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Orbit method and quantization

A. A. Kirillov

G = Lie group (infinite-dimensional group, quan-

tum group. . . )

Category of unitary representations of G

Objects: continuous homomorphisms T : G →
U(H) (H a Hilbert space)

Morphism (“intertwining operator”) from T1

to T2: continuous linear A : H1 →H2

H1
A //

T1(g)

��

H2

T2(g)

��

H1
A //H2
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Example.X = G-manifold with G-invariant mea-

sure µ. Unitary representation on L2(X,µ):

T (g)f(x) = f(g−1x). Map F : X1 → X2 induces

intertwining map F ∗ : L2(X2, µ2) → L2(X1, µ1)

(if µ2 is absolutely continuous w.r.t. F∗µ1).

T is indecomposable if T 6= T1⊕T2 for nonzero

T1 and T2. T is irreducible if does not have

nontrivial invariant subspaces.

For unitary representation irreducible ⇐⇒ in-

decomposable.

“Unirrep” = unitary irreducible representation.
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Main problems of representation theory

1. Describe unitary dual:

Ĝ = {unirreps of G}/equivalence.

2. Decompose any T into unirreps:

T (g) =
∫
Y

Ty(g)dµ(y).

Special cases: for H < G closed (“little

group”),

(a) for T ∈ Ĝ decompose restriction ResGH T .

(b) for S ∈ Ĥ decompose induction IndGH S.

3. Compute character of T ∈ Ĝ.
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Ad 2b: let S : H → U(H). Suppose G/H has G-

invariant measure µ. IndGH S = L2-sections of

G×HH. Obtained by taking space of functions

f : G → H satisfying f(gh−1) = S(h)f(g), and

completing w.r.t. inner product

〈f1, f2〉 =
∫

G/H

〈f1(x), f2(x)〉Hdµ(x).

Ad 3: let φ ∈ C∞0 (G). Put

T (φ) =
∫
G

φ(g)T (g)dg.

With luck T (φ): H → H is of trace class and

φ 7→ Tr T (φ) is a distribution on G, the charac-

ter of T .
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Solutions proposed by orbit method

1. Let g = Lie algebra of G. Coadjoint repre-

sentation = (non-unitary) representation of G

on g∗.

Ĝ = g∗/G, the space of coadjoint orbits

2. Let TO be unirrep corresponding to O ∈
g∗/G. For H < G have projection pr : g∗ → h∗.
Then

ResGH TO =
∫

O′∈h∗/H
O′⊂prO

m(O,O′)TO′ for O ∈ g∗/G,

IndGH TO′ =
∫

O′∈g∗/G
prO⊃O′

m(O,O′)TO for O′ ∈ h∗/H.

Same m(O,O′) (Frobenius reciprocity).
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3. For O ∈ g∗/G let χO = character of TO.

Kirillov character formula: for ξ ∈ g√
j(ξ)χO(exp ξ) =

∫
O

e2πi〈f,ξ〉df,

Fourier transform of δO. (df = canonical mea-

sure on O, j =
√
jljr, where jl,r = derivative of

left resp. right Haar measure w.r.t. Lebesgue

measure.)

Theorem (Kirillov). Above is exactly right for

connected simply connected nilpotent groups

(where j(ξ) = 1).
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Examples

G = Rn. Then g∗/G = g∗ = (Rn)∗. Unirrep

corresponding to λ ∈ (Rn)∗ is

Tλ(x) = e2πi〈λ,x〉 (H = C)

(Fourier analysis).

Heisenberg group: G = group of matrices

g =

1 g1 g3
0 1 g2
0 0 1


Typical element of Lie algebra g is

ξ =

0 ξ1 ξ3
0 0 ξ2
0 0 0


Basis:

p =

0 1 0
0 0 0
0 0 0

 q =

0 0 0
0 0 1
0 0 0

 z =

0 0 1
0 0 0
0 0 0
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Note [p, q] = z, z generates centre of g.

Complete list of unirreps (Stone-von

Neumann)

For ~ 6= 0: T~ : G→ L2(R) is generated by

p 7−→ ~
d

dx
, q 7−→ ix, z 7−→ i~,

i.e. T~(etp)f(x) = f(x + t~), T~(etq)f(x) =

eitxf(x), T~(etz) = eit~. Note [T~p, T~q] = T~z

(uncertainty principle).

For α, β ∈ R: Sα,β : G→ C is generated by

p 7−→ iα, q 7−→ iβ, z 7−→ 0.
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Description of g/G

Adjoint action:

g·ξ = gξg−1 =

0 ξ1 ξ3 − g2ξ1 + g1ξ2
0 0 ξ2
0 0 0


Adjoint orbits:

ξ2
//

ξ3

OO

ξ1��
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Description of g∗/G

Identify g∗ with lower triangular matrices. Typ-

ical element is

f =

 0 0 0
f1 0 0
f3 f2 0


Pairing 〈f, ξ〉 = Tr fξ = f1ξ1 + f2ξ2 + f3ξ3.

Coadjoint action:

g·f = lower triangular part of gfg−1 =

=

 0 0 0
f1 + g2f3 0 0

f3 f2 − g1f3 0
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Coadjoint orbits:

f2
//

f3

OO

f1��

Two-dimensional orbits correspond to T~, zero-

dimensional orbits to Sα,β
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“Explanation” for orbit method

Classical Quantum

Symplectic manifold (M,ω) Hilbert space H = Q(M)

(or PH)

Observable (function) f skew-adjoint operator

Q(f) on H
Poisson bracket {f, g} commutator [Q(f), Q(g)]

Hamiltonian flow of f 1-PS in U(H)

Dirac’s “rules”: Q(c) = ic (c constant), f 7→
Q(f) is linear, [Q(f1), Q(f2)] = ~Q({f1, f2}).

I.e. f 7→ ~−1Q(f) is a Lie algebra homomor-

phism C∞(M)→ u(H).

So Lie algebra homomorphism g → C∞(M)

gives rise to unitary representation of G on H.

Last “rule”: if G acts transitively, Q(M) is a

unirrep.

14



Hamiltonian actions

(M,ω) symplectic manifold on which G acts.

Action is Hamiltonian if there exists G-equivariant

map Φ: M → g∗, called moment map or Hamil-

tonian, such that

d〈Φ, ξ〉 = ι(ξM)ω,

where ξM = vector field on M induced by ξ ∈ g.

If G connected, equivariance of Φ is equivalent

to: transpose map φ : g → C∞(M) defined by

φ(ξ)(m) = Φ(m)(ξ) is homomorphism of Lie

algebras.

Triple (M,ω,Φ) is a Hamiltonian G-manifold.

Notation: Φξ = φ(ξ) = composite map M
Φ−→

g∗
ξ−→ R (ξ-component of Φ).

15



Examples

1. Q = any manifold w. G-action ρ : G →
Diff(Q). M = T ∗Q with lifted action

ρ̄(g)(q, p) = (ρ(g)q, ρ(g−1)∗p),

where q ∈ Q, p ∈ T ∗qQ. ω = −dα, where

α(q,p)(v) = p(π∗v); π = projection M → Q.

Moment map:

Φξ(q, p) = p(ξQ).

2. Poisson structure on g∗: for ϕ, ψ ∈ C∞(g∗),

f ∈ g∗,

{ϕ,ψ}(f) = 〈f, [dϕf , dψf ]〉.

(Here dϕf , dψf ∈ g∗∗ ∼= g.)

Leaves: orbits for coadjoint action. For coad-

joint orbit O moment map is inclusion O → g∗.
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Theorem (Kirillov–Kostant–Souriau). Let

(M,ω,Φ) be homogeneous Hamiltonian G-manifold.

Then Φ: M → g∗ is local symplectomorphism

onto its image. Hence, if G compact, Φ is

global symplectomorphism.

Sketch proof. M homogeneous ⇒ image of Φ

is single orbit in g∗, and therefore a symplectic

manifold.

Φ equivariant ⇒ Φ is Poisson map. Conclu-

sion: Φ preserves symplectic form.

If G compact all coadjoint orbits are simply

connected.
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Prequantization

First attempt: Q(M) = L2(M,µ), where µ =

ωn/n!, Liouville volume element on M . For f

function on M put

Q(f) = ~Ξf

skew-symmetric operator on L2 (Ξf = Hamil-

tonian vector field of f).

Wrong: Q(c) = 0! Second try:

Q(f) = ~Ξf − if.

But then [Q(f1), Q(f2)] = · · · = ~2 Ξf3
+2i~f3 6=

~Q(f3), where f3 = {f1, f2}.

(Sign convention: {f, g} = ω(Ξf ,Ξg) = −Ξf(g).)
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Third attempt: suppose ω = −dα. Put

Q(f) = ~Ξf + i
(
α(Ξf)− f

)
.

Works! But: depends on α; and what if ω

not exact? Note: first two terms are covariant

differentation w.r.t. connection one-form α/~.

Definition (Kostant-Souriau).M is prequanti-

zable if there exists a Hermitian line bundle L

(prequantum bundle) with connection ∇ such

that curvature is ω/~.

Prequantum Hilbert space is L2-sections of L,

and operator associated to f ∈ C∞(M) is

Q(f) = ~∇Ξf
− if.
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Example

M = R2n, ω =
∑
k dxk ∧ dyk, L = R2n × C, α =

−
∑
k xkdyk. Inner product:

〈ϕ,ψ〉 =
∫

R2n

ϕ(x, y)ψ̄(x, y) dx dy.

Ξxk = −∂/∂yk and Ξyk = ∂/∂xk so

Q(xk) = −~
∂

∂yk
,

Q(yk) = ~
∂

∂xk
− iyk.

Snag: prequantization is too big. For n = 2

get L2(R2). R2 is homogeneous space under

Heisenberg group, but L2(R2) is not unirrep

for this group.
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Polarizations

Polarization on M = integrable Lagrangian sub-

bundle of TCM , i.e. subbundle P ⊂ TCM s.t.

Pm is Lagrangian in TC
mM for all m, and vec-

tor fields tangent to P are closed under Lie

bracket.

P is totally real if P = P̄. P is complex if

P ∩ P̄ = 0.

Frobenius: real polarization ⇒ Lagrangian fo-

liation of M

Newlander-Nirenberg: complex polarization ⇒
complex structure J on M s.t. P is spanned

by ∂/∂zk in holomorphic coordinates zk.

P is Kähler if it is complex and ω(·, J ·) is a

Riemannian metric.
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Section s of L is polarized if ∇v̄s = 0 for all v
tangent to P.

Definition. Q(M) = L2 polarized sections of
L.

Problems

1. Existence of polarizations.

2. Q(f) acts on Q(M) only if Ξf preserves P.

3. Polarized sections are constant along (real)
leaves of P. Square-integrability?!

4. M compact, P complex but not Kähler ⇒
there are no polarized sections.

5. Q(M) independent of P?

22



Coadjoint orbits

O = coadjoint orbit through f ∈ g∗. Assume

G simply connected, (O, ω) prequantizable. G-

action on O lifts to L. Infinitesimally,

ξL = lift of ξO+ 2πΦξ νL,

where ξ ∈ g, νL = generator of scalar S1-action

on L.

G-invariant polarization P of O is determined

by p ⊃ gCf , inverse image of Pf under gC → TC
f O.

P integrable ⇐⇒ p subalgebra.

P Lagrangian ⇐⇒ f |[p,p] = 0 (i.e. f |p is in-

finitesimal character) and 2 dimC p = dimRG+

dimRGf .
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P real ⇐⇒ p = pC0 for p0 ⊂ g. Let P0 =
group generated by exp p0. Assume f : p0 → R
exponentiates to character Sf : P0 → S1; then

Q(M) = IndGP0
Sf .

If P complex, Q(M) is holomorphically induced
representation.

Example

G compact (and simply connected). Let T =
maximal torus, t∗+ = positive Weyl chamber,
f ∈ t∗+. Then O = Gf integral ⇐⇒ f in
integral lattice.

All invariant polarizations are complex and are
determined by parabolic subalgebras p ⊃ gCf . In

fact, O = G/Gf
∼= GC/P , where P = exp p.

Q(O) = holomorphic sections of GC ×P Sf
= unirrep with highest weight f.
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Character formula:√
j(ξ)χO(exp ξ) =

∫
O

e2πi〈f,ξ〉df,

where √
j(ξ) =

∏
α>0

e〈α,ξ〉/2 − e−〈α,ξ〉/2

〈α, ξ〉
.

ξ = 0:

dimQ(O) = vol(O) =
∏
α>0

〈α, f〉
〈α, ρ〉

,

where ρ = 1/2 sum of positive roots. Compare

Weyl dimension formula:

dimQ(O) =
∏
α>0

〈α, f + ρ〉
〈α, ρ〉

(ρ-shift).
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Index theorem in symplectic geometry

Recall table:

Classical Quantum
Symplectic manifold (M,ω) Hilbert space H = Q(M)

(or PH)
Observable (function) f skew-adjoint operator

Q(f) on H
Poisson bracket {f, g} commutator [Q(f), Q(g)]
Hamiltonian flow of f 1-PS in U(H)

Continuation:

Hamiltonian G-action on M unitary representation
on Q(M)

Moment polytope ∆(M) highest weights of
irreducible components

Symplectic cross-section highest-weight spaces
Φ−1(t∗+)

Symplectic quotients isotypical components

Φ−1(O)/G Hom
(
Q(O), Q(M)

)G
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Lemma. ker dΦm = Tm(Gm)ω, where Gm =

G-orbit through m.

im dΦm = g0
m, where gm = {ξ : (ξM)m = 0}.

Hence: if f ∈ g∗ is regular value of Φ, Gf acts

locally freely on Φ−1(f).

Theorem (Meyer, Marsden-Weinstein). If f is

regular value of Φ, null-foliation of ω|Φ−1(f)
is equal to G-orbits of Gf-action. Hence the

quotient Mf = Φ−1(f)/Gf = Φ−1(Of)/G is a

symplectic orbifold.

Conjecture (Guillemin-Sternberg, “[Q,R] = 0”).

Q(M0) = Q(M)G.

(This implies Q(MO) = Hom(Q(O), Q(M))G.)
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Proved by Guillemin-Sternberg in Kähler case

using geometric invariant theory.

In compact case can make life easier by chang-

ing definition of Q(M): regard prequantum

bundle L as element of KG(M). Let π : M → •
be map to a point. Define

Q(M) = π∗([L]),

regarded as element of KG(•) = Rep(G) (rep-

resentation ring).

Disadvantages: works only for compact M and

G; dimension can be negative; no natural inner

product.

Advantages: by and large satisfies Dirac’s rules;

don’t need polarization; can be computed by

Atiyah-Segal-Singer Equivariant Index Theo-

rem.
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Definition of π∗: choose G-invariant compat-

ible almost complex structure J. Splitting of

de Rham complex Ωp =
⊕
k+l=pΩkl.

Dolbeault operator ∂̄ is (0,1)-part of d. ∂̄2 6= 0

unless J integrable. With coefficients in L:

∂̄L = ∂̄ ⊕ 1 + 1⊗∇ : Ω0l(L)→ Ω0,l+1.

Dolbeault-Dirac operator:

/∂L = ∂̄L + ∂̄∗L : Ω0,even(L)→ Ω0,odd.

Pushforward of L:

Q(M) = π∗([L]) = ker /∂L − coker /∂L,

a virtual G-representation.

RR(M,L), the equivariant index of M , is the

character of Q(M). Note RR(M,L)(0) = index /∂L.

RR(M,L)G is by definition
∫
GRR(M,L)(g) dg,

the multiplicity of 0 in Q(M).
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Theorem (Meinrenken, Guillemin, Vergne, . . . ).

If 0 regular value of Φ,

RR(M,L)G = RR(M0, L0).

(See [S] for attributions.)

Outline of proof for G = S1 [DGMW]

Two ingredients:

Proposition. If 0 6∈ Φ(M), then RR(M,L)G =
0. If 0 is minimum or maximum of Φ, then
RR(M,L)G = RR(M0, L0).

Theorem (gluing formula).

RR(M≤0, L≤0) + RR(M≥0, L≥0) =

= RR(M,L) + RR(M0, L0).

(Cf. gluing formula for topological Euler char-
acteristic.)
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Here (M≤0, ω≤0,Φ≤0), (M≥0, ω≥0,Φ≥0) are Hamil-

tonian G-manifolds (orbifolds) such that

Φ≤0(M≤0) = Φ(M) ∩ R≤0,

Φ≥0(M≥0) = Φ(M) ∩ R≥0,

and Φ−1
≤0(0) and Φ−1

≥0(0) are symplectomorphic

to M0.

By Proposition,

RR(M≤0, L≤0)G = RR(M≥0, L≥0)G = RR(M0, L0).

Hence, taking G-invariants on both sides in glu-

ing formula

2 RR(M0, L0) = RR(M,L)G + RR(M0, L0),

Q.E.D.
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Proposition and gluing formula follow from equiv-

ariant index theorem.

Definition of M≤0 and M≥0: symplectic cut-

ting (Lerman). Roughly, M≥0 is obtained by

taking Φ−1([0,∞)) and collapsing S1-orbits on

boundary Φ−1(0). So M≥0 = union of M>0

and M0.

M≥0

M0

M≤0
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Consider diagonal action of S1 on M×C, which

has moment map Φ̃(m, z) = Φ(m)−1
2|z|

2. Here

C = is complex line w. standard cirle action

and symplectic structure. Symplectic cut is

symplectic quotient at 0,

M≥0 = (M × C)//S1.

(“//” means symplectic quotient at 0.)

Embedding Φ−1(0) ↪→ Φ̃−1(0) defined by m 7→
(m,0) descends to symplectic embedding M0 ↪→
M≥0.

M>0 = Φ−1((0,∞)) also embeds symplecti-

cally into M≥0: define M>0 → Φ̃−1(0) by send-

ing m to
(
m,

√
2 Φ(m)

)
.
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