ⇒ T (σ) ↓.
2. (Order preserving) (T (σ) ↓ ∧T (τ) ↓) ⇒ (σ (τ ⇔ T (σ) (T (τ)).

3. (Nonorder preserving) (T (σ) ↓ ∧T (τ) ↓) ⇒ (σ|τ ⇔ T (σ)|T (τ)).

In particular, the first property says, if T (τ) converges then T (σ) converges for
every initial segment σ of τ ; and if T (σ ∗ j) converges then T (σ ∗ i) converges for
every i < j.

We call a tree full binary tree if the domain is exactly 2<ω.

Given two trees T and S, we say S is a subtree of T if every node on S is a node
on T . If τ = T (σ) is a node on T , then the full subtree T ′ of T above τ is defined
as T ′(ξ) = T (σ ∗ ξ) for ξ ∈ ω<ω.

XI.3 Tree Traceable Degrees and Summary of Results

Our definition of tree traceability was partially motivated by the coding idea in
Proposition XI.3.6 attempting to find a minimal degree without strong minimal
covers. It is a “tree version” of traceability and so gets its name.

Given a function f : ω<ω → ω, f is pathwise nondecreasing if for every pair
σ ⊂ τ , if both f(σ) and f(τ) converge, then f(σ) ≤ f(τ), i.e., longer strings
compute larger values.

Definition XI.3.1. A degree a is tree traceable if there is a pathwise nondecreasing
partial recursive function f(σ) and a set A ∈ a such that for any Turing functional
Φ with Φ(A) = A, there is a partial recursive tree T such that the following holds:

1. A ∈ [T];

2. for each σ on T , let σ′ be the parent of σ on T , then there are at least two
Φ-proper nodes in [σ′, σ];

3. for each σ on T , if it is not a leaf, then f(σ) converges and the number of
children of σ on T is bounded by f(σ).

The second property above might seem strange, but one can regard it as a weak-
ening of the requirement that every node on T is Φ-proper. The main construction
in Section XI.5 will provide a more concrete idea about this property.

We call f a tracing function for a, and T a tracing tree for Φ (with respect
to f). Also note that in the definition we actually do not need the fact that A
is binary, and any string α in the same degree also works, since we can use the
canonical coding between binary strings and strings as a translation.

This notion extends r.e. traceability:

Proposition XI.3.2. Every r.e. traceable degree is tree traceable.

Proof. Let f be the recursive function in the definition of r.e. traceability of degree
a and pick any set A ∈ a. For every Φ with Φ(A) = A, we need to find a partial
recursive tree T as a tracing tree for Φ.

138

Define a function g ≤T A inductively as follows: let g(0) be (the code of)
the empty string and let g(k + 1) be the first initial segment of A extending
g(k) with a properly longer Φ image, i.e. g(k + 1)) g(k) is the first such that
Φ(g(k + 1))) Φ(g(k)). By r.e. traceability we have a recursive h such that for
every n, g(n) ∈ Wh(n) and |Wh(n)| ≤ f(n).

We can, of course, assume that each element inWh(n), as a code of a finite string,
is at the n-th level of Φ computation as g(n) above and also extends a string in
Wh(n−1). This uniform enumeration naturally gives us a tree: let the empty string
be the root, and given any node at level k, its immediate successors are these
strings in Wh(k+1) that extend it. Assuming that f is nondecreasing, it is easy to
see that f ′(σ) = f(|σ| + 1) is a tracing function for A and the tree generated by
〈Wh(n)〉 above is a tracing tree for Φ with respect to f . Here every node on the
tree is Φ-proper.

It is easy to show that r.e. traceable degrees are automatically array recur-
sive. So one might naturally ask whether tree traceables have the same property.
Interestingly, the answer is no.

Proposition XI.3.3. There is a tree traceable degree which is array nonrecursive.

Proof. See Section XI.6.

Our main result is that, array nonrecursiveness is the only restraint for tree
traceable degrees to have strong minimal covers, i.e.,

Theorem XI.3.4. Every array recursive tree traceable degree has a strong minimal
cover.

Proof. See Section XI.5.

Combining Theorem XI.3.4 and Theorem XI.1.2, we get:

Corollary XI.3.5. A tree traceable degree has a strong minimal cover if and only
if it is array recursive.

This also leads to the question whether all array recursive tree traceable degrees
are r.e. traceable, i.e., whether the result of Theorem XI.3.4 is already covered by
Theorem XI.1.4. In fact one can find an example of a minimal degree which is not
r.e. traceable but tree traceable. In addition, one can guarantee that this minimal
degree is hyperimmune, and so our result is not covered by Theorem XI.1.3 either.

Proposition XI.3.6. There is a minimal degree which is hyperimmune, tree trace-
able and not r.e. traceable.

Proof. See Section XI.7.

Then one might ask whether all minimal degrees are tree traceable, or whether
all minimal degrees which have strong minimal covers are tree traceable. If so
the notion would be a nice classification of minimal degrees with strong minimal
covers. Unfortunately, though not surprisingly, the answer is no.

Proposition XI.3.7. There is a minimal degree which is not tree traceable.

139

Proof. See Section XI.8.

In fact, by some results in [Lew07] one can argue that this minimal degree is
hyperimmune-free and not FPF, and hence has a strong minimal cover.

In the last section, we end with some further discussions and questions.

XI.4 Tree Systems

Before we prove our main theorem, we want to introduce a notion of tree systems
which we will use in our proof. The idea was motivated by Lewis’ proof of Theorem
XI.1.3. In his proof ([Lew07]), Lewis used a notion of tree basis which was defined
to be degree a with the following property:

(†): for every full binary tree recursive in a, there is a full binary subtree T ′ of
T such that every path on T ′ computes a.

Lewis showed that such a degree has strong minimal covers by using a standard
Spector minimal cover construction. Our construction in the next section can be
modified to show that every tree traceable array recursive degree is a tree basis, but
here we present the proof in the form of tree systems as we want to emphasize that
it is possible to have this property (†) only for the trees through the minimal cover
construction, and these trees might have some special properties which guarantee
nice subtrees as in (†). A typical example is the main theorem in [Cai12] (Theorem
III.5.1).

A tree system is intuitively a “tree of trees”. One could have different definitions
for them in different specific situations, just like in the case of trees. So the
following definition is just a suitable choice for our construction, but not the only
possible definition of tree systems. In particular, we embed recursiveness into our
definition just for simplicity of notions.

Definition XI.4.1. A tree system is a pair (T, S) where T is a partial recursive
tree ω<ω → 2<ω, and S is a function from 2<ω (viewed as the world containing the
nodes on T) to finite binary trees with the following properties:

1. for all τ , S(τ) is a finite tree with domain 2n for some n, and n is called the
height of the tree S(τ).

2. for every τ ⊃ τ ′, if S(τ ′) has height n, then S(τ) has height at least n, and
S(τ) �dom(S(τ ′))= S(τ ′), i.e., S(τ) must preserve the tree structure of S(τ ′);

In this definition, T and S do not seem related, but usually in our construction,
S will be regarded as being defined for the nodes of T only and extended naturally
to other strings by the second property above in the definition.

In tree systems, we will restrict the use of lower case Greek letters: we use the
letter σ to only denote the strings in the domain of T , and τ to denote the strings
in the range of T and domain of S; µ denotes the strings in the domain of R = S(τ)
and ρ (together with η) denotes the strings in the range of such an R. When we
use other Greek letters, they could mean any string, i.e., they are not necessarily
on the tree or the system.

In the definition, T is a partial recursive tree and sometimes we also regard T
as the set of its nodes. From this viewpoint, T is also an r.e. subset of 2<ω with

140

the property that in the recursive enumeration, every new element entering T is a
leaf at that point. (Lewis called such set T weakly r.e. trees.) So in this chapter,
we will sometimes confuse the notion of function-like tree T and the corresponding
set-like tree T .

Note that S(A) = ∪τ⊂AS(τ) defines a (possibly partial) binary tree recursive in
A, and actually every binary tree recursive in A can be viewed as an S(A) in some
tree system (T, S). Note that S(A) is a full binary tree if and only if the height of
S(τ) is eventually increasing for these τ ⊂ A.

We first make a definition which is an analog of full subtrees:

Definition XI.4.2. Given a tree system (T, S), a node τ on T and a node ρ on
S(σ). The full subtree system of (T, S) above (τ, ρ) is defined to be (T ′, S ′) where
T ′ is the full subtree of T above τ and S ′(τ ′) is the full subtree of S(τ ′) above ρ
for every τ ′ on T ′.

To prove the theorem in the next section, we also give definitions which are
analogs of splitting trees in the standard minimal degree construction and provide
two technical lemmas.

Definition XI.4.3. A tree system is called e-splitting if for every node τ on T ,
all leaves of S(τ) pairwise e-split.

Lemma XI.4.4. If (T, S) is an e-splitting tree system and S(A) is a full binary
tree, then for every B, a path on S(A), B ≤T ϕ

B
e ⊕ A.

Proof. Relativize the standard computation lemma for splitting trees, see also
[Ler83, Lemma V.2.6].

To find a strong minimal cover, what we actually need is B ≤T ϕB
e . For that

we need a stronger property:

Definition XI.4.5. A tree system is called totally e-splitting if for every two
incompatible nodes τ0, τ1 on T , all leaves of S(τ0) and S(τ1) pairwise e-split.

Lemma XI.4.6. If (T, S) is a totally e-splitting tree system and S(A) is a full
binary tree, then for every B, a path on S(A), B ≤T ϕ

B
e .

Proof. We start to enumerate T (note that the nodes form an r.e. set), for every
node τ on T , we try to compute ϕρ

e for every leaf ρ on S(τ). If ϕρ
e is compatible with

ϕB
e , we know that the corresponding ρ is an initial segment of B, since every ρ′ a

leaf on other S(τ ′) or other leaves on S(τ) would give incompatible ϕe-images.

XI.5 Main Theorem

In this section we prove Theorem XI.3.4. Given a tree traceable array recursive
degree a, we first pick a set A ∈ a as in Definition XI.3.1. We will construct a
set B ≥T A and make sure that B is a strong minimal cover of A. We do this by
constructing a sequence of tree systems 〈Ti, Si〉 such that 〈Si(A)〉i∈ω is a nested
sequence of full binary trees and B is the only path on every Si(A).

We will step by step handle the following requirements:

141

1. Pe : ϕA
e 6= B;

2. Qe : if ϕB
e is total, then either it is recursive in A, or B ≤T ϕ

B
e .

So Pe guarantees that B is strictly above A and Qe guarantees that B is a
strong minimal cover of A. In general, we say a tree system (T, S) forces a property
(requirement) P if P is satisfied for all A ∈ [T] and all B ∈ [S(A)]. Since our list of
requirements is countable, it is easy to see that we only need to give an initial tree
system (T0, S0) (which forces A ≤T B) and provide modules, given a tree system
(T, S), to find the next tree system (T ′, S ′) such that A ∈ [T ′], S ′(A) is a subtree
of S(A) and (T ′, S ′) forces one requirement above.

XI.5.1 Initial tree system

Our initial T0 is the identity function on 2<ω (it is partial recursive, if viewed as
a function from ω<ω to 2<ω). For every τ ∈ 2<ω, S0(τ) maps 2|τ | to 2<ω, sending
each µ to τ ⊕ µ.

It is easy to see that (T0, S0) forces A ≤T B for all B ∈ [S0(A)].

XI.5.2 Force B >T A

In the standard minimal degree construction, forcing the minimal degree to be
nonrecursive is automatically guaranteed by the Posner’s Lemma. Here we could
give an analog of the Posner’s Lemma, but we want to present a direct construction
to introduce how to work with tree systems.

Suppose we are given a tree system (T, S) and a requirement Pe. Take τ ⊂ A
such that S(τ) has height at least one. Suppose ρ0 and ρ1 are any two incompatible
nodes on S(τ). For example, let ρi = S(τ)(i) for i = 0, 1. At least one of them
is incompatible with ϕA

e , if it is total. Without loss of generality we can assume
that ρ0 is one which is incompatible with ϕA

e , then by taking the subtree system
of (T, S) above (τ, ρ0), we have forced B 6= ϕA

e .

XI.5.3 Force minimality

We first briefly describe the construction: We can take an e-splitting tree system
which is an analog of a splitting tree (if possible) and this splitting subtree system
forces B ≤T ϕ

B
e ⊕A. Then in order to force B ≤T ϕ

B
e we want to construct a totally

e-splitting tree system (see Lemma XI.4.6). The key is, of course, tree traceability,
which basically gives us a prediction on the number of children of any given node.
Following this intuition, we will define a functional Φ and use the definition of tree
traceability to narrow down the number of nodes that we need to work with. The
final touch is to use array recursiveness to “regulate” the enumeration of nodes
(see also [Cai12]) and give a tricky but nevertheless recursive procedure to get a
totally e-splitting tree system.

Now given a tree system (T, S) and a requirement Qe. As in a usual minimal
cover construction, we first ask whether we can force ϕB

e to be partial or recursive

142

in A:

∃τ ⊂ A∃ρ on S(σ)∀τ ′ ⊃ τ, τ ′ ⊂ A∀ρ0, ρ1 ⊃ ρ, ρ0, ρ1 on S(τ ′)¬[ρ0|eρ1].

That is, we ask whether there is an initial segment τ ⊂ A (without loss of
generality we can assume that τ is on T) and a node ρ on S(τ) such that the full
subtree system of (T, S) above τ, ρ) forces that there are no e-splittings above ρ
on the tree S(A), and so forces that ϕB

e is either partial, or recursive in A.

If the answer is yes, then of course we can take the full subtree as above and
we have satisfied the requirement Qe. If the answer is no, then we know that:

(†) : ∀τ ⊂ A∀ρ on S(τ)∃τ ′ ⊃ τ, τ ′ ⊂ A∃ρ0, ρ1 ⊃ ρ, ρ0, ρ1 on S(τ ′)[ρ0|eρ1]

Basically it says that we can always find e-splittings on S(A). Now we first
define an e-splitting tree system (T ∗, S∗): start from the root λ of T ∗ and without
loss of generality we can assume that S(λ) is of height 0. We enumerate λ into
T ∗ and let S∗(λ) = S(λ). By induction, suppose we have enumerated τ into T ∗

and defined S∗(τ) to be a finite binary tree of height k, then we search above τ on
T ∗ for any τ ′ such that for every leaf ρ of S∗(τ), there is an e-splitting extending
ρ on S(τ ′). For any first such τ ′ we find along the path (i.e., no τ ′′ ∈ (τ, τ ′) has
the same property), we enumerate τ ′ into T ∗ as the next children of τ and define
S∗(τ ′) to be a finite binary tree of height k+ 1 extending S∗(τ), each leaf of S∗(τ)
extended by the two e-splitting nodes we find on S(τ ′).

By (†), we know that A ∈ [T ∗] and S∗(A) is an infinite e-splitting binary tree.
Next we want “thin out” T ∗ to T ∗∗ such that every τ on T ∗∗ has at most f(τ)
many children of T ∗∗, and for any child τ ′ of τ , S∗(τ ′) has height at least the height
of S∗(τ) plus f(τ). Then we can apply the following lemma:

Lemma XI.5.1. In the setting above, suppose S∗(τ) has height m and τ1, τ2, . . . , τl
(so l ≤ f(τ)) are children of τ on T ∗∗. In addition, the height of each S∗(τi) is at
least m+ l. Then for every leaf ρ of S∗(τ), we can respectively find two extensions
ρi0, ρi1 of ρ on each S∗(τi) such that all ρij : i = 1, .., l; j = 0, 1 pairwise e-split.

Now with T ∗∗ (we haven’t say anything about how to find T ∗∗ by tree trace-
ability) and the lemma above, it is easy to see that we can construct a S∗∗ such
that (T ∗∗, S∗∗) is a totally e-splitting tree system: once we have define S∗∗(τ) then
for all the children τ1, . . . , τl we can use the lemma to define S∗∗(τi) such that all
leaves pairwise e-split.

The argument above has one crucial problem and we have to be very careful here:
trees T ∗ and T ∗∗ will be partial recursive trees and there is no way to recursively
list all the children of one given node. The only thing we can do is to enumerate
the tree T ∗ or T ∗∗ and wait for the children to appear one by one, and we don’t
know when this process will stop. So if we only do the previous construction for
part of the children when they appear, then later if a new child appears, we might
have no way to define S∗∗ to make it totally e-splitting.

Now we have to use the property that a is array recursive and by this we can
“group up” all children of one node into a limited number of groups. Children in
each group will be recursively enumerated at the same time and have S∗∗ defined
together by Lemma XI.5.1. Children in different groups will have their correspond-
ing leaves e-split by a pre-selected space from some “pseudo-leaves” to leaves on
the tree of their parent.

143

Define Φ

With (T ∗, S∗) in hand, we define a Turing functional Φ and a level function lev as
follows: Take the root λ of T ∗ and define Φ(λ) = λ, lev(λ) = 0 (we can assume
that f(λ) converges). Suppose we have defined Φ(τ) = τ , lev(σ) = k and the
height of S∗(τ) is m, then we search above τ (in length-lexicographical order) for
strings τ ′ such that S∗(τ ′) has height at least m+f(τ)+ [log2(k+3)]+1 and f(τ ′)
converges.

For such τ ′, we define Φ(τ ′) = τ ′ (and Φ(τ ′′) = τ for every τ ′′ ∈ (τ, τ ′)), and we
also define lev(τ ′) = k + 1. The last [log2(k + 3)] + 1 levels on each S∗(τ ′) will be
used as a coding space to separate children nodes of different groups.

Note that by the definition of tree traceability, there are infinitely many initial
segments α of A such that f(α) converges. So for this Φ we have Φ(A) = A.

Apply tree traceability and array recursiveness

For this Φ, we have a Φ-tracing partial recursive tree T ∗∗ by the definition of
tree traceability. Note that T ∗∗ is not necessarily a subtree of T ∗ as function-like
trees, but a subtree as set-like trees. The number of children of any node τ on
T ∗∗ is bounded by f(τ). As we discussed before, the problem is that we can only
enumerate these children one by one without knowing which one is the last one.
So we need array recursiveness to get a final tree T ′.

First define a function k(n) ≤T A as follows: fix the recursive enumeration of
T ∗∗ and let αi be the i+1-st initial segment of A on T ∗∗; let k(0) be the time when
the root (i.e., α0) enters T ∗∗ in the enumeration; similarly let k(n) be the time
when αn enters T ∗∗. By array recursiveness, we know that the modulus function
of K dominates this k(n), and so by the limit lemma there is a recursive function
λ(n, s) such that for each n, lims→∞ λ(n, s) exists and is greater than k(n). In
addition, the number of changes in each column 〈λ(n, s)〉s∈ω is bounded by n.

Using this function λ(n, s), we define a group function grp and a new partial
recursive tree T ′ from T ∗∗ as follows: First for simplicity put α0 into T ′ as the root
and let grp(α0) = 0. Suppose we have put τ into T ′ and τ is originally at level k of
T ∗∗ (note that this level is different from the function lev we define earlier). Now
look through the column 〈λ(k + 1, s)〉s∈ω for changes in value. For each change,
say the current value is x and the value has changed t times, we then enumerate
T ∗∗ up to x steps, and put all children of τ we see into the new tree T ′. Moreover,
for each child τ ′, we let grp(τ ′) = t.

It is easy to see that each αn is on the new tree T ′. Now using this tree T ′,
properties in Definition XI.3.1 and Lemma XI.5.1 we can build a new tree system
(T ′, S ′).

Define S ′

First we analyze some properties of parent-child relationship on T ′.

Suppose τ is the parent of τ ′ on T ′, hence also on T ∗∗, and τ is at level k on T ′.
By property (3) we know that f(τ) converges and by property (2), there are at
least two Φ-proper nodes in [τ, τ ′]. Say they are ξ1, ξ2 and ξ2 is extending ξ1. It is
easy to prove by induction that lev(ξ1) is at least the level of τ on T ′, and by the

144

definition of Φ, we know that the height of S∗(ξ2) is at least the height of S∗(ξ1)
plus f(ξ1) + [log2(lev(ξ1) + 3)] + 1. The latter number is greater than or equal to
f(τ) + [log2(k + 3)] + 1, since f is pathwise nondecreasing. Therefore finally the
height of S∗(τ ′) is at least the height of S∗(τ) plus f(σ) + [log2(k + 3)] + 1.

In the setting above, on such S∗(τ ′), we call the nodes at co-level [log2(k+3)]+1
the pseudo-leaves on S∗(τ ′).

We will define S ′(τ) to be a subtree of S∗(τ), and every leaf of S ′(τ) is a pseudo-
leaf of S∗(τ). We begin the definition by picking α1 and any pseudo-leaf ρ of S∗(α1)
and define S ′(α1) to be the single tree of height 0 with node ρ.

For τ at level k of T , suppose we have defined S ′(τ) and every leaf of S ′(τ) is
a pseudo-leaf of S∗(τ). Recursively list all its children τ1, . . . , τl in group t (i.e.,
grp(τ1) = · · · = grp(τl) = t). Pick any leaf ρ of S ′(τ). There are [log2(k + 2)] + 1
levels from pseudo-leaves to leaves and so there are at least k + 2 leaves on S∗(τ)
extending ρ. Note that the number of groups for all children of τ is bounded by
k+2, so we have enough leaves here to code the group information. We code group
number t by taking the t+1-st leaf ρ′ extending ρ on S∗(τ). Note that by property
(3), l ≤ f(τ). Finally using Lemma XI.5.1 we can find two extensions of ρ′ on
each S∗(τi) (i = 1, 2, . . . , l) such that all of them pairwise e-split, and it is easy
to see that we can make these extensions below their corresponding pseudo-leaf
level hence we can extend them to their corresponding pseudo-leaf level. The two
pseudo-leaves we pick on S∗(τi) will be the leaves of S ′(τi) extending ρ. Of course
we can do this for every leaf of S ′(τ) and this finishes the inductive step of our
construction.

The tree system (T ′, S ′) is then a totally e-splitting tree system and so forces
B ≤T ϕ

B
e : it suffices to check this for all children τ1, . . . , τs of one parent τ . For any

two τi and τj, if they are in different groups, then all their leaves already pairwise
e-split by our coding of groups, since S∗(σ) is an e-splitting tree. If they are in the
same group, then our construction by Lemma XI.5.1 guarantees e-splitting.

Note that in this construction (T ′, S ′) is not naturally nested in (T, S) since T ′

is not necessarily a subtree of T . However, if we view them as set-like trees and
make them downward closed, then T ′ is a subtree of T in this sense. Therefore
from this point of view, the sequence of tree systems (Ti, Si) we build is a nested
sequence.

Proof of Lemma XI.5.1

To finish the proof we are left with Lemma XI.5.1. First for simplicity we can
assume that each S∗(τi) has height exactly m+ l, i.e., there are exactly l levels of
binary structure above the leaf ρ on each S∗(τi).

Now we prove the Lemma by induction on l. If l = 1, the claim is trivial, since
S∗(τ1) is already an e-splitting tree. Suppose that the claim holds for l = k and
now we have k + 1 children. First for each k + 1-level binary structure above ρ,
we hide the last level and view them as k-level structures. We call these nodes
k-levels above ρ key-nodes. Note that each key-node has two e-splitting extensions
at the k + 1-st level. Next we pick a key-node with the longest ϕe-image, say η
on the tree corresponds to τ1. Now for the rest children τ2, . . . , τk+1 with their
k-level structure (remember that we first hide one level), we apply the induction
hypotheses and get pairwise e-splitting key-nodes ηi0, ηi1 for i = 2, .., k + 1.

145

Since η has the longest ϕe-image, at least one of η20, η21 e-splits with η. Without
loss of generality, say η20 e-splits with η. Then we reveal the k+1-st level and pick
two extensions ρ20, ρ21 of η20. We can do this for every i = 2, 3, .., k + 1 and get
ρi0, ρi1 for i = 2, 3, . . . , k + 1. Finally we pick two extensions of η at the k + 1-st
level and let them be ρ10 and ρ11. It is easy to see that these ρij’s pairwise e-split.

This finishes the proof of Lemma XI.5.1 and the whole construction.

XI.6 An ANR Tree Traceable Degree

Since r.e. traceability guarantees that the degree has strong minimal covers, one
might ask whether we could remove the property of array recursiveness in Theorem
XI.3.4, or equivalently whether tree traceability guarantees array recursiveness. In
this section, we show that this is not true (Proposition XI.3.3).

We construct an infinite string α of ANR degree by approximation through
partial recursive trees T : ω<ω → ω<ω. In order to code in some information about
mK at any stage of the construction, we need all trees in the construction to have
the following property:

(∗) : T (σ ∗ i) ↓ implies T (σ ∗ i) ⊃ T (σ) ∗ i.

Our first tree T0 will be the identity function on a domain specified as follows.
We take the standard limit computation λ(n, s) of mK(n), the modulus function
of K. For the root, we set T0(∅) = ∅. Suppose we have defined T0(σ) = σ and
|σ| = n. We always have T (σ ∗ 0) ↓= σ ∗ 0. Then we run through the column
〈λ(n, s)〉s∈ω looking for the i-th change. If the i-th change is found, then let
T0(σ ∗ i) = σ ∗ i; otherwise it diverges. It is easy to see that all paths on T0 are
bounded by the function f(n) = n, and if we can code in the correct number of
changes through the columns of λ(n, s) infinitely often, then the final path will
compute a function which is not dominated by mK and hence is ANR: simply
take g(n) ≤ α be the value after the α(n)-th change in the corresponding column
of the limit computation.

Given a tree T at the current stage of the construction, by property (∗), we can
pick the true number of changes through the column 〈λ(|T (∅)|, s)〉s∈ω, say i, and
take the full subtree of T above T (i) as the next tree. This ensures that in the end
our α is ANR.

In addition, we need to guarantee tree traceability. Note that it is equivalent
to use an infinite string α instead of a set A in the definition. For any Turing
functional Φ, we simply force the totality of Φ as follows. Given T , we first ask
whether we can force nontotality:

∃σ on T∃x∀τ ⊃ σ, τ on T (Φ(τ, x) ↑).

If so, we can take the full subtree of T above σ. It is easy to see that Φ(α) is
forced to be partial. If not, then we know:

∀σ on T∀x∃τ ⊃ σ, τ on T (Φ(τ, x) ↓).

Now we can define a subtree T ′ of T which forces totality. Let T ′(∅) = T (∅).
Suppose we have defined T ′(σ) = T (τ) = ρ, then for each i, we search above

146

T (τ ∗ i) on T for η with a new convergence of Φ, i.e., a longer Φ-image. If found,
we set T ′(σ ∗ i) to be that node η (this η must be on T and so it is not necessarily
Φ-proper). Note that if T (τ ∗ i) originally diverges, then this search also diverges.

The definition of tree traceability requires two Φ-proper nodes between two
levels of T ′. So we need to slightly modify this forcing totality construction that
at each step, we try to force totality “twice”, i.e., above T (τ ∗ i), we search for two
nodes η0 (η1, each with a longer Φ-image, and define T ′(σ ∗ i) to be η1. Finally
note that T ′ preserves property (∗) and it is a tracing tree for Φ with the tracing
function f(σ) = |σ|+ 1.

XI.7 Minimal Degree Construction I

In this section we show that the notion of tree traceability properly extends r.e.
traceability. In fact, we can construct a hyperimmune minimal degree which is
tree traceable but not r.e. traceable. The idea to force hyperimmunity comes from
[Cai10] and the idea to force non-r.e. traceability is from [Gab04].

Our trees are divided into even levels and odd levels. Even levels have some
guessing process, which handles hyperimmunity, and odd levels have multiple
branchings, which handles non-r.e. traceability. More formally, we use trees T
such that for every σ in the domain of T , if |σ| is even, then T (σ ∗ 0) always have
children, and T (σ∗1) has children if and only if ϕn(n) converges, where |σ| = 2n; if
|σ| is odd and T (σ) is not a leaf, then it has |σ|many children and T (σ∗i) ⊃ T (σ)∗i
for i = 0, 1, . . . , |σ| − 1.

We list the requirements that we need to satisfy for the infinite string α:

1. Re: ϕ
α
e is nontotal, or recursive, or α ≤T ϕ

α
e .

2. Pe: if ϕe is total, then there is an x such that β(x) > ϕe(x) (for some fixed
β ≤T α).

3. Qe: for every recursive function f = ϕe, there is a function g ≤T α such that
for any potential trace Wh(n), either |Wh(n)| > f(n), or g(n) /∈ Wh(n) for some
n.

So Re handles minimality, Pe handles hyperimmunity and Qe handles non-r.e.
traceability. Re is satisfied by a more or less standard splitting tree construction.
We will give intuitions to satisfy Pe and Qe after we introduce the first tree T0.

XI.7.1 Initial tree T0

Our initial tree T0 : ω<ω → ω<ω is defined as follows: First we let T0(∅) = ∅. After
we define T0(σ) = σ for |σ| = 2n, then we let T0(σ ∗ i) = σ ∗ i for i = 0, 1. On
the 0 side, we let T0(σ ∗ 0 ∗ j) = σ ∗ 0 ∗ j for j = 0, 1, . . . , n + 1; on the 1 side,
we check whether ϕn(n) converges: if not, then T0(σ ∗ 1) is a leaf; if so, we let
T0(σ ∗ 1 ∗ j) = σ ∗ 1 ∗ j for j = 0, 1, . . . , n + 1. We call such a 2-level structure a
block.

Typically, the 1 side of one block guesses whether a partial recursive function
at a certain input converges or not, and we will handle our construction such that
at each step, we are still doing a similar guessing for all partial recursive functions.

147

Finally β is computed from α in the following way: for each n, we simply check
whether α(2n) = 1, if not, then let β(n) = 0; if so, we compute ϕn(n) (and our
initial tree construction guarantees that this converges) and let the value plus 1
be β(n). So we can infinitely often know a number computed by a total recursive
function and β will exceed this value at the corresponding entry.

To satisfy Qe, we first check whether f = ϕe is total or not. If it is partial,
then we don’t have to do anything; if it is total, then we need to make our tree
enough “branchy”. Then we can define a function g recursive in α, picking the
even-nodes we meet as we go along the tree along path α (see detailed construction
in §XI.7.4). The tree is enough branchy so that for any enumeration Wh(n), either
it enumerates more than f(n) many nodes, or there is one branch which is not in
Wh(n).

XI.7.2 Blocks

We provide some notions for later use about blocks. We usually think of a tree
consisting of blocks. We use letter B to denote blocks. Each block has the following
nodes: T (σ), T (σ∗0), T (σ∗1), T (σ∗0∗0), T (σ∗0∗1), . . . , T (σ∗0∗i) and, if T (σ∗1)
is not a leaf, also T (σ ∗ 1 ∗ 0), T (σ ∗ 1 ∗ 1), . . . , T (σ ∗ 1 ∗ j). We will call T (σ ∗ 0) at
the 0-node of the block, etc. We call min{i+ 1, j+ 1} the branching number of B.
All the third level nodes are called top-nodes or branching-nodes of the block. The
block B is associated with index e if its 1-node is guessing whether ϕe(x) converges
for some x. Note that each block is associated with infinitely many indices, by the
Padding Lemma.

XI.7.3 Force hyperimmunity

We need an aiding recursive function l(n) for each tree T in our construction such
that the l(n)-th block from the root (along every path) is guessing at ϕn(x) for
some x. So for the initial tree T0, l(n) = n for each n. A lot of our trees do have
this identity function as aiding function.

Now we are given a tree T and we want to force Pe. We simply take l(e)-th
block along any path and the 1 side T (σ ∗ 1) there is guessing at ϕe(x) for some
x. If it doesn’t converge, then we don’t have to do anything to T . If it converges,
we then simply take the full subtree above T (σ ∗ 1 ∗ 0), and we use the Padding
Lemma to get a new aiding function for the full subtree we get.

XI.7.4 Force non-r.e. traceability

To handle Qe, as we argued above, we can assume that f = ϕe is total. For
the given tree T , we first need to make it “branchy” in the following way. First
compute f(0) and we start with a block guessing at ϕ0(x0) (for some x0) and the
branching number is greater than f(0); then we compute f(1), and extend the first
block to a block guessing at ϕ1(x1) and the branching number is greater than f(1).
Similarly we get a new subtree T ′ of T such that the identity function is the aiding
function for T ′, and every n-th block from the root along every path has branching
number greater than f(n), i.e., its number of branches is at least f(n) + 1.

148

Define g(n) ≤T α as follows: to compute g(n) go along α on T ′ to the n-th
block, and take the initial segment of α which is a branching node of that block
(and of course we need some canonical coding from strings to natural numbers).
Then we can make this g(n) not traced by any Wh(n) at subsequent stages.

Later in the construction, we try to preserve the branching of a block (see details
in the next subsection) in sense that in any tree T ∗ we see later, the branching
nodes on the first block will extend branching nodes on T ′ for some block. Suppose
this block is the k-th one from the root. Then we look at Wh(k), if it has more than
f(k) many elements, then we don’t have to take care of this h; if the number of
elements is bounded by f(k), then at least one of the branching nodes on the k-th
block of T ′ is not in the set, and so we simply take the corresponding branching
node on the first block of T ∗ and we have forced g(k) /∈ Wh(k). We can do this
infinitely often for every h and force the function g(n) to be not traced by any
Wh(n) with the appropriate property.

XI.7.5 Force minimality

Now we need to handle the classical minimal requirements Re for any given tree
T . The only difficulty is to make sure that the above two types of constructions
still work in the subtrees. That is to say, for the new subtree we need a new aiding
function, and we want to keep the multiple branching nodes. Fortunately, these
are easily handled by the following construction.

Following [Cai12], we first ask whether there is an even-node τ which forces
non-e-splitting, i.e., no pair of even-nodes above τ is an e-splitting pair. If so, we
can take the full subtree above τ and use the Padding Lemma again to get an
aiding function. Branching is of course preserved.

Now assume that this is not the case, i.e., above every even-node, we can find
two even-nodes which e-split. Then we need to construct an e-splitting subtree
T ′ of T . First we let T ′(∅) = T (∅). By induction, suppose we have defined
T ′(σ) = T (τ) and |σ| = 2n. We search above T (τ) for a pair of e-splitting even-
nodes ρ0, ρ1 on T , then extend them to blocks guessing at ϕn(x) for some x. Let η0

be extending ρ0 at the 0-position of the block B0 and let η1 be extending ρ1 at the
1-position of the block B1. On the 0-side, suppose we have t branching nodes in
B0 extending η0. We have to keep the branching nodes of B0 by finding t pairwise
e-splitting nodes above η0, each extending one of the branching nodes extending
η0 (by Lemma XI.5.1). On the 1-side, we do the same thing if ϕn(x) converges; we
don’t do anything if it doesn’t. This finishes the construction.

XI.7.6 Verification

We only need to verify that this minimal degree a = deg(α) is tree traceable. By
the remark after Definition XI.3.1, we can prove this by using α in place of A in
the definition. The tracing function f(σ) is f(σ) = |σ|. For any Turing functional
Φ with Φ(α) = α, we need to find a tracing tree for it. We first define a new
Turing functional Φ̃ as follows: Start from the root Φ̃(i) = ∅ for every i. If we
have defined Φ̃(σ) = σ′ where σ′ (σ and σ is Φ-proper, then we search above σ
for the next Φ-proper extension τ and define Φ̃(τ) = σ for such τ . Note that still

149

we have Φ̃(α) = α. Suppose this Φ̃ is represented by ϕ
(·)
e in the requirement Re.

In the construction, we have made α on an e-splitting partial recursive tree T ,
and we show that this T is a tracing tree for Φ. It is easy to see that on this tree
T , the number of successors of each node is bounded by f(σ). To see that there
are at least two Φ-proper nodes between two successive nodes, we assume that τ0
is an immediate successor of σ on T and for a contradiction we also assume that
there are only one Φ-proper node in the interval [σ, τ0] (There must be one since
Φ̃(τ0) properly extends Φ̃(σ)). By our construction of Φ̃, Φ̃(τ0) ⊂ σ, but then τ
cannot Φ̃-split (e-split) with other successors τi of σ. So there must be at least two
Φ-proper nodes in the interval [σ, τ0].

XI.8 Minimal Degree Construction II

In this section, we assume that the reader has some basic idea of minimal degree
constructions as in the previous several sections and so we sketch the construction
instead of writing out full proofs. The key point here is how to force the degree
to be not tree traceable. Forcing minimality is slightly more complicated but very
similar, and so omitted.

In order to force a minimal degree to be not tree traceable, we need a large
number of immediate successors so that for any possible tracing tree we can always
find one of the immediate successors which are not on the tree. The only trick is
that a possible tracing function f(σ) could be partial somewhere and we will force
it to be total on the nodes we are working with.

Since we don’t have to force hyperimmunity, we work with trees T : ω<ω → 2<ω

with a recursive domain. Our initial tree T0 is the identity function with domain
2<ω.

We call a tree T f -branching if for every node τ on T , it has more than f(τ)
immediate successors on T . For example, T0 is a 1-branching tree. To force that
A is not tree traceable by a certain function f , we will make our trees f -branching
and define a functional Φ such that we can avoid any tracing tree in the following
steps of construction.

In a similar fashion as the construction in Section XI.7 above, after we construct
a tree T , we want all of our following trees T ′ to respect the branching of T such
that for every T ′(σ′) = τ = T (σ), each immediate successor ρ of τ on T must have
at least one extension ρ′ which is an extension of τ on T ′.

XI.8.1 Force non-tree-traceability

Suppose we are given a recursive tree T and a path-wise nondecreasing partial
recursive function f(σ), to force non-tree-traceability we want to do the following
for each B ≡T A (let B = ϕA

j): find a subtree T ′ of T which respects the branching

of T , and find a Turing functional Φ such that Φ(ϕC
j) = ϕC

j for every path C ∈ [T ′]
and such that there is no tracing tree for B via tracing function f .

For simplicity we first describe the construction for the case when B = A, and
briefly sketch for the general case.

150

Now first let B = A. The idea is to make the tree f -branching so that at later
stages of the construction we can pick a branch within sufficiently many branches
and the branch we pick is not on the potential tracing tree considered at that stage.

A problem is that, f is partial recursive and so it might diverge on some input
σ. We cannot wait forever since we are going to build a perfect tree without leaves.
The solution is as follows: we first ask the question

∃τ on T ∀χ ⊃ τ(f(χ) ↑).

That is, we ask whether there is a node τ such that f diverges everywhere above
τ (χ might not be on the tree T). If so we can surely take the full subtree of T
above τ as our tree at the next stage, and the non-tree-traceable requirement for
this f is satisfied.

If not, then for every node τ on the tree T , we can predict the value of f(τ) by
looking for convergence of f(χ) for χ ⊃ τ . By the negative answer to the question
above, we are guaranteed to find such a convergence, and the value of f(χ) is at
least the value of f(τ), assuming the latter converges.

Then at τ , we can define the new tree T ′ as follows: We find a number n such
that the number of nodes n-levels above τ on T exceeds f(χ) we find as above.
Then we define T ′ by making all these n-level nodes as immediate successors of τ
on T ′. This process definitely makes T ′ respect f .

We define a functional Φ as follows: going along the paths of T ′, at each node
τ we let Φ(τ) = τ and only these nodes are Φ-proper.

At any subsequent stage, we have the current tree T ∗ in the construction and
we are given a potential tracing tree Tr. Since in our construction, we always make
new trees respect the branching of old trees, it is not difficult to see that the root
η of Tr has to be an initial segment of the root η∗ of T ∗. By property (2) each
immediate successor of η on Tr has to be above one immediate successor of η∗ on
T ′, and by property (3), the number of all immediate successors of η is bounded by
f(η), which is bounded by f(χ) for the χ we found for η∗ as in the construction of
T ′. So there is at least one immediate successor ξ of η∗ which is incomparable with
any node on Tr except the root η. In addition, we make T ∗ respect the branching
of T ′, so there is at least one immediate successor ξ∗ of η∗ which is above ξ, and
we can take the full subtree of T ∗ above this ξ∗. This construction surely prevents
Tr to be a tracing tree, and it is easy to see that we can do this for all potential
tracing trees for A at subsequent stages.

Now for the general case, note that we will have splitting tree constructions
when we force minimality, so for each B = ϕA

j in the same degree, we will have

A = ϕB
k and such ϕj and ϕk can be viewed as functionals only defined on a certain

splitting tree T and in particular they are bijections if we restrict the domain to
the nodes on such T . These two provide us translations between two worlds (just
like the case for binary strings and general strings). We will write ϕi(τ) instead of
ϕτ

i .

First we ask a similar question with χ ⊃ τ replaced by χ ⊃ ϕi(τ). If the answer
is yes, then also take a full subtree above that node; if the answer is no, then we
construct a similar T ′ which respects f ◦ ϕi. Then we define a functional Φ such
that Φ(ϕi(τ)) = τ for every τ on T . Now for any potential tracing tree Tr of Φ
(with respect to f), we can argue that we can find at least one immediate successor
ξ of the root of T ′, any subtree of T which preserves the branching, such that the

151

full subtree above ξ avoids Tr in the same way. The details of the proof is not
difficult and left to the reader.

XI.8.2 Force minimality

In the splitting tree construction, we need to preserve the branching of the previous
tree and again Lemma XI.5.1 is used to find splittings above multiple nodes. The
details of the construction and the final verifications are easy and also left to the
reader.

XI.9 Remarks and Questions

The proof of Proposition XI.3.6 actually shows that, in order to find a minimal
degree without strong minimal covers, one must avoid certain types of tree con-
structions where one can predict the number of children of any given node. It
might be interesting if there is any progress in either of the following: extending
this argument to further restrain the type of tree construction we use, or providing
a tree construction of a minimal degree without strong minimal covers using trees
that are multiple-branching as in Section XI.8.

It is still unknown whether the property of having strong minimal covers is
downward closed in the Turing degrees. We also want to know whether this is true
for tree traceability, and typically a negative answer could be very interesting.

Question XI.9.1. Are the tree traceable degrees downward closed in the Turing
degrees?

It is proved that in the definition of r.e. traceability, we can use any eventually
increasing recursive function in the place of the recursive bound f (see [Nie08,
Section 8.2]). It might be interesting to know whether similar phenomenon holds
for tree traceability.

Question XI.9.2. In Definition XI.3.1, can we replace f by a fixed function and
get the same class of degrees?

Ishmukhametov showed that an r.e. degree is r.e. traceable if and only if it is
array recursive, and hence solved the strong minimal cover problem for r.e. degrees.
We might expect to have such nice characterizations for a broader class of degrees
in terms of tree traceability or some other tracing property.

152

CHAPTER XII
DEGREES OF RELATIVE PROVABILITY

There are many classical connections between the proof-theoretic strength of
systems of arithmetic and the provable totality of recursive functions. In this chap-
ter we directly study the provability strength of the totality of recursive functions
by introducing a natural ordering on all recursive algorithms and investigating the
degree structure induced by it. We prove several results about this proof-theoretic
degree structure using recursion-theoretic techniques such as diagonalization and
the Recursion Theorem.

XII.1 Historical Background

It is well known that it is sometimes difficult to prove the totality of a recursive
function, especially if it is fast-growing. For example, Goodstein’s Theorem, which
is a Π0

2 sentence in arithmetic, can be naturally interpreted as the totality of a
recursive function; and it is known (see [KiPa82]) that we cannot prove Goodstein’s
Theorem in Peano Arithmetic (PA). Another similar example is the Modified
Ramsey Theorem of Paris and Harrington (see [PH77]).

Note that the totality of a partial recursive function is a Π0
2 sentence in arith-

metic, and conversely a Π0
2 sentence in arithmetic can be naturally interpreted as

the totality of a partial recursive function. Therefore the study of the totality of
recursive functions can be viewed as the study of the Π0

2 fragments of theories.

The totality of recursive functions has been studied in terms of subrecursive hi-
erarchies and rates of growth of functions (as in [FW98]). Starting from a countable
ordinal α with some structure, one can define fast-growing functions by induction
on α and get a hierarchy of such functions. These number-theoretic functions turn
out to be a bridge connecting proof-theoretic complexity and computational com-
plexity. One then can prove various theorems relating the axioms systems and the
provably total functions in these systems.

For example, it is a classical result that the recursive functions whose totality
can be proved in IΣ1 (a fragment of PA restricting the induction scheme to only Σ1

formulae) are exactly the primitive recursive ones, and similarly PA corresponds to
α-recursive functions for α < ε0 (intuitively, α-recursive functions can be computed
by induction below α).

While this approach mainly works for fragments or extensions of Peano Arith-
metic, there have also been attempts to look at different theories, for example, in
the language of set theory. One can apply an “ordinal analysis” to axiom systems
and get an ordinal α as its “norm”, then for axiom systems that are good enough
(regular), there is similar theorem that the provably total functions in an axiom
system T are exactly the functions primitive recursive in some function related
to an ordinal below the norm of T , which is closely related to the fast-growing
functions (see [Poh98, Theorem 2.1.4.5]). However, such an analysis works mainly
for small fragments of ZFC such as KP.

It is worth mentioning here the study of the degree structure of honest recursive
functions (see for example, [Kri98] and [Kri99]). A recursive function is honest if
its computing time is bounded by a finite iterate of itself. One can induce a degree
structure on honest functions by domination and iteration. In particular, there
are also generalizations ([KSWxx]) which directly connect the “ε0” version of this
degree theory with provability over PA. Based on this one can prove, for example,

153

a minimal pair theorem which states that there are two honest functions whose
totality form a minimal pair over PA, i.e., any honest function whose totality can
be proved from the totality of each of these two functions is provably total in PA
([KSWxx]).

In reverse mathematics (see [Sh10] for a survey), we have a weak base the-
ory (RCA0) in second order arithmetic and the provability strength of different
sentences (mainly Π1

2 sentences) and theories are discussed over this base theory.
Interestingly, some strong Π1

2 sentences have so-called “finite miniaturizations”. It
turns out that some of these finite miniaturizations are natural examples of Π0

2
sentences that are fast-growing and not provable. For example the finite Kruskal’s
Theorem is not provable in Π1

1-CA0 (RCA0 plus the comprehension scheme for
Π1

1 formulae, see [Fri98] and [Sim85]).

In set theory, by studying rank-to-rank embeddings, one can induce a purely
combinatorial structure called Laver Tables. There is also a recursive function
associated with Laver Tables and the interesting fact is that the only known proof
of its totality requires a very strong large cardinal axiom (I3, see [Deh10]). The
best result so far is that this function is not primitive recursive ([Deh10]). So
we want to know whether a large cardinal axiom is really necessary to prove its
totality, or whether ZFC suffices.

In summary, there are some quite different approaches to the provably total
functions over various theories in different languages, and we might want to know
whether there are common features among them (using fast growing hierarchy,
[Loe92] gave unified proofs of unprovability over PA for Goodstein’s Theorem,
Modified Ramsey Theorem and the finite Kruskal’s Theorem). In addition, old ap-
proaches seem to have difficulty classifying the provably total functions in stronger
theories such as ZFC or ZFC plus some large cardinal axiom. So we would like to
develop a basic framework to study the relative provability strength of the totality
of recursive functions in a wide variety of theories.

There are two notions of proofs: one is the social version, which is written in
natural language and can be used in communication among mathematicians; the
other is the formal version, which is defined as a sequence of formal sentences which
satisfy certain properties and which is usually not used in communication (see more
discussions in [Bus98]). In recursion theory, we have a similar phenomenon for
computations: there are social and formal versions and we mainly use the social
version in communication and in the proofs we write. In fact, recursion theory
has taken great advantage of using the social or informal version of computations
so that we can write out much more complicated constructions such as injury
arguments and tree constructions, which are almost impossible to write out in
formal Turing machine language. In this chapter, we will use social proofs when we
argue for proofs in formal systems, but we shall keep in mind that, when we argue
formally over some theory T , the natural numbers we use may be nonstandard,
and the argument has to work with nonstandard numbers. If we do not specify
that we are working in a formal system, then we always assume that we are arguing
in the standard model of the natural numbers.

XII.2 New Approach: Base Theory

Let ϕi(x) be a total recursive function with a fixed algorithm indexed by i. By the
totality of ϕi we mean the sentence stating that ϕi is total, i.e., ∀x∃sϕi,s(x) ↓ (here

154

we can use Kleene’s T predicate, which is primitive recursive, to express ϕi,s(x) ↓,
i.e., the computation with an index e and an input x converges within s steps).
For convenience we use tot(ϕ) to denote this sentence.

In reverse mathematics, we choose a weak base theory (RCA0) which is power-
ful enough to develop the basics of mathematics: pairs, strings, formulae, sentences,
proofs, etc., then we can discuss the relative provability of sentences and theories
over it.

Similarly, here we also want to fix a base theory T . However we are not specific
about which theory T we use here: it just needs to be strong enough in a sense
which we will explain, and in particular, it could be very strong and does not have
to be in a fixed language. All of our discussions and all the theorems will work for
any possible theory satisfying the requirements we list below.

First, we require T to be axiomatizable, i.e., it has a recursive list of axioms.
This is to say, given a proof (coded as some number s), we can effectively tell
whether it is a valid proof in T . In the theorems we are going to prove, we
will construct recursive functions by diagonalization, e.g., diagonalize against all
possible functions whose totality is provable in the theory T , therefore it is crucial
that we can recursively decide whether a proof is a proof in T . It is convenient
here to assume that the coding of the recursive list of T -axioms is a provably
total function in T (for example, we do not need to run a Goodstein sequence
computation to decide whether a sentence is an axiom in T), but this is not crucial,
since we can modify the definition of a proof and require that each axiom has an
affiliated computation which confirms that it is an axiom.

We require that T is consistent with true arithmetic (TA) in the following sense:
In T one has a fixed interpretation of arithmetic, i.e., one can define the domain of
natural numbers, zero and the successor operation, together with plus, times and
the order of natural numbers. Then each sentence ψ in arithmetic has a translation
pψq in the language of T and we require that if T ` pψq then TA ` ψ. So if we
can prove in T that some partial recursive function ϕe is total (i.e., T ` ptot(ϕe)q),
then it is total. (For convenience, we will omit pq in the notation and simply write
T ` tot(ϕe).)

In addition, like RCA0, with the interpretation of arithmetic as above, T is
powerful enough to develop the basic notions of pairs, strings, sentences and proofs,
therefore we can write out formal sentences such as “T ` ϕ” for some sentence ϕ
in the language of T . It can also express the notion of Turing machines and the
computation sequence of Turing machines. In particular, we can talk about ϕe,
the e-th partial recursive function.

Finally we want to impose a convention on our partial recursive functions. We
automatically convert them into partial recursive functions satisfying the conven-
tion. We need IΣ1 to show that we can do such a conversion and the new function
is “equivalent” to the old one as far as we are concerned. We will discuss the
details in the next section.

Therefore IΣ1 is a good candidate for our base theory T and any stronger theory
will also work. Note that some of the theorems we will prove may not require the
convention we impose and so they may work in even weaker base theories. It might
also be interesting to discuss our degree structure when the base theory is weaker
than IΣ1, but this is beyond our scope here.

As opposed to the “honesty restraint” on recursive functions in the analysis
of degrees of honest functions, we don’t have any special restraint on recursive

155

functions. Another major difference is that, the honest function constructions,
as well as the old approaches using ordinals we discussed in the previous section,
are mainly based on iteration of functions and fast-growing hierarchies, while ours
are mostly based on diagonalizations 1. For example, as we mentioned earlier, in
[KSWxx] they have a theorem on minimal pairs similar to Theorem XII.6.1, but it
only works for honest recursive functions and only for PA as a base theory, while
our minimal-pair theorem works for all recursive functions and for both weaker
and stronger theories without modification. It might be interesting to decide if
there are natural connections between these two degree structures.

We thank Richard A. Shore for helpful comments and suggestions, especially
for the discussions in reverse mathematics, and also thanks Justin Moore for in-
troducing the topic on Laver Tables to him, which initially motivated the research
in this chapter.

XII.3 Basics

We start with the definition of the order:

Definition XII.3.1. Given ϕi and ϕj, we say ϕi is provably reducible to ϕj if
T + tot(ϕj) ` tot(ϕi). We denote this by ϕi ≤p ϕj.

It is easy to see that ≤p is reflexive and transitive, so it naturally induces a
degree structure: ϕi and ϕj are provably equivalent (ϕi ≡p ϕj) if they are provably
reducible to each other. Given ϕi, we use [ϕi] to denote the collection of ϕj’s that
are provably equivalent to ϕi, i.e., the equivalence class of ϕi. We will call such
[ϕi] a provability degree and we use P to denote the class of all provability degrees,
ordered by the induced provability reducibility.

It is very important to note here that, strictly speaking, this order is defined on
recursive algorithms instead of recursive functions. As we will discuss in Section
XII.7, each function f has many representations ϕi, each is the same function as f ,
but these representations might have different provability degree. In this chapter,
we will use Greek letters ϕ, ψ, θ for (possibly partial) recursive functions with fixed
algorithms, and f, g, h for recursive functions as functions. So when we write ϕ,
it is assumed that it corresponds to a fixed algorithm ϕi, or we are constructing
such a ϕ and we refer to the algorithm we are defining.

We use 0 to denote the constant zero function computed in the easiest way,
i.e., output 0 regardless of input, so [0] is the bottom degree in P . It is also the
collection of all functions whose totality is provable in T .

To simplify some arguments, we will impose the following convention, which is
commonly used in recursion theory: For a recursive function ϕ, if ϕ(x) converges
in s steps, then all ϕ(y) for y < x converge in less than s steps. More precisely,
given any recursive function ϕ, we first convert ϕ to another function ϕ̃: for each
x, we wait for all ϕ̃(y) for y < x to converge before we start computing ϕ(x), then
output the value ϕ(x) as ϕ̃(x). We need to show that [ϕ] = [ϕ̃] (and so we can
always assume that every function satisfies this convention). One direction ϕ ≤p ϕ̃

1Such diagonalization ideas have been used in Fischer’s work ([Fis65]) to construct recursive
functions with various kinds of provable or nonprovable properties (such as provably one-to-one,
provably onto, or provably increasing).

156

is trivial. For the other direction ϕ̃ ≤p ϕ, we assume that ϕ̃ is not total. Then
we can find the least x that ϕ̃(x) does not converge (using IΣ1), and so get a
contradiction with the construction of ϕ̃ and the fact that ϕ(x) converges. One
important fact based on our convention is that if ϕ converges at infinitely many
inputs then ϕ is total.

Next we show that in P one can define a join and a meet operator, and in fact
P is a distributive lattice.

Definition XII.3.2. Given two recursive functions ϕ and ψ, the join of ϕ and ψ,
denoted as ϕ� ψ, is defined as the following recursive function: for each input n,
we compute ϕ(n) and ψ(n) simultaneously, and output (ϕ�ψ)(n) = 0 only if both
converge. The meet of ϕ and ψ, denoted as ϕ�ψ, is defined in a very similar way,
except that we output (ϕ� ψ)(n) = 0 if either ϕ(n) or ψ(n) converges.

Note that by these two definitions we really mean that we find two recursive
functions k� and k� (which are provably total by the s-m-n theorem) such that
ϕi � ϕj = ϕk�(i,j) and ϕi � ϕj = ϕk�(i,j).

Also note that in the above definitions, one can change the output value quite
arbitrarily: for (ϕ�ψ)(n), we can also use either ϕ(n) or ψ(n) as the output value,
since we need to wait for both to converge; for (ϕ � ψ)(n), we may use the value
of ϕ(n) or ψ(n), whichever converges first.

Recall that in a partial order, [ϕ] ∨ [ψ] denotes the join of two degrees and
[ϕ] ∧ [ψ] denotes the meet. One can easily show the following:

Proposition XII.3.3. [ϕ� ψ] = [ϕ] ∨ [ψ], and [ϕ� ψ] = [ϕ] ∧ [ψ].

Proof. For the first claim: [ϕ] ≤ [ϕ � ψ] and [ψ] ≤ [ϕ � ψ] follows directly from
the definition. Given [θ] which is above both [ϕ] and [ψ], [θ] is also above [ϕ� ψ]
since we can prove the totality of ϕ� ψ from the totality of both ϕ and ψ, which
we can get from the totality of θ.

For the second: it is easy to see that ϕ being total guarantees that ϕ�ψ is total;
and similarly ψ being total also proves that ϕ�ψ is total. Now given some θ whose
degree is below both [ϕ] and [ψ], we want to show that θ ≤p ϕ�ψ. Note that the
totality of ϕ�ψ shows that either ϕ is total or ψ is total by our convention. Then
since we have proofs that θ ≤p ϕ and θ ≤p ψ, we know that θ has to be total in
either case.

Thus P is a lattice with these two operations, and distributivity easily follows
from the distributivity of “and” and “or” in Definition XII.3.2.

Here is a lemma which will be used later but it is convenient to make explicit
now.

Lemma XII.3.4. If T ` ϕ = ψ, then [ϕ] = [ψ].

By ϕ = ψ we mean that, for each n, if ϕ(n) converges, then ψ(n) has to converge
to the same value, and vice versa (therefore they are the same as partial functions).
The proof is almost obvious.

157

XII.4 Jump Operator

As in the Turing degrees, we can also define a natural jump operator in the prov-
ability degrees.

Definition XII.4.1. Given a recursive function ϕ, the jump of ϕ, denoted as ϕ∗,
is defined inductively as follows: at each stage s, we check whether s is (the Gödel
number of) a proof witnessing T + tot(ϕ) ` tot(ϕe) for some recursive function ϕe:
If so, we let ϕ∗(s) = ϕe(s) + 1; If not, we let ϕ∗(s) = 0; and then proceed to the
next stage s+ 1.

By the s-m-n theorem, this definition also corresponds to a recursive function
k∗ such that ϕk∗(i) = ϕ∗i . Before we show that this is a good definition of a jump
operator, we will need the following Padding Lemma (and that it is provable in
T).

Lemma XII.4.2 (Padding Lemma). Suppose s is (a code of) a proof which wit-
nesses Σ ` ψ, then there exists an infinite recursive list s0, s1, . . . , sn, . . . of proofs
witnessing the same result. Moreover, si as a function of i is provably total in T .

The proof is almost obvious since we can add arbitrary redundancy into proofs.
This lemma works for proofs in the same way as the Padding Lemma in recursion
theory does for algorithms.

Proposition XII.4.3. T + tot(ϕ∗) ` “if T + tot(ϕ) ` tot(ϕe), then ϕe is total”,
and in fact for every ψ, [ψ] ≥ [ϕ∗] if and only if T + tot(ψ) ` “if T + tot(ϕ) `
tot(ϕe), then ϕe is total”.

Proof. We argue in T + tot(ϕ∗) for the first claim. If we have a proof s witnessing
T + tot(ϕ) ` tot(ϕe), then by the Padding Lemma we have infinitely many proofs
s0, s1, . . . witnessing the same result. Therefore in the construction of ϕ∗ at each
of these stages si we make ϕ∗(si) = ϕe(si) + 1. Then it is easy to see that the
totality of ϕ∗ guarantees the totality of ϕe (by our convention).

If T + tot(ψ) proves the assertion that every T + tot(ϕ)-provably total function
is total, then it is easy to see that T + tot(ψ) proves the totality of ϕ∗, and so
[ψ] ≥ [ϕ∗].

This proposition directly shows that [ϕ] ≤ [ϕ∗] since T + tot(ϕ) ` tot(ϕ). It
is direct from the diagonalization that [ϕ∗] � [ϕ], therefore [ϕ] < [ϕ∗], i.e., [ϕ∗] is
strictly above [ϕ].

Corollary XII.4.4. There are no maximal degrees in P.

More importantly, the jump operator preserves ≤p:

Proposition XII.4.5. If ϕ ≤p ψ, then ϕ∗ ≤p ψ
∗.

Proof. We prove this by contradiction (in T + tot(ψ∗)): Assume that ϕ∗ is not
total, then there exists a least s where ϕ∗(s) diverges (by IΣ1), so s is a proof
witnessing T+tot(ϕ) ` tot(ϕe) and ϕe(s) diverges. Since we have a proof witnessing
T+tot(ψ) ` tot(ϕ), from s we can find an s′ which is a proof witnessing T+tot(ψ) `
tot(ϕe). Then by the Padding Lemma we can find an s′′ which proves the same
result as s′ and s′′ > s. The totality of ψ∗ shows that ϕe(s

′′) converges, which
contradicts the divergence of ϕe(s).

158

This proposition shows that the jump operator is well-defined on the degrees,
and we can write [ϕ]∗ for [ϕ∗] since it is independent of the choice of the function
ϕ in [ϕ].

XII.5 Incomparable Degrees

Before we prove our next theorem, we want to mention a technique for constructing
recursive functions using the Recursion Theorem. Briefly, we can assume that we
know the index of the function we are constructing prior to our construction. This
may sound very strange to readers who are not familiar with recursion theory, and
so we shall explain it in detail. The Recursion Theorem is stated below, and a
proof can be found in [Rog87] or any other standard textbook in classical recursion
theory.

Theorem XII.5.1 (Recursion Theorem). For every recursive function f , there is
an index e such that ϕe = ϕf(e).

We will use the Recursion Theorem in the following way: We first give an
explicit construction of a partial recursive function with a parameter i, then by
the s-m-n theorem, there is a recursive function h such that ϕh(i) is the function
constructed from parameter i; we apply the Recursion Theorem to h and get an
index e such that ϕe = ϕh(e), and let this function be ψ. That is, when we describe
the construction of ψ we can assume that we already know its index e.

There are two points to make: First, our base theory T is powerful enough
to prove the Recursion Theorem, and by the proof of the Recursion Theorem, T
actually proves ϕe = ϕh(e) for one index e assuming that h(e) converges. Although
in this chapter we only need h’s that are provably total in T , this argument actually
works for any total h regardless of its provability degree. By Lemma XII.3.4,
[ϕe] = [ϕh(e)] and so we can identify ϕe with ϕh(e) = ψ in our argument.

Second, in the Recursion Theorem it is possible that the ϕe we get is partial,
and so we need to make sure that, in the construction of ϕh(i), regardless of the
parameter i we use in the construction, ϕh(i) is always total. Then by applying the
Recursion Theorem, we always get a total function ψ.

Here is the theorem we want to prove. It directly implies that there are incom-
parable degrees in P .

Theorem XII.5.2. For every [ϕ] 6= [0], there is a [ψ] ≤ [ϕ]∗ which is incomparable
with [ϕ], i.e., [ϕ] � [ψ] and [ψ] � [ϕ].

Proof. Our construction of ψ is divided into even and odd stages. At even stages
we try to satisfy [ψ] � [ϕ]. This is handled in the same way as the construction of
the jump: at stage 2s we check whether s is a proof witnessing T +tot(ϕ) ` tot(ϕe)
for some ϕe: if so we compute ϕe(s) and let ψ(s) = ϕe(s) + 1; if not we simply let
ψ(s) = 0.

At odd stages we try to satisfy [ϕ] � [ψ], i.e., we cannot prove the totality
of ϕ from the totality of ψ. At stage 2s + 1, we check whether s is a proof
witnessing T + tot(ψ) ` tot(ϕ) (by the Recursion Theorem): If not, do nothing;
if so we terminate the whole construction and let ψ be the constant zero function

159

afterwards, i.e., output ψ(t) = 0 for all t > s (in this case we say that we apply
annihilation to ψ).

First of all, it is easy to check that, no matter which ϕi we use, or whether
annihilation happens or not, ϕh(i) is always total. So the Recursion Theorem gives
us a total ψ.

Next we need to show that [ϕ] � [ψ]. If [ϕ] ≤ [ψ], then we can pick the least
proof s0 witnessing T + tot(ψ) ` tot(ϕ). We can then show that the annihilation
happens in the construction and ψ is then eventually constant 0, and in fact we
can prove its totality in T : We write down the first such proof s0 and verify that it
is the proof we want; then for each s < s0 we check that s is not a proof witnessing
T + tot(ψ) ` tot(ϕ) so annihilation does not happen before stage 2s0 + 1; also for
each s ≤ s0 we write down the complete computation sequence of ϕes(s) at even
stages such that s is a proof witnessing T + tot(ϕ) ` tot(ϕes). Our base theory T
is consistent with true arithmetic and ϕ is total, therefore if we can prove that ϕes

is total then ϕes(s) does converge and we can write out the complete computation
sequence to prove that it converges (without proving the totality of ϕes).

So combining the sentences we write down we can show that at stage 2s0 + 1
the annihilation happens, i.e., we get a proof witnessing T ` tot(ψ). Together
with the proof s0 witnessing T + tot(ψ) ` tot(ϕ), we would get T ` tot(ϕ), which
contradicts the assumption that [ϕ] 6= [0].

Therefore annihilation never happens and [ϕ] � [ψ]. By the diagonalization at
even stages we have also satisfied [ψ] � [ϕ]. So [ψ] is incomparable with [ϕ].

Finally we check that [ψ] ≤ [ϕ]∗: Arguing in T+tot(ϕ∗), if annihilation happens,
then ψ is total. If not, then ψ is the same function as ϕ∗ by the construction at
even stages. Since ϕ∗ is total, ψ is also total in this case.

XII.6 Minimal Pair

As in the Turing degrees, we can also find minimal pairs in the provability degrees.

Theorem XII.6.1. There are two nonzero degrees [ϕ] and [ψ] such that [ϕ]∧[ψ] =
[0].

Proof. We construct two functions ϕ and ψ simultaneously by induction. Suppose
at stage s we have already defined ϕ and ψ up to xs and ys respectively.

Let s = 2m be an even stage. We check whether m is a proof witnessing
T ` tot(ϕe) for some ϕe. If so, we define ϕ and ψ as follows:{

ϕ(xs) = ϕe(xs) + 1,
ψ(y) = 0, for y ∈ [ys, ys + t)

where t is the number of steps needed to compute ϕe(xs). This is to say, we try to
compute ϕe(xs) and extend ψ by letting ψ(y) = 0 for y ≥ ys until ϕe(xs) converges.
So if ϕe(xs) diverges, then ϕ is partial and ψ is total (and eventually 0). If ϕe(xs)
converges at step t, then we have made ψ(y) = 0 for y ∈ [ys, ys + t) and we let
ϕ(xs) = ϕe(xs)+1 for diagonalization. Then we go to stage s+1 with xs+1 = xs+1
and ys+1 = ys + t.

160

If m is not a proof witnessing T ` tot(ϕe) for any e, then we simply let ϕ(xs) =
ψ(ys) = 0 and go to stage s+ 1 with xs+1 = xs + 1 and ys+1 = ys + 1.

At odd stages, we basically do the same thing, except that we switch the roles
of ϕ and ψ, that is, we try to diagonalize with ψ and extend ϕ by 0 until the
corresponding computation converges.

Since T is consistent with true arithmetic, it is easy to see that ϕ and ψ are both
total and both have nonzero degree by diagonalization. Then we prove in T that
ϕ�ψ is total: If we ever met a divergent ϕe(xs) or ψe(ys) in the construction then
we would make ϕ or ψ eventually constant 0 and so ϕ� ψ is still total; otherwise
both ϕ and ψ are total and ϕ� ψ is obviously total. In either case ϕ� ψ is total,
so [ϕ] ∧ [ψ] = [0].

It is not difficult to check that both [ϕ] and [ψ] are below [0]∗, and in fact
[ϕ]∨ [ψ] = [0]∗: it is easy to check that they are both below [0]∗; conversely tot(ϕ)
and tot(ψ) together prove that every function ϕe whose totality is provable in T is
total, and so by Proposition XII.4.3 we know that they also prove the totality of
0∗. This shows that [0]∗ is the top of a “diamond”.

XII.7 Degree Spectrum and Minimal Degrees

A given recursive function f has many representations ϕe0 , ϕe1 , . . . , i.e., each ϕei
=

f as functions, and they may have different provability degrees. So it is natural to
give the following definition:

Given a recursive function f , we define the degree spectrum of f , denoted as
(f), to be the collection of provability degrees that contain a function which is the
same as f as functions, i.e., (f) = {[ϕi] : f = ϕi}.

It is not difficult to show that the degree spectrum is closed upwards and under
meet.

Proposition XII.7.1.

1. If [ψ] > [ϕ], then there is a function θ such that θ = ϕ as functions and
[θ] = [ψ].

2. If ϕ = ψ as functions then there is a function θ such that ϕ = ψ = θ as
functions and [θ] = [ϕ� ψ].

Proof. In the definition of the join and the meet, we noted that the output values
for ϕ� ψ or ϕ� ψ can be quite arbitrary. For the first claim, we can change the
output value of (ϕ � ψ)(n) to be ϕ(n), and this gives a function θ we want. For
the second claim, we change the output value of (ϕ � ψ)(n) to be either ϕ(n) or
ψ(n) whichever converges first, and this also gives a desired function θ.

For example, (0), the degree spectrum of the constant zero function (as a func-
tion), is the collection of all degrees. In contrast, (0∗), the degree spectrum of 0∗

(as a function), does not contain the bottom degree [0]. One might naturally ask
whether (0∗) has a minimum element, or whether there are other degree spectra
which are principal ones (i.e., contain a minimum element).

Interestingly, the answer is no by the following theorem, i.e., the only principal
degree spectrum is (0).

161

Theorem XII.7.2. Given [ϕ] 6= [0], then there is a function ψ such that ψ = ϕ
as functions and [ψ] < [ϕ].

Proof. We again divide the construction of ψ into even and odd stages. At stage
2s we let ψ(s) = ϕ(s), i.e., follow the same algorithm and output the same value.
At stage 2s + 1 we check whether s is a proof witnessing T + tot(ψ) ` tot(ϕ) (by
the Recursion Theorem). If not, we do nothing; if so, we let ψ be a constant 0
function afterwards (similarly we call such process the annihilation of ψ).

By the same argument as in the proof of Theorem XII.5.2 we can show that
[ϕ] � [ψ] and so ψ = ϕ as functions. It is also easy to argue that [ψ] ≤ [ϕ]:
if annihilation happens then ψ is total; if not then by the totality of ϕ and our
construction at even stages we also know that ψ is total.

One might have some intuition that the provability degree of a recursive function
ϕ corresponds to the growth rate of the computing time function ϕ̄ (i.e., a function
which outputs the number of steps in the computation) of ϕ 2, or that the functions
which need more computing time have higher provability degree. However, the
above construction shows that such an intuition is not true: our new function ψ
needs more steps in the computation than ϕ, but has strictly lower degree. It is
true, in contrast, that if T proves that ϕ̄ dominates ψ̄, then [ϕ] ≥ [ψ].

This theorem also gives strict conditions on minimal degrees (though we do not
know whether they exist). Recall that a nonzero degree is minimal if there is no
nonzero degree strictly below it.

Corollary XII.7.3. If [ϕ] is minimal, then for any θ ∈ [ϕ], θ has a representation
which is provably total. In addition, all minimal degrees (if they exist) are below
[0]∗.

Proof. The first claim directly follows from the construction in Theorem XII.7.2:
since ψ has degree strictly below [ϕ], it must be the case that [ψ] = [0]. For the
second claim, we follow the same construction and get a ψ from ϕ. By the same
reason, T ` tot(ψ), and then we can prove tot(ϕ) from tot(0∗) as follows:

Suppose ϕ is not total (at s). Since ψ is total, it must be the case that anni-
hilation happens at some stage before 2s. Therefore we have a proof witnessing
T + tot(ψ) ` tot(ϕ), and combining it with T ` tot(ψ) we get a proof witnessing
T ` tot(ϕ). By Proposition XII.4.3, we know that ϕ is total (since we are arguing
in T + tot(0∗)). This contradicts the assumption that ϕ is not total, therefore ϕ is
total.

XII.8 Open Questions

We end with some open questions. Since this is a new subject, some of the open
questions might be easy to answer. First, we want to know whether we can “control
the jump” as in various theorems in the Turing degrees. In particular we can ask
whether a jump inversion theorem holds in P , i.e., whether every [ϕ] ≥ [0]∗ is
the jump of a degree [ψ] < [ϕ]. We are also interested in characterizations of

2Note that ϕ̄ and ϕ have the same provability degree, since their computations are almost the
same, and the only difference is the outputs.

162

degrees below [0]∗ (for example, whether there is an analogous version of the Limit
Lemma).

One can also ask questions about various notions from Turing degree theory,
for example, the cupping property, the join property, high/low hierarchy, diamond-
bounding (see Theorem XII.6.1), etc. Continuing the discussion of the previous
section, we want to know whether minimal degrees exist. It might be also interest-
ing to consider different embedding problems, such as partial orders or distributive
lattices, especially if we want to study the decidability or even the degree of the
theory of P .

In addition to these degree-theoretic properties, we are also interested in combi-
natorial properties, i.e., the combinatorial aspects of the functions in each degree,
which might be useful in studying specific number-theoretic or combinatorial ex-
amples, such as the function associated with Laver Tables. For example, one can
define a function f to be diagonally nonprovable (DNP) if f(s) 6= ϕes(s) for every
s which is a proof witnessing T ` tot(ϕes) for some ϕes , and say a degree is DNP
if it contains a DNP function (this is motivated by the definition of DNR degrees
in recursion theory). It is easy to see that DNP degrees are not zero, and one
may ask whether there are nonzero non-DNP degrees.

Another important class of combinatorial properties is the class of domination
properties. A function f dominates g if f(x) ≥ g(x) for cofinitely many x. For
example, say a degree is [0]-dominated (or hyperimmune-free, using classical ter-
minology from recursion theory) if every function in it is dominated by a function
in [0]. We can also ask whether there are nonzero [0]-dominated degrees. (Note
that Corollary XII.7.3 shows that minimal degrees, if they exist, are [0]-dominated
and non-DNP.) In particular, the notions of domination properties may be more
closely related to the subrecursive hierarchy or the degree theory about the honest
functions we mentioned in the introduction.

It would also be interesting to analyze the provability degrees of the functions
appearing in the different approaches we mentioned in the first section and in par-
ticular find relations between these degrees and [0]∗ in each of their base theories.
For example, over PA, we want to know whether Hε0 (the classical example of a
function whose totality is not provable in PA, see [FW98]) has provability degree
[0]∗. We also have some natural examples of Π0

2 sentences (finite miniaturizations)
in reverse mathematics and it is also interesting to decide their provability degree.
For example, the finite Kruskal’s Tree Theorem (see [Fri98]) seems to be much
stronger than [0]∗ over IΣ1 or even over PA, and it would be very interesting to
find natural notions in the provability degrees that correspond to these strong Π0

2
statements.

163

BIBLIOGRAPHY

[ASDWY09] K. Ambos-Spies, D. Ding, W. Wang and L. Yu, Bounding Non-GL2

and R.E.A., The Journal of Symbolic Logic, Vol. 74, No. 3, 2009, pages 989–
1000.

[Ars81] M. M. Arslanov, On some generalizations of a fixed point theorem, Izv.
Vyssh. Uchebn. Zaved. Mat., 1981, no. 5, pages 9–16.

[Ars85] M. M. Arslanov, Lattice properties of the degrees below 0′, Doklady Ak.
Nauk SSR, Vol 283, 1985, pages 270–273.

[Ars09] M. M. Arslanov, Definability and elementary equivalence in the Ershov
difference hierarchy, in Logic Colloquium 2006, Lecture Notes in Logic, Asso-
ciation for Symbolic Logic and Cambridge University Press, New York, 2009,
pages 1–17.

[Ars10] M. M. Arslanov, The Ershov hierarchy, in Computability in Context: Com-
putation and Logic in the Real World, Cooper, S. B. and Sorbi, A. eds., Im-
perial College Press, London, 2010.

[AKL10] M. M. Arslanov, I. Sh. Kalimullin and S. Lempp, On Downey’s Conjec-
ture, Journal of Symbolic Logic, Vol 75, 2010, pages 401–441.

[Bus98] S. Buss, An Introduction to Proof Theory , in: Samuel R. Buss, Editor(s),
Studies in Logic and the Foundations of Mathematics, Elsevier, 1998, Volumn
137, Handbook of Proof Theory, pages 1–78.

[Cai10] M. Cai, A hyperimmune minimal degree and an ANR 2-minimal degree,
Notre Dame Journal of Formal Logic, Volume 51, Number 4, 2010, Pages
443–455.

[Cai11] M. Cai, A GL2 2-minimal degree, Journal of Mathematical Logic, preprint.

[Cai12] M. Cai, Array nonrecursiveness and relative recursive enumerability, Jour-
nal of Symbolic Logic, preprint.

[CSh12] M. Cai and R. A. Shore, Domination, forcing, array nonrecursiveness and
relative recursive enumerablity, Journal of Symbolic Logic, preprint.

[CSSxx] M. Cai, R. A. Shore and T. A. Slaman, The n-r.e. degrees: undecidability
and Σ1 substructures, preprint.

164

[Coo71] S. B. Cooper, Degrees of Unsolvability, Ph.D. Thesis, 1971, Leicester Uni-
versity.

[Coo73] S. B. Cooper, Minimal Degrees and the Jump Operator, The Journal of
Symbolic Logic, Volume 38, Issue 2 (1973), pages 249–271.

[CLLSS91] S. B. Cooper, L. Harrington, A. H. Lachlan, A. H., S. Lempp and R.
I. Soare, The d-r.e. degrees are not dense, Annals of Pure and Applied Logic,
Vol 55, 1991, pages 125–151.

[Deh10] P. Dehornoy, Elementray embeddings and algebra, in: M. Foreman, A.
Kanamori, Editor(s), Handbook of Set Theory, Springer, 2010, pages 737–
774.

[Dow89] R. Downey, D-r.e. degrees and the non-diamond theorem, Bulletin of Lon-
don Mathematical Society, Vol 21, 1989, pages 43–50.

[DGLMxx] R. Downey, N. Greenberg, A.E.M. Lewis, A. Montalbán, Extensions of
uppersemilattice embeddings below computably enumerable degrees, preprint.

[DJS90] R. Downey, C. Jockusch and M. Stob [1990], Array nonrecursive sets and
multiple permitting arguments, in Recursion Theory Week, K. Ambos-Spies,
G. H. Müller and G. E. Sacks eds., Springer-Verlag, Berlin, 1990, pages 141–
174.

[DJS96] R. Downey, C. Jockusch and M. Stob, Array nonrecursive degrees and
genericity, London Mathematical Society Lecture Notes Series 224, 1996, Uni-
versity Press, Pages 93–105.

[ELxx] P. Ellison, A. E. M. Lewis, A characterization of the high c.e. degrees,
preprint.

[Eps79] R. L. Epstein, Degrees of Unsolvability: Structure and Theory, Lecture
Notes in Mathematics 759, Springer-Verlag, Berlin, 1979.

[Epsxx] R. Epstein, Invariance and Automorphisms of the Computably Enumerable
Sets, preprint.

[Ers68a] Y. I. Ershov, On a hierarchy of sets I, Algebra and Logic, Vol 7, 1968,
pages 25–43.

165

[Ers68b] Y. I. Ershov, On a hierarchy of sets II, Algebra and Logic, Vol 7, 1968,
pages 212–232.

[Ers70] Y. I. Ershov, On a hierarchy of sets III, Algebra and Logic, Vol 9, 1970,
pages 20–31.

[FW98] M. Fairtlough and S. S. Wainer, Hierarchies of Provably Recursive Funci-
tons, in: Samuel R. Buss, Editor(s), Studies in Logic and the Foundations of
Mathematics, Elsevier, 1998, Volumn 137, Handbook of Proof Theory, pages
149–207.

[Fis65] P. C. Fischer, Theory of Provable Recursive Functions, Transactions of the
American Mathematical Society, 1965, Vol 117, pages 494–520.

[Fri57] R. M. Friedberg, A criterion for completeness of degrees of unsolvability,
Journal of Symbolic Logic, Vol 22, 1957, pages 159–160.

[Fri98] H. Friedman, Internal finite tree embeddings, in: Reflections on the foun-
dations of mathematics, Lecture Notes in Logic, 15, Association for Symbolic
Logic, 1998, pages 60–91.

[Gab04] Y. Gabay, Double jump inversions and strong minimal covers in the Tur-
ing degrees, 2004, Ph.D. thesis.

[GMS04] N. Greenberg, A. Montalbán, R. Shore, Generalized high degrees have the
complementation property, Journal of Symbolic Logic, 69, 2004, pages 1200–
1220.

[Gol65] E. M. Gold, Limiting recursion, Journal of Symbolic Logic, Vol 30, 1965,
pages 28–48.

[Har98] V. Harizanov, Turing degrees of certain isomorphic images of computable
relations, Annals of Pure and Applied Logic, Vol 93, 1998, pages 103–113.

[HaS82] L. Harrington and S. Shelah, The undecidability of the recursively enumer-
able degrees (research announcement), Bulletin of the American Mathematical
Society, N.S. Vol 6, 1982, pages 79–80.

[HSh07] D. Hirschfeldt and R. A. Shore, Combinatorial Principles Weaker than
Ramsey’s Theorem for Pairs, Journal of Symbolic Logic, Vol 72, 2007, pages
171–206.

166

[Hod93] W. Hodges, Model Theory, Cambridge University Press, Cambridge U.K.,
1993.

[Ish99] S. Ishmukhametov, Weak recursive degrees and a problem of Spector, Re-
cursion Theory and Complexity, Arslanov and Lempp eds., de Gruyter, 1999,
pages 81–89.

[Joc69] C. Jockusch, The Degrees of Hyperhyperimmune Sets, The Journal of Sym-
bolic Logic, Volume 34, Issue 3 (1969), pages 489–493.

[Joc77] C. Jockusch, Simple proofs of some theorems on high degrees, Canadian
Journal of Mathematics, Vol 29, 1977, pages 1072–1080.

[JLSS89] C. G. Jockusch, M. Lerman, R. I. Soare and R. M. Solovay, Recursively
Enumerable Sets Modulo Iterated Jumps and Extensions of Arslanov’s Com-
pleteness Criterion, The Journal of Symbolic Logic Vol. 54, No. 4, 1989, pages
1288–1323.

[JP78] C. Jockusch and D. Posner, Double jumps of minimal degrees, The Journal
of Symbolic Logic, Vol. 43, No. 4, 1978, pages 715–724.

[JSo72] C. Jockusch and R. Soare, Π0
1 classes and degrees of theories, Trans. Amer.

Math. Soc., 173 (1972), page 33–56.

[JSh84] C. G. Jockusch, Jr. and R. A. Shore, Pseudo-jump operators II: transfinite
iterations, hierarchies and minimal covers, Journal of Symbolic Logic, Vol 49,
1984, pages 1205–1236.

[KlPo54] S. C. Kleene and E. L. Post, The upper semi-lattice of degrees of recursive
unsolvability, Annals of Mathematics, Vol 59, 1954, pages 379–407.

[Kri98] L. Kristiansen, A jump operator on honest subrecursive degrees, Archive
for Mathematical Logic 37 (1998), pages 105–125.

[Kri99] L. Kristiansen, Lown, highn, and intermediate subrecursive degrees, in
Calude and Dinneen, Editor(s), Combinatorics, computation and logic (Pro-
ceedings), Springer, Singapore 1999, pages 286–300.

[KiPa82] L. Kirby and J. Paris, Accessible independence results for Peano Arith-
metic, Bulletin of the London Mathematical Society, 1982, volume 14, pages
285–293.

167

[KSWxx] L. Kristiansen, J. Schlage-Puchta and A. Weiermann, Streamlined Sub-
recursive Degree Theory, preprint.

[Ku86] A. Kučera, An alternative, priority-free, solution to Post’s problem, in: J.
Gruska, B. Rovan and J. Wiedermann, Editor(s), Mathematical Foundations
of Computer Science 1986, Lecture Notes in Computer Science, Volume 233,
1986, pages 493–500.

[Ku94] A. Kučera, Measure, Π0
1-classes and complete extensions of PA, Recursion

Theory Week (Oberwolfach, 1984), volume 1141 of Lecture Notes in Math.
245-259, Springer, Berlin.

[KLxx] M. Kumabe and A. E. M. Lewis, A Fixed Point Free Minimal Degree,
Journal of the London Mathematical Society, preprint.

[Lac66] A. H. Lachlan, Lower bounds for pairs of recursively enumerable degrees,
Proceedings of the London Mathematical Society, Vol 16, issue 3, 1966, pages
537–569.

[Lac68] A. H. Lachlan, Distributive initial segments of the degrees of unsolvability,
Z. Math. Logik Grund. Math., Vol 14, 1968, pages 457–472.

[Ler83] M. Lerman, Degrees of Unsolvability, Local and Global Theory, Perspec-
tives in Mathematical Logic, 1983, Springer-Verlag.

[Ler86] M. Lerman, Degrees which do not bound minimal degrees, Annals of Pure
and Applied Logic, Vol 30, 1986, pages 249–276.

[LS88] M. Lerman and R. A. Shore, Decidability and Invariant Classes for Degree
Structures, Transactions of the American Mathematical Society, Vol 310, No.
2, 1988, pages 669-692.

[Lew06] A. E. M. Lewis, Strong minimal covers and a question of Yates: the story
so far, in: B.S. Cooper, H. Geuvers, A. Pillay, J. Väänänen, Editor(s), Lecture
Notes in Logic, Vol 32, Logic Colloquium 2006, pages 213–228.

[Lew07] A. E. M. Lewis, Π0
1 classes, strong minimal covers and hyperimmune-free

degrees, Bulletin of the London Mathematical Society, volume 39, number 6,
2007, pages 892–910.

[Lewa] A. E. M. Lewis, Properties of the jump classes, Journal of Logic and Com-
putation, preprint.

168

[Lewb] A. E. M. Lewis, A note on the join property, Proceedings of the American
Mathematical Society, preprint.

[LewMon] A. E. M. Lewis and A. Montalbán, personal communication.

[Loe92] M. Loebl, Unprovable combinatorial statements, Discrete Mathematics,
Vol 108, 1992, pages 333-342.

[Ma66] D. A. Martin, Classes of recursively enumerable sets and degrees of unsolv-
ability, Z. Math. Logik und Grund. der Math, 12, 1966, pages 295–310.

[Mo06] A. Montalbán, There is no ordering on the classes in the generalized
high/low hierarchies, Archive for Mathematical Logic, 45 (2006), pages 215–
231.

[MM68] W. Miller and D. A. Martin, The Degrees of hyperimmune sets, Zeitschrift-
fur Mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968),
pages 159–166.

[Nie08] A. Nies Computability and randomness, Clarendon Press, Oxford, 2008.

[NSS98] A. Nies, R. A. Shore and T. A. Slaman, Interpretability and definability in
the recursively enumerable degrees, Proceedings of the London Mathematical.
Society, Vol 77, issue 3, 1998, pages 241–291.

[Ng09] K. M. Ng, Computability, Traceability and Beyond, 2009, Ph.D. Thesis.

[PH77] J. Paris and L. Harrington A mathematical incompleteness in Peano Arith-
metic, in: J. Barwise, Editor(s), Studies in Logic and Foundations of Math-
ematics, Elsevier, 1977, Volumn 90, Handbook of Mathematical Logic pages
1133-1142.

[Poh98] W. Pohlers Set Theory and Second Order Number Theory, in: Samuel
R. Buss, Editor(s), Studies in Logic and the Foundations of Mathematics,
Elsevier, 1998, Volumn 137, Handbook of Proof Theory, pages 209–335.

[Po44] E. L. Post, Recursively enumerable sets of positive integers and their deci-
sion problems, Bulletin of American Mathematical Society, Vol 50, 1944, pages
284–316.

[Put65] H. Putnam, Trial and error predicates and the solution to a problem of
Mostowski, Journal of Symbolic Logic, Vol 30, 1965, pages 44–50.

169

[Rob71] R. W. Robinson, Jump restricted interpolation in the recursively enumer-
able degrees, Annals of Mathematics, 1971, Vol 93, issue 2, pages 586-596.

[Rog87] H. Rogers, The Theory of Recursive Functions and Effective Computabil-
ity, MIT Press, 1987.

[Sac61] G. Sacks, A Minimal Degree less than 0′, Bulletin of American Mathemat-
ical Society, 67 (1961), pages 416–419.

[Sac63] G. Sacks, On the degrees less than 0′, Annals of Mathematics, Vol 77, pages
211–231.

[Sac66] G. Sacks, Degrees of unsolvability, Annals of Math. Studies 55, Princeton
Univ. Press, 2nd ed., Princeton NJ, 1966.

[Sac85] G. Sacks, Some open questions in recursion theory, Lecture Notes in Math-
ematics, Vol 1141, Springer Verlag Berlin, Heidelberg, New York, Tokyo, 1985,
pages 333–342.

[Sas74] L. Sasso, Jr., A minimal degree not realizing least possible jump, The Jour-
nal of Symbolic Logic, Vol. 39, No. 3, 1974, pages 571–574.

[Shn59] J. R. Shoenfield, On degrees of unsolvability, Annals of Mathematics, 1959,
Vol 69, issue 2, pages 644–653.

[Shn65] J. R. Shoenfield, An application of model theory to degrees of unsolvability,
in Symposium on the Theory of Models, J. W. Addison, L. Henkin and A.
Tarski eds., North-Holland, Amsterdam, 1965, pages 359–363.

[Sh81] R. A. Shore, The theory of the degrees below 0′, Journal of the London
Mathematical Society, Vol 24, 1981, pages 1–14.

[Sh85] R. A. Shore, The structure of the degrees of unsolvability, Recursion Theory,
Proceedings of the Symposia in Pure Mathematics 42, A. Nerode and R. A.
Shore, eds., American Mathematical Society, Providence, R.I., 1985, pages
33–51.

[Sh88] R. A. Shore, Defining jump classes in the degrees below 0′, Proceedings of
the American Mathematical Society, Vol 104, 1988, pages 287–292.

[Sh99] R. A. Shore, The recursively enumerable degrees, in Handbook of Recursion
Theory, E. Griffor ed., North-Holland, Amsterdam, 1999, pages 169–197.

170

[Sh06] R. A. Shore, Degree structures: Local and global investigations, Bulletin of
Symbolic Logic, Vol 12, 2006, pages 369–389.

[Sh07] R. A. Shore, Direct and local definitions of the Turing jump, Journal of
Mathematical Logic, Vol 7, 2007, pages 229–262.

[Sh10] R. A. Shore, Reverse Mathematics: the Playground of Logic, Bulletin of
Symbolic Logic 16 (2010), pages 378–402.

[Shxx] R. A. Shore, The Turing Degrees: Global and Local Structure, draft.

[SS99] R. A. Shore and T. A. Slaman, Defining the Turing jump, Mathematical
Research Letters, Vol 6, 1999, pages 711–722.

[Sim77] S. G. Simpson, First order theory of the degrees of recursive unsolvability,
Annals of Mathematics, Vol 105, issue 2, 1977, pages 121–139.

[Sim85] S. G. Simpson, Nonprovability of certain combinatorial properties of finite
trees in Leo Harrington, et.al. (editors), Harvey Friedman’s Research in the
Foundations of Mathematics, North-Holland, Amsterdam, 1985, pages 87–117.

[Sim10] S. G. Simpson, Subsystems of second order arithmetic, Perspectives in
Logic, Cambridge University Press, second edition, 2010.

[Sla83] T. A. Slaman, The recursively enumerable degrees as a substructure of the
∆0

2 degrees, handwritten notes.

[Sla91] T. A. Slaman, Degree structures, in Proc. Int. Cong. Math., Kyoto 1990,
Springer-Verlag, Tokyo, 1991, pages 303–316.

[SW01] T. A. Slaman and H. Woodin, Definability in Degree Structures, preprint.

[Sp56] C. Spector, On Degrees of Recursive Unsolvability, Annals of Mathematics,
Vol 64, No. 3, 1956, pages 581–592.

[SYY09] F. Stephan, Y. Yang and L. Yu, Turing degrees and the Ershov hierar-
chy in Proceedings of the Tenth Asian Logic Conference, Kobe, Japan, 1-6
September 2008, World Scientific, 2009, pages 300–321.

[Ta62] M. A. Taitslin, Effective inseparability of the sets of identically true and
finitely refutable formulas of elementary lattice theory, Algebra i Logika, Vol
3, 1962, pages 24–38.

171

[Tur39] A. M. Turing, Systems of logic based on ordinals, Proceedings of the Lon-
don Mathematical Society, Vol 45, issue 3, 1939, pages 161–228.

[Wangxx] W. Wang, Relative enumerability and 1-genericity, Journal of Symbolic
Logic, Journal of Symbolic Logic, preprint.

[Yu06] L. Yu,[2006], Lowness for genericity, Archive for Mathematical Logic, Vol
45, 2006, pages 233–238.

[YY06] Y. Yang and L. Yu, R is not a Σ1-elementary substructure of Dn, Journal
of Symbolic logic, 71(2006), No.4, pages 1223–1236.

[Yat66] C. E. M. Yates, A minimal pair of recursively enumerable degrees, Journal
of Symbolic Logic, Vol 31, 1966, pages 159–168.

172

