
REAL SYMPLECTIC GEOMETRY

REYER SJAMAAR

Abstract. These are the notes of an introductory lecture series on convexity
properties of the moment map, equivariant cohomology and conjugation spaces.

Introduction

These notes are based on a minicourse of three lectures I taught at the Sémi-
naire Itinérant de Géométrie et Physique Mathématique V, which took place in
May 2007 at the Université Cheikh Anta Diop in Dakar, Sénégal. I thank my
hosts and the organizers for their hospitality and for offering me the opportunity
to speak. The lectures are recorded here almost verbatim. I invite the reader
who wishes to learn more details than I have given to consult the bibliography.
Where available I have given references that are available at no charge on the web
through the arXiv and other eprint repositories.

1. Real Hamiltonian G-manifolds

Real structures. Let X be a symplectic manifold with symplectic form ω. A
real structure on X is a smooth mapping σ : X → X which is an involution (i.e.
σ2 = idX) and which is anti-symplectic (i.e. σ∗ω = −ω). We call X equipped with
the symplectic form ω and the real structure σ a real symplectic manifold. We put

Xσ = { x ∈ X | σ(x) = x }
and we call Xσ the real locus of X. The following example explains why we call
Xσ the real locus.

1.1. Example. Let V = Cn, the vector space of column vectors with n complex
components. We view V as a 2n-dimensional real vector space equipped with the
symplectic form

ω0 =
i
2

n

∑
j=1

dzj ∧ dz̄j =
n

∑
j=1

dxj ∧ dyj,

where xj = Re(zj) and yj = Im(zj). Another useful formula for the symplectic
form is

ω0(z, w) = Im(z∗w),
the imaginary part of the Hermitian inner product z∗w = ∑n

j=1 z̄jwj of z and w.
We define an involution σ0 on V by component-wise complex conjugation,

σ0(z) = z̄.

Then σ∗0 ω0 = −ω0. The real locus of V is Vσ0 = Rn. We call ω0 the standard
symplectic form and σ0 the standard real structure on V.
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1.2. Lemma. Let X be a symplectic manifold with symplectic form ω and real structure
σ. If the real locus Xσ is nonempty, then it is a Lagrangian submanifold of X.

Proof. Suppose that Xσ is nonempty and take x ∈ Xσ. Let n = 1
2 dim(X) and let

V be the symplectic vector space Cn equipped with the standard symplectic form
and real structure as in Example 1.1. A real version of the Darboux theorem (see
for instance [9, Lemma 2.3] or [29, Appendix A]) says that there exist an open
neighbourhood U of x preserved by σ and a chart φ : U → V centred at x such
that

φ∗ω = ω0, φ ◦ σ = σ0 ◦ φ.

We conclude that Xσ ∩U = φ−1(Vσ0) = φ−1(Rn) is a Lagrangian submanifold of
U. QED

Let G be a Lie group. A Hamiltonian G-manifold is a manifold X equipped with
a smooth G-action, a G-invariant symplectic form ω and a moment map, which
means a smooth map Φ : X → g∗ that satisfies the following conditions:

(i) d〈Φ, ξ〉 = ι(ξX)ω,
(ii) Φ is equivariant: 〈Φ(g · x), ξ〉 = 〈Φ(x), Ad(g)−1ξ〉

for all ξ ∈ g and x ∈ X. Here 〈·, ·〉 denotes the dual pairing g∗ × g → R,

ξX(x) =
d
dt

(exp(tξ) · x)
∣∣∣
t=0

is the vector field on X generated by ξ ∈ g, and ι(ξX)ω denotes the 1-form on X
obtained by taking the inner product of the vector field ξX with the 2-form ω.

1.3. Example. Let V = Cn with the standard symplectic structure and let U(n)
be the unitary group acting on V by matrix multiplication on the left. This action
preserves the symplectic form. The Lie algebra u(n) of U(n) consists of all anti-
selfadjoint n× n-matrices. The rule (ξ, η) = − trace(ξη) defines a U(n)-invariant
positive definite inner product on u(n). It will be convenient to identify u(n)∗
with u(n) by means of this inner product. Since elements of V are column vectors,
the product zz∗ is a selfadjoint n× n-matrix for all z ∈ V. Then a moment map
Φ0 : V → u(n)∗ for the U(n)-action is given by

Φ0(z) =
1
2i

zz∗.

We will call this the standard moment map for the U(n)-action on V. Let us check
that the condition d〈Φ0, ξ〉 = ι(ξV)ω is satisfied. On one hand,

〈Φ0(z), ξ〉 = − trace(Φ0(z)ξ) =
i
2

trace(zz∗ξ) =
i
2

z∗ξz,

so for all w ∈ V

d〈Φ0, ξ〉z(w) =
d
dt
〈Φ0(z + tw), ξ〉

∣∣∣
t=0

=
i
2

d
dt

(
(z + tw)∗ξ(z + tw)

)∣∣∣
t=0

=
i
2
(w∗ξz + z∗ξw).



REAL SYMPLECTIC GEOMETRY 3

On the other hand,

ι(ξV,z)ω(w) = ω(ξz, w) = Im((ξz)∗w) =
1
2i

(z∗ξ∗w− (z∗ξ∗w)∗)

=
1
2i

(z∗ξ∗w− w∗ξz) =
i
2
(z∗ξw + w∗ξz),

where we used that ξ∗ = −ξ. Hence d〈Φ0, ξ〉 = ι(ξV)ω. The equivariance of Φ is
left as an exercise for the reader.

A real structure on a Hamiltonian G-manifold X is a pair of smooth mappings

σG : G −→ G, σX : X −→ X

where σG is an group involution (i.e. σ2
G = idG and σG(gh) = σG(g)σG(h) for all

g, h ∈ G), and where σX is a real structure on the symplectic manifold X. In
addition, we require that the involution σX is compatible with the involution σG
in the sense that

σX(g · x) = σG(g) · σX(x), Φ(σX(x)) = −σ∗GΦ(x)

for all g ∈ G and x ∈ X. Here σ∗G : g∗ → g∗ is defined as the transpose of the
Lie algebra involution (σG)∗ : g → g induced by the group involution σG. We
call the G-manifold X together with the additional data ω, Φ, σX and σG a real
Hamiltonian G-manifold.

When no confusion can arise, we shall abuse the notation by writing σ for all
four involutions σG, (σG)∗, σ∗G and σX . We put

Gσ = { g ∈ G | σ(g) = g }.

1.4. Lemma. Let X be a real Hamiltonian G-manifold. The real locus Xσ is invariant
under the action of Gσ.

Proof. Let g ∈ G and x ∈ X. If σ(g) = g and σ(x) = x, then σ(g · x) =
σ(g) · σ(x) = g · x, so g · x ∈ Xσ. This proves that Gσ ·Xσ ⊆ Xσ. QED

1.5. Example. Let V = Cn with the standard symplectic structure and the Hamil-
tonian U(n)-action of Example 1.3. Let σ0 be the standard involution on Cn.
Define an involution σ0 on U(n) by σ0(g) = ḡ = (g−1)t, the complex conjugate or
inverse transpose of g. With these involutions on V and U(n), V is a real Hamil-
tonian U(n)-manifold. Note that Vσ = Rn is a Lagrangian submanifold invariant
under the subgroup Gσ = O(n), the orthogonal group.

1.6. Example. Let X be a sphere in R3 centred at the origin and let ω be the area
form of X. The rotation group G = SO(3) acts on X and preserves the form
ω. The Lie algebra of G is R3 (with the Lie bracket given by the cross product).
With an identification (R3)∗ ∼= R3 given by a suitably normalized inner product,
the inclusion map Φ : X → R3 is a moment map for the action. Let σX be the
reflection in the xy-plane. Define σG by σG(g) = σX ◦ g ◦ σX ; then Gσ ∼= SO(2)
is the group of rotations in the xy-plane. The involutions σX and σG define a
structure of real Hamiltonian G-manifold on X. The real locus Xσ is a great circle
(the equator) in X, which is preserved by SO(2).

1.7. Example. Let X, ω, G and Φ be as in Example 1.6. This time we choose
as antisymplectic involution on X the antipodal map and as involution on G the
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identity map. This defines a new real structure on the Hamiltonian G-manifold
X, for which the real locus Xσ is empty and the subgroup Gσ is equal to G.

Examples 1.6 and 1.7 are special cases of two large classes of examples: projec-
tive varieties defined over the real numbers and symmetric coadjoint orbits. The
general case is as follows.

1.8. Example. Let G be a compact Lie group. Let σG be an involution on G and
let φ : G → U(n) be a smooth homomorphism such that φ(σG(g)) = φ(g) for all
g ∈ G. Let X be a nonsingular algebraic subvariety of the complex projective
space Pn−1(C) which is invariant under the projective linear action of G given by
φ. Let Ω be the Fubini-Study symplectic form of Pn−1(C) and let ω = Ω |X. As
in Example 1.3, one can check that a moment map for the G-action on X is given
by

〈Φ([z]), ξ〉 = − 1
2πi

z∗ξz
z∗z

for z ∈ V \ {0} and ξ ∈ g. Here V = Cn and [z] denotes the point in Pn−1(C) (i.e.
the line through the origin) determined by z. We view ξ ∈ g as an anti-selfadjoint
matrix acting on vectors via the homomorphism φ∗ : g → u(n) induced by φ.
Now assume that the variety X is defined over the real numbers. This means that
the homogeneous ideal of X is generated by polynomials with real coefficients,
in other words that X can be defined by real equations. Then the involution σG
and the involution

σX([z]) = [z̄]
define a real structure on the Hamiltonian G-manifold X. The real locus of X is
Xσ = X ∩ Pn−1(R).

1.9. Example. Let σG be an involution of G. As before, let (σG)∗ : g → g be the
Lie algebra involution induced by σG and let σ∗G : g∗ → g∗ be the transpose of
(σG)∗. Recall that the coadjoint action is the linear G-action on g∗ which is dual to
the adjoint action on g in the sense that 〈Ad∗(g)(λ), ξ〉 = 〈λ, Ad(g)−1(ξ)〉 for all
λ ∈ g∗ and ξ ∈ g. The coadjoint orbits (i.e. the orbits of the coadjoint action) are
the leaves of the Lie-Poisson structure on g∗ and each therefore carries a natural
G-invariant symplectic form, known as the Kirillov-Kostant-Souriau symplectic form.
The inclusion map X ↪→ g∗ of a coadjoint orbit X is a moment map for the
G-action. Let us call a coadjoint orbit X symmetric if it has the property that
(−σ∗G)(X) = X and define

σX = −σ∗G |X.
Since (σG)∗ is a Lie algebra involution, its transpose σ∗G is an automorphism of
the Poisson structure of g∗, and therefore σX is an antisymplectic involution of X.
The involutions σG and σX define a structure of real Hamiltonian G-manifold on
X. The real locus is Xσ = X ∩ p∗, where

p∗ = { λ ∈ g∗ | σ∗G(λ) = −λ }.

We conclude that the real locus is nonempty if and only if there exists λ ∈ p∗
such that X = Ad∗(G)(λ).

The notion of a real Hamiltonian G-manifold first arose (under a different
name) in Duistermaat’s paper [9] and was later taken up by O’Shea and me in
[29] and by many others as well. See for instance the references [1, 4, 12, 16, 26].
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Duistermaat discovered a remarkable convexity property of the moment map
image of the real locus, which I will discuss in Lecture 2. He also found some
cohomological properties, which I will survey in the remainder of this lecture.

Cohomology. There are many interesting relationships between the cohomology
of a Hamiltonian G-manifold X and that of its fixed-point set XG, such as the
following theorem, the first part of which is due to Frankel [14]. The second part
is due to Duistermaat, who showed in [9] that in the presence of a real structure
a statement parallel to Frankel’s is true for the real locus.

1.10. Theorem. Let T be a torus (i.e. a Lie group isomorphic to a product of circles
U(1)×U(1)× · · · ×U(1)) and let X be a compact Hamiltonian T-manifold. Let XT be
the fixed-point set of the T-action on X.

(i) Let k be a field. Then dimk H∗(X; k) = dimk H∗(XT ; k).
(ii) Let σT(t) = t−1 and suppose X has a real structure σX compatible with σT . Let

k be a field of characteristic 2. Then dimk H∗(Xσ; k) = dimk H∗(Xσ ∩XT ; k).

Sketch of proof. We choose a generic element ξ of the Lie algebra t of T. In the case
of part (i) we put

A = X, B = XT , f = 〈Φ, ξ〉,
and in the case of part (ii) we put

A = Xσ, B = Xσ ∩ XT , f = 〈Φ, ξ〉 | A.

One shows that f is a Morse-Bott function on A (i.e. a function with nondegener-
ate critical manifolds in the sense of Bott [6]) and that B is the set of critical points
of f . The inequality

dim H∗(A; k) ≤ dim H∗(B; k)
follows from the Morse-Bott inequalities, which are valid since the normal bundle
of B in A is orientable over k. The inequality

dim H∗(A; k) ≥ dim H∗(B; k)

is a result of Floyd [11], valid for any continuous action of the circle S1 or of Z/pZ
(p prime) on a topological space A. QED

Equivariant cohomology. It turns out that similar facts are true in the theory
of equivariant cohomology, which is a cohomology theory developed by Borel
and others for the study of transformation groups of topological spaces. We
recall some of the basic definitions. More details can be found in the references
[2, 8, 19, 23, 27]. Let G be a compact Lie group and let EG be a contractible
topological space on which G acts freely and continuously. The quotient

BG = EG/G

is the classifying space of G, so called because principal G-bundles over a topolog-
ical space X are classified up to isomorphism by homotopy classes of maps from
X to BG.

1.11. Example. Let G = U(1) = { z ∈ C | |z| = 1 } be the unit circle and let
EG be the unit sphere in l2(C), the Hilbert space of square-summable complex
sequences. Then G acts freely on EG by scalar multiplication, EG is contractible,
and so BG = EG/G = P∞(C), the infinite-dimensional complex projective space.
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1.12. Example. Let G = Z/2Z and let EG be the unit sphere in l2(R), the Hilbert
space of square-summable real sequences. Then G acts freely on EG by scalar
multiplication, EG is contractible, and so BG = EG/G = P∞(R), the infinite-
dimensional real projective space.

Let X be a topological space on which G acts continuously. Then G acts diag-
onally on EG × X. Borel’s homotopy quotient of X by G is defined by

XG = (EG × X)/G.

The projection onto the first factor EG ×X → EG induces a map XG → BG, which
is a fibre bundle with fibre X. The projection onto the second factor EG × X → X
induces a surjective map from the homotopy quotient XG to the ordinary quotient
or orbit space X/G. For any commutative ring k with identity we define the
equivariant cohomology ring of X with coefficients in k to be

H∗
G(X; k) = H∗(XG; k).

The following general properties follow immediately from the definition of
equivariant cohomology.

1.13. Lemma. Let X be a topological G-space.
(i) If the G-action on X is free, then the map XG → X/G is a fibre bundle with

contractible fibre EG, so H∗
G(X; k) ∼= H∗(X/G; k).

(ii) If X is a point, then XG = BG, so H∗
G(X; k) ∼= H∗(BG; k).

(iii) The map XG → BG induces a ring homomorphism

H∗(BG; k) → H∗
G(X; k),

so H∗
G(X; k) is an algebra over H∗(BG; k).

(iv) If G acts trivially on X, then XG = BG × X and therefore

H∗
G(X; k) ∼= H∗(BG; k)⊗k H∗(X; k)

if H∗(BG; k) or H∗(X; k) is a free k-module.

1.14. Example. Let G = U(1). Example 1.11 gives BG = P∞(C), so

H∗
G(point; k) = H∗(BG; k) = k[x],

a polynomial algebra in one variable x of degree 2. (See for instance [21, Theorem
3.12].)

1.15. Example. Let G = U(1) and X = S2, a two-dimensional sphere on which
G acts by rotations about a fixed axis. Then H∗

G(X; k) = k[x, y]/(x2 − y2), where
x and y are variables of degree 2. Compare this with the ordinary cohomology,
which is a truncated polynomial ring: H∗(X; k) = k[y]/(y2).

1.16. Example. Let G = Z/2Z. Example 1.12 gives BG = P∞(R), so if the ring k
has characteristic 2, then

H∗
G(point; k) = H∗(BG; k) = k[u],

a polynomial algebra in one variable u of degree 1.

Here is an analogue of Theorem 1.10 in equivariant cohomology. The proof,
which we omit, is very similar in spirit. The first part is due to Kirwan [24] and
the second part is due to Biss, Guillemin and Holm [4].
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1.17. Theorem. Let T be a torus and let X be a compact Hamiltonian T-manifold. Let
F be the set of connected components of XT .

(i) Let k be a field. There exist a family of positive even integers (d(F))F∈F and an
isomorphism of k-vector spaces

H∗
T(X; k) ∼=

⊕

F∈F
H∗−d(F)

T (F; k).

(ii) Let σT(t) = t−1 and suppose X has a real structure σX compatible with σT . Let
the integers d(F) be as in part (i) and let k be a field of characteristic 2. There
is an isomorphism of k-vector spaces

H∗
Tσ (Xσ; k) ∼=

⊕

F∈F
H∗− 1

2 d(F)
T (Fσ; k).

We will take up the theme of equivariant cohomology again in Lecture 3, but
first we turn to a quite different, but equally striking property of the moment
map.

2. The moment polytope of a Hamiltonian action

A polytope associated with a T-algebra. Let T be a torus and let A =
⊕∞

r=0 Ar
be a commutative graded algebra over the field of complex numbers C. We make
the following assumptions on A.

(i) A is finitely generated.
(ii) A has no zero divisors.

(iii) The torus T acts on A by graded algebra endomorphisms. That is to say,
the action is linear,

t ·(c1a1 + c2a2) = c1(t · a1) + c2(t · a2)

for all t ∈ T, c1, c2 ∈ C and a1, a2 ∈ A; multiplicative,

t ·(a1a2) = (t · a1)(t · a2)

for all t ∈ T and a1, a2 ∈ A; and preserves the grading,

t · a ∈ Ar

for all t ∈ T and a ∈ Ar.
(iv) For all r, the action of T on Ar is continuous.
(v) A0 = C, the trivial one-dimensional representation of T.

Notice that, by assumptions (i) and (iii), each of the summands Ar is a finite-
dimensional T-module. Therefore assumption (iv) makes sense; it simply means,
by definition, that the action of T on Ar is given by a continuous homomorphism
from T to the matrix group GL(Ar). These assumptions enable us to refine the
grading of A into a bigrading by weight and degree. Let X (T) = Hom(T, U(1))
be the character group of T. Define Aλ,r to be the collection of all a ∈ Ar such
that t · a = λ(t)a for all t ∈ T. Then

A =
⊕

(λ,r)∈X (T)×N

Aλ,r.

Assumption (iii) implies
(vi) If a ∈ Aλ,r and b ∈ Aµ,s, then ab ∈ Aλ+µ,r+s.
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Let Σ(A) be the set of all (λ, r) ∈ X (T) ×N for which the direct summand
Aλ,r is nonzero.

2.1. Lemma. Σ(A) is a finitely generated submonoid of X (T)×N.

Proof. Assumption (ii) and assertion (vi) imply that Σ(A) is closed under ad-
dition. Assumption (v) implies that (0, 0) ∈ Σ(A). Therefore Σ(A) is a sub-
monoid. By assumption (i), the algebra A is finitely generated. Let a1 ∈ Aλ1,r1 ,
a2 ∈ Aλ2,r2 , . . . , ak ∈ Aλk ,rk be a set of homogeneous generators. Then it follows
from assumption (iii) that every (λ, r) ∈ Σ(A) can be written in the form (λ, r) =
∑k

l=1 nl(λl , rl) with nl ∈ N. Thus Σ(A) is finitely generated as a monoid. QED

The monoid Σ(A) can be quite complicated. It is often far from being a sat-
urated submonoid of X (T)×N. Somewhat easier to understand is its “classical
limit”,

P(A) =
{ λ

r

∣∣∣ (λ, r) ∈ Σ(A), r > 0
}

,

which is a subset of the Q-vector space X (T)Q = X (T)⊗Z Q. Recall that a convex
polytope in a vector space V over an ordered field is a subset of V which is the
convex hull of a finite subset of V.

2.2. Lemma. P(A) is a convex polytope in X (T)Q.

Proof. Let λ/r, µ/s ∈ P(A). Then it follows from assumption (ii) and assertion
(vi) that (λ + µ)/(r + s) ∈ P(A). This implies that P(A) is convex. In fact, if
(λ1, r1), (λ2, r2), . . . , (λk, rk) are generators of Σ(A), then every element of P(A)
is a convex combination of λ1/r1, λ2/r2, . . . , λk/rk. Thus P(A) is a convex poly-
tope. QED

We call Σ(A) the weight monoid and P(A) the weight polytope of A.

First application: projective varieties. Let φ : T → U(n) be a Lie group ho-
momorphism. This homomorphism defines an action of T on the vector space
V = Cn by unitary transformations and an action on the projective space Pn−1(C)
by projective unitary transformations. Let X be an irreducible algebraic subvari-
ety of Pn−1(C) preserved by the action of T. (We do not need to assume that X is
nonsingular.) We put

S = C[x1, x2, . . . , xn], the algebra of polynomial functions on Cn,

I(X) = { f ∈ S | f |X = 0 }, the homogeneous ideal of X,

A(X) = S/I(X), the homogeneous coordinate ring of X.

Then A(X) is a graded algebra and T acts on A(X) by algebra endomorphisms.
Because X is a variety, A(X) is finitely generated. Because X is irreducible, A(X)
has no zero divisors. Let P(X) = P(A(X)) be the weight polytope of A(X).

The interpretation of this polytope is as follows. Recall from Example 1.8
that the projective space Pn−1(C) is a Hamiltonian T-manifold equipped with the
Fubini-Study symplectic form and the moment map Φ : Pn−1(C) → t∗ given by

〈Φ([z]), ξ〉 = − 1
2πi

z∗ξz
z∗z

for z ∈ V \ {0} and ξ ∈ t. The Lie algebra of U(1) is the imaginary axis iR, so
the differential λ∗ of a character λ ∈ X (T) is a linear map t → iR, that is to
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say, an element of it∗. The map X (T) → t∗ which sends a character λ to the
real-valued functional (2πi)−1λ∗ is an embedding of X (T) onto a lattice in t∗
and, as is common practice, we will identify X (T) with its image in t∗ under
this embedding. Similarly, we will regard the Q-vector space X (T)Q as a (dense)
subset of t∗, the set of rational points of t∗. With these identifications we have
inclusions

P(X) ⊆ X (T)Q ⊆ t∗.
The following theorem says that the weight polytope P(X) determines the mo-
ment map image Φ(X) and, conversely, Φ(X) determines P(X). It is due in
various forms to Atiyah [3], Guillemin and Sternberg [18], Mumford [28] and
Brion [7]. See also the monograph [17] and the survey paper [30].

2.3. Theorem. Let X be an irreducible subvariety of Pn−1(C) invariant under the T-
action.

(i) Φ(X) = P(X).
(ii) P(X) = Φ(X) ∩ X (T)Q.

(iii) Φ(X) is a convex polytope with rational vertices in the vector space t∗.

The polytope Φ(X) is called the moment polytope of X.

Second application: real projective varieties. Let σT : T → T be an involution of
T, for instance σT(t) = t−1, and suppose that σT is compatible with the standard
involution on V = Cn. Then, as we saw in Example 1.8, the projective space
Pn−1(C) is a real Hamiltonian T-manifold. Suppose that the irreducible subva-
riety X is defined over R. What can we say about the moment map image of
the real locus Xσ? Since Φ(σ(x)) = −σ(Φ(x)), we have Φ(x) = −σ(Φ(x)) for
x ∈ Xσ. In other words,

Φ(Xσ) ⊆ p∗ = { λ ∈ g∗ | σ(λ) = −λ },

and hence Φ(Xσ) ⊆ Φ(X) ∩ p∗. The following theorem, which is due to Duister-
maat [9], states that the reverse inclusion also holds.

2.4. Theorem. If Xσ contains a nonsingular point of X, then Φ(Xσ) = Φ(X) ∩ p∗. In
particular, Φ(Xσ) is a convex polytope with rational vertices.

See [1, 13, 29] for various generalizations.

2.5. Example. Let G be a compact connected Lie group with maximal torus T
and let λ ∈ t∗ be an integral point, i.e. λ ∈ X (T). Then the coadjoint orbit
X = Ad∗(G)(λ) of λ is an integral symplectic manifold. We will view X as a
Hamiltonian T-manifold and compute its moment polytope. It is known that
the Kostant-Kirillov-Souriau symplectic form is Kählerian (for a suitable choice
of complex structure on X), so it follows from Kodaira’s theorem that X is a
complex projective variety. (The facts concerning coadjoint orbits used here can
be found in [10, Chapter 4] and [17, Chapter 4].) It follows from the Borel-Weil
theorem that

A(X) =
∞⊕

r=0
Vrλ.

Here Vµ denotes the irreducible G-module of highest weight µ, where µ is any
dominant weight. As a T-module, the representation Vµ decomposes into weight
spaces. A basic result of representation theory says that the weights occurring in
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Vµ are exactly those ν ∈ X (T) such that ν ∈ convQ(W · µ) and ν − µ is in the
root lattice. (Here convQ(A) denotes the convex hull of a set A contained in a
Q-vector space, and W · µ denotes the Weyl group orbit of µ ∈ t∗.) It follows from
this that P(X) = convQ(W · λ), so by Theorem 2.3 we conclude that

Φ(X) = convR(W · λ).

Now suppose G is equipped with an involution σG which preserves the maximal
torus T. Also assume that the element λ is contained in p∗. Then the orbit X is
symmetric in the sense of Example 1.9 and Xσ is nonempty, so Theorem 2.4 gives

Φ(Xσ) = convR(W · λ) ∩ p∗.

These results were first obtained by Kostant [25] by entirely different methods.

3. Conjugation spaces

The Betti numbers of a space and its real locus. In Lecture 1, particularly Theo-
rems 1.10 and 1.17, we noticed a close analogy between the cohomology of a real
Hamiltonian G-manifold X and that of its real locus Xσ. This analogy arises from
the fact that every component of the moment map is a Morse-Bott function on X
and that its restriction is a Morse-Bott function on Xσ. However, in certain cases
the analogy goes even further. To avoid problems related to orientability, in this
lecture we shall only consider cohomology with coefficients in the field of two
elements F2.

3.1. Example. The real projective space Pn(R) is the real locus of the complex
projective space Pn(C) for a suitable antisymplectic involution on Pn(C). (See
Example 1.8.) The Betti numbers (over F2) of Pn(C) are

dimF2 Hk(Pn(C); F2) =

{
1 if k even, 0 ≤ k ≤ 2n,
0 otherwise,

whereas the Betti numbers of Pn(R) are

dimF2 Hk(Pn(R); F2) =

{
1 if 0 ≤ k ≤ n,
0 otherwise.

Thus dimF2 H2k(Pn(C); F2) = dimF2 Hk(Pn(R); F2) for all k.

Borel and Haefliger [5] observed that the equality

dimF2 H2k(X; F2) = dimF2 Hk(Xσ; F2)

between Betti numbers holds more generally for a certain class of complex pro-
jective varieties defined over R. In this lecture I will survey some recent work
of Hausmann, Holm and Puppe [22], Franz and Puppe [15] and van Hamel [20]
related to this equality. But first let me give an example to show that it is not
always true.

3.2. Example. Let V = Hn be the space of column vectors with n quaternionic
components, viewed as a right vector space over the division algebra of the
quaternions H. The map J : V → V defined by left multiplication by j,

J(q1, q2, . . . , qn)t = (jq1, jq2, . . . , jqn)t,
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is an H-linear map. The map C2n → V defined by

(z1, w1, z2, w2, . . . , zn, wn)t 7−→ (z1 + w1 j, z2 + w2 j, . . . , zn + wn j)t

(where we regard a complex number a + bi as a quaternion a + bi + 0j + 0k) is
a complex linear isomorphism, which we shall use to identify C2n with V. Let
X = Gr(2, 2n, C) be the Grassmannian of complex 2-planes in V. Define an
involution σ of X by σ(W) = J(W). There exists a symplectic structure ω on
X such that σ is antisymplectic. Thus X is a real symplectic manifold. A point
W ∈ X (i.e. a complex 2-plane in V) is fixed under σ if and only if J(W) = W,
which is the case if and only if W is a one-dimensional quaternionic subspace of
V. Thus the real locus of X is Xσ = Pn−1(H), the n− 1-dimensional quaternionic
projective space. The cohomology ring H∗(X; F2) is generated by classes of degree
2, but the cohomology ring H∗(X; F2) is generated by a class of degree 4. Thus it
is not true that dimF2 H2k(X; F2) = dimF2 Hk(Xσ; F2) for all k.

For the remainder of this lecture, all cohomology groups will be understood to
have coefficients in F2 and we will drop the coefficient group from the notation.

Review: fundamental classes. We need to review some useful facts from alge-
braic topology. Let A be a topological space, let B be a closed subspace and let
ι : B → A be the inclusion map. Then we have the long exact sequence of the pair
(A, A \ B),

· · · −→ Hk(A, A \ B) −→ Hk(A) −→ Hk(A \ B) −→ Hk+1(A, A \ B) −→ · · · .

Let us assume that B has a tubular neighbourhood in A, which means a pair (N, ιN)
consisting of a real vector bundle π : N → B and a homeomorphism ιN from N
onto an open neighbourhood of B in A such that ι = ιN ◦ ζ, where ζ : B → N
is the zero section of N. (For instance, this is the case if A is a smooth manifold
and B a closed submanifold by the tubular neighbourhood theorem of differential
topology.) We call N the normal bundle of B in A. The punctured normal bundle is
the space N× = N \ ζ(B). The map

ι∗N : Hk(A, A \ B) −→ Hk(N, N×)

is an isomorphism by the excision property. Let ΘN ∈ Hd(N, N×) be the Thom
class of N, i.e. the unique class which for every point b ∈ B restricts to the
generator of

Hd(Nb, N×
b ) ∼= Hd(Rd, Rd \ {0}) ∼= F2.

Here Nb = π−1(b) is the fibre of N over b and d = dim(Nb) is the rank of N. The
Thom isomorphism theorem says that the map

ThN : Hk−d(B) −→ Hk(N, N×)

defined by c 7→ π∗(c) ·ΘN is an isomorphism for all k. (See for instance [21,
Section 4.D].) In fact, the Thom class (over F2) can also be characterized as the
unique class ΘN for which ThN is an isomorphism. The Gysin homomorphism
ι∗ : Hk−d(B) → Hk(A) associated with ι is by definion the composition of the
maps

Hk−d(B)
ThN // Hk(N, N×)

(ι∗N)−1
// Hk(A, A \ B) // Hk(A).
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Inserting this into the long exact sequence we obtain the long exact Gysin sequence
of the pair (A, B),

· · · // Hk−d(B)
ι∗ // Hk(A) // Hk(A \ B) // Hk−d+1(B) // · · · .

The class [B] = ι∗(1) ∈ Hd(A) is called the fundamental class, or also the orientation
class, of B in A.

Frequently we identify Hk(A, A \ B) with Hk(N, N×) through the isomor-
phism ι∗N and consider the Thom class ΘN as an element of Hk(A, A \ B). With
this identification, the fundamental class [B] is the image of the Thom class under
the natural map from Hk(A, A \ B) to Hk(A).

More about projective space. Let us now have a closer look at Example 3.1.
Let X = Pn(C), let σ be the involution defined by complex conjugation and let
Xσ = Pn(R) be the real locus of X. Let Γ = Gal(C/R) be the Galois group of C
over R. The involution σ on X can be thought of as a Γ-action and the real locus
is then the fixed point set of the action. Recall from Example 1.12 the space EΓ,
which is the unit sphere in l2(R), and the classifying space BΓ = P∞(R). The
homotopy quotient XΓ = (EΓ × X)/Γ is a fibre bundle over BΓ, whose fibre over
a fixed basepoint is X. Because Γ acts trivially on Xσ, its homotopy quotient is
(Xσ)Γ = BΓ × Xσ. In this section we will contemplate the commutative diagram

XΓ BΓ × XσiΓoo

X

j

OO

Xσ,
i

oo

jσ

OO

where i is the inclusion of the real locus, iΓ is its equivariant counterpart, and j
and jσ are the inclusions of the fibre. The associated diagram in cohomology is

H∗
Γ(X)

i∗Γ //

j∗
²²

H∗(Xσ)⊗ H∗(BΓ)

²²

H∗(X)
i∗ //

κ
//

s

OO

H∗(Xσ),

where the maps κ and s are to be defined below. For d = 1, 2, . . . , n let Zd be
the projective linear subspace Pn−d(C) of X. These subspaces have the following
properties:

(i) σ(Zd) = Zd and Zσ
d = Pn−d(R);

(ii) the codimension of Zd in X is 2d and the codimension of Zσ
d in Xσ is d;

(iii) the collection of fundamental classes

{ [Zd] ∈ H2d(X) | d = 1, 2, . . . , n }
is a basis of H∗(X) and the collection of fundamental classes

{ [Zσ
d ] ∈ Hd(Xσ) | d = 1, 2, . . . , n }

is a basis of H∗(Xσ).
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This enables us to define a linear map

κ : H2∗(X) −→ H∗(Xσ)

by κ([Zd]) = [Zσ
d ]. This map does not preserve the degrees, but divides them

in half. To define the map s, consider the homotopy quotient (Zd)Γ = (EΓ ×
Zd)/Γ, which is a submanifold of codimension 2d < ∞ in XΓ. It has a tubular
neighbourhood in XΓ and therefore a well-defined fundamental class

[Zd]Γ ∈ H2d(XΓ) = H2d
Γ (X).

The intersection of (Zd)Γ with the fibre X is equal to Zd, so j∗([Zd]Γ) = [Zd]. In
other words, the linear map

s : H∗(X) −→ H∗
Γ(X)

defined on basis elements by s([Zd]) = [Zd]Γ is a section (right inverse) of the
restriction map to the fibre: j∗ ◦ s = idH∗(X). We call [Zd]Γ a Γ-equivariant extension
of the class [Zd]. What can we say about the restriction of [Zd]Γ to the real locus,
that is the image of [Zd]Γ under the restriction map

i∗Γ : H∗
Γ(X) −→ H∗

Γ(Xσ)

induced by the inclusion Xσ ↪→ X? Since (Xσ)Γ = BΓ × Xσ, it follows from the
Künneth theorem that

H∗
Γ(Xσ) ∼= H∗(Xσ)⊗ F2[u] ∼= H∗(Xσ)[u],

a polynomial ring over H∗(Xσ) in a variable u of degree 1. Therefore we can
express the class i∗Γ([Zd]Γ) of degree 2d as a polynomial in u,

i∗Γ([Zd]Γ) =
2d

∑
k=0

ckuk,

with coefficients ck ∈ H2d−k(Xσ). It was observed by van Hamel [20] that all the
terms above degree d of this polynomial vanish, and he also found an expression
for the leading coefficient cd.

3.3. Theorem. ck = 0 for k > d and cd = [Zσ
d ] = κ([Zd]).

Proof. By definition, the fundamental class [Zd]Γ ∈ H2d
Γ (X) is the image of the

Thom class ΘN ∈ H2d
Γ (X, X \ Zd) of the normal bundle N of (Zd)Γ in XΓ. For all

l the following diagram commutes:

Hl
Γ(X, X \ Zd) //

i∗Γ
²²

Hl
Γ(X)

i∗Γ
²²

Hl
Γ(Xσ, Xσ \ Zσ

d ) // Hl
Γ(Xσ).

By the Thom isomorphism theorem, Hl
Γ(Xσ, Xσ \ Zσ

d ) ∼= Hl−d
Γ (Zσ

d ), which is 0 for
l < d. Thus the coefficients of the polynomial i∗Γ([Zd]Γ) = ∑2d

k=0 ckuk vanish for
2d− k < d.

To compute cd we take another look at the Thom isomorphism

ThN : H∗−d
Γ (Zd)

∼=−→ H∗
Γ(X, X \ Zd),
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which is an isomorphism of modules over the ring H∗(BΓ) ∼= F2[u]. Just like
the fundamental class [Zd]Γ, the restriction of the Thom class can be written as a
polynomial

i∗Γ(ΘN) =
2d

∑
k=0

Θkuk

with coefficients Θk ∈ H2d−k(Xσ, Xσ \ Zσ
d ). The coefficients Θk vanish in de-

grees k > d for the same reason as for [Zd]. The famous localization theo-
rem of equivariant cohomology says that for any Γ-space Y the restriction map
H∗

Γ(Y) → H∗
Γ(YΓ) becomes an isomorphism after inverting the variable u. Thus the

Thom isomorphism gives rise to an isomorphism

ThN : H∗−d
Γ (Zσ

d )u
∼=−→ H∗

Γ(Xσ, Xσ \ Zσ
d )u,

where Vu = F2[u, u−1]⊗F2 V is the localization of an F2-vector space V at u. It
follows from this that multiplication by the top degree part Θd ∈ Hd(Xσ, Xσ \Zσ

d )
of i∗Γ(ΘN) is an isomorphism

H∗−d(Zσ
d )

∼=−→ H∗(Xσ, Xσ \ Zσ
d ).

This implies Θd is the Thom class of the normal bundle of Zσ
d in Xσ. Thus cd,

which is the image in Hd(Xσ) of Θd, is the fundamental class of Zσ
d . QED

Because the classes [Zd] form a basis of H∗(X), we obtain from this fact the
so-called conjugation equation.

3.4. Theorem. For every a ∈ H2d(X) there exist classes ck ∈ H2d−k(Xσ) for k = 0,
1, . . . , d− 1 such that i∗Γs(a) = κ(a)ud + cd−1ud−1 + · · ·+ c1u + c0.

Frames. This example leads to the following two definitions. The first was stated
in a more general form in [20]. Let X be an arbitrary symplectic manifold with a
real structure σ. A geometric frame is a family of closed symplectic submanifolds
(Zα)α∈A such that

(i) σ(Zα) = Zα;
(ii) the collection { [Zα] | α ∈ A } is a basis of H∗(X) and the collection

{ [Zσ
α ] | α ∈ A } is a basis of H∗(Xσ).

Note that the definition implies that Hk(X) = 0 when k is odd.
The next definition was given in [22] (and preceded the definition of a geomet-

ric frame). Assume that Hk(X) = 0 when k is odd. A cohomological frame is a pair
(s, κ), where

s : H∗(X) −→ H∗
Γ(X)

is a section of the restriction map j∗ : H∗
Γ(X) → H∗(X) and

κ : H2∗(X) −→ H∗(Xσ)

is an additive isomorphism which divides the degrees in half. These two maps
are required to satisfy the conjugation equation: for each a ∈ H2d(X) there exist
ck ∈ H2d−k(Xσ) for k = 0, 1, . . . , d− 1 such that

i∗Γs(a) = κ(a)ud + cd−1ud−1 + · · ·+ c1u + c0.

If a cohomological frame exists, we call the involution σ a conjugation and the
manifold X a conjugation space.
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Given a geometric frame (Zα)α∈A one defines κ([Zα]) = [Zσ
α ] and s([Zα]) =

[Zα]Γ and proves as in Theorem 3.4 that these two maps define a cohomological
frame. Thus:

3.5. Theorem ([20]). A geometric frame gives rise to a naturally defined cohomological
frame.

We mention a few examples of conjugation spaces. Many more are given in
[22].

3.6. Example. Let T be a torus with involution σT(t) = t−1 and let X be a real
Hamiltonian T-manifold. Suppose the fixed point set XT equipped with the in-
volution σ |XT is a conjugation space. Then X is a conjugation space.

3.7. Example. Let G be a compact connected Lie group. A Chevalley involution of
G is an involution satisfying σ(g) = g−1 for g in some maximal torus T of G and
σ(α) = −α for all roots α of G. It is known that Chevalley involutions exist for
all G and are unique up to conjugation. For instance, the Chevalley involution of
U(n) is given by σ(g) = ḡ and the Chevalley involution of U(n, H) is given by
σ(g) = −JḡJ, where J =

( 0 −I
I 0

)
. With respect to the Chevalley involution, every

coadjoint orbit X is symmetric, and it is proved in [22] that X is a conjugation
space.

Conjugation spaces have many other surprising properties. We finish with a
few sample results.

3.8. Theorem ([22]). Let X be a conjugation space.
(i) The real locus Xσ is nonempty. If X is connected, then so is Xσ.

(ii) The cohomological frame (s, κ) of X is unique. Both s and κ are ring homomor-
phisms.

The next result says that not only the leading coefficient, but also the lower
order coefficients in the conjugation equation can be expressed in terms of the
class a. (See [21, Section 4.L] for a discussion of the Steenrod squaring operations.)

3.9. Theorem ([15]). Let X be a conjugation space. For each a ∈ H2d(X) the coefficients
ck ∈ Hk(Xσ) in the conjugation equation are uniquely determined by a, namely ck =
Sqd−k(κ(a)), the d− kth Steenrod square of κ(a).

3.10. Corollary ([15]). κ(a)2 = i∗(a).

Proof. For a class c of degree k we have Sqk(c) = c2. Therefore, since κ(a) has
degree d, c0 = Sqd(κ(a)) = κ(a)2. Moreover, c0 is the constant term in the
polynomial, i.e. the restriction of the equivariant class i∗Γs(a) to the fibre Xσ, so
c0 = j∗σi∗Γs(a) = i∗ j∗s(a) = i∗(a). QED

Thus the homomorphism κ is a “square root” of the restriction map to the real
locus i∗ : H∗(X) → H∗(Xσ).
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