Notes on the Orbit Method and Quantization

Reyer Sjamaar

Les Diablerets, March 1997

Contents

1. Orbit method and quantization

2. Index theorem in symplectic geometry

Orbit method and quantization

A. A. Kirillov

$G=$ Lie group (infinite-dimensional group, quantum group...)

Category of unitary representations of G

Objects: continuous homomorphisms $T: G \rightarrow$ U(H) (H a Hilbert space)

Morphism ("intertwining operator") from T_{1} to T_{2} : continuous linear $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$

Example. $X=G$-manifold with G-invariant measure μ. Unitary representation on $L^{2}(X, \mu)$: $T(g) f(x)=f\left(g^{-1} x\right)$. Map $F: X_{1} \rightarrow X_{2}$ induces intertwining map $F^{*}: L^{2}\left(X_{2}, \mu_{2}\right) \rightarrow L^{2}\left(X_{1}, \mu_{1}\right)$ (if μ_{2} is absolutely continuous w.r.t. $F_{*} \mu_{1}$).
T is indecomposable if $T \neq T_{1} \oplus T_{2}$ for nonzero T_{1} and $T_{2} . T$ is irreducible if does not have nontrivial invariant subspaces.

For unitary representation irreducible \Longleftrightarrow indecomposable.
"Unirrep" = unitary irreducible representation.

Main problems of representation theory

1. Describe unitary dual:

$$
\widehat{G}=\{\text { unirreps of } G\} / \text { equivalence. }
$$

2. Decompose any T into unirreps:

$$
T(g)=\int_{Y} T_{y}(g) d \mu(y)
$$

Special cases: for $H<G$ closed ("little group"),
(a) for $T \in \widehat{G}$ decompose restriction $\operatorname{Res}_{H}^{G} T$.
(b) for $S \in \hat{H}$ decompose induction $\operatorname{Ind}_{H}^{G} S$.
3. Compute character of $T \in \widehat{G}$.

Ad 2b: let $S: H \rightarrow \mathrm{U}(\mathcal{H})$. Suppose G / H has G invariant measure $\mu . \operatorname{Ind}_{H}^{G} S=L^{2}$-sections of $G \times{ }^{H} \mathcal{H}$. Obtained by taking space of functions $f: G \rightarrow \mathcal{H}$ satisfying $f\left(g h^{-1}\right)=S(h) f(g)$, and completing w.r.t. inner product

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{G / H}\left\langle f_{1}(x), f_{2}(x)\right\rangle_{\mathcal{H}} d \mu(x) .
$$

Ad 3: let $\phi \in C_{0}^{\infty}(G)$. Put

$$
T(\phi)=\int_{G} \phi(g) T(g) d g .
$$

With luck $T(\phi): \mathcal{H} \rightarrow \mathcal{H}$ is of trace class and $\phi \mapsto \operatorname{Tr} T(\phi)$ is a distribution on G, the character of T.

Solutions proposed by orbit method

1. Let $\mathfrak{g}=$ Lie algebra of G. Coadjoint representation $=$ (non-unitary) representation of G on \mathfrak{g}^{*}.
$\widehat{G}=\mathfrak{g}^{*} / G$, the space of coadjoint orbits
2. Let $T_{\mathcal{O}}$ be unirrep corresponding to $\mathcal{O} \in$ \mathfrak{g}^{*} / G. For $H<G$ have projection $\mathrm{pr}: \mathfrak{g}^{*} \rightarrow \mathfrak{h}^{*}$. Then
$\operatorname{Res}_{H}^{G} T_{\mathcal{O}}=\int_{\substack{\mathcal{O}^{\prime} \in \mathfrak{h}^{*} / H \\ \mathcal{O}^{\prime} \subset \operatorname{pr} \mathcal{O}}} m\left(\mathcal{O}, \mathcal{O}^{\prime}\right) T_{\mathcal{O}^{\prime}} \quad$ for $\mathcal{O} \in \mathfrak{g}^{*} / G$,
$\operatorname{Ind}_{H}^{G} T_{\mathcal{O}^{\prime}}=\int_{\mathcal{O}^{\prime} \in \mathfrak{o}^{*} / G} m\left(\mathcal{O}, \mathcal{O}^{\prime}\right) T_{\mathcal{O}} \quad$ for $\mathcal{O}^{\prime} \in \mathfrak{h}^{*} / H$. $\mathcal{O}^{\prime} \in \mathfrak{g}^{*} / G$ $\mathrm{pr} \mathcal{O} \mathcal{O}^{\prime}$
Same $m\left(\mathcal{O}, \mathcal{O}^{\prime}\right)$ (Frobenius reciprocity).
3. For $\mathcal{O} \in \mathfrak{g}^{*} / G$ let $\chi_{\mathcal{O}}=$ character of $T_{\mathcal{O}}$. Kirillov character formula: for $\xi \in \mathfrak{g}$

$$
\sqrt{j(\xi)} \chi_{\mathcal{O}}(\exp \xi)=\int_{\mathcal{O}} e^{2 \pi i\langle f, \xi\rangle} d f
$$

Fourier transform of $\delta_{\mathcal{O}}$. $(d f=$ canonical measure on $\mathcal{O}, j=\sqrt{j_{l} j_{r}}$, where $j_{l, r}=$ derivative of left resp. right Haar measure w.r.t. Lebesgue measure.)

Theorem (Kirillov). Above is exactly right for connected simply connected nilpotent groups (where $j(\xi)=1$).

Examples

$G=\mathbb{R}^{n}$. Then $\mathfrak{g}^{*} / G=\mathfrak{g}^{*}=\left(\mathbb{R}^{n}\right)^{*}$. Unirrep corresponding to $\lambda \in\left(\mathbb{R}^{n}\right)^{*}$ is

$$
T_{\lambda}(x)=e^{2 \pi i\langle\lambda, x\rangle} \quad(\mathcal{H}=\mathbb{C})
$$

(Fourier analysis).

Heisenberg group: $G=$ group of matrices

$$
g=\left(\begin{array}{ccc}
1 & g_{1} & g_{3} \\
0 & 1 & g_{2} \\
0 & 0 & 1
\end{array}\right)
$$

Typical element of Lie algebra \mathfrak{g} is

$$
\xi=\left(\begin{array}{ccc}
0 & \xi_{1} & \xi_{3} \\
0 & 0 & \xi_{2} \\
0 & 0 & 0
\end{array}\right)
$$

Basis:

$$
p=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad q=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad z=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Note $[p, q]=z, z$ generates centre of \mathfrak{g}.

Complete list of unirreps (Stone-von Neumann)

For $\hbar \neq 0: T_{\hbar}: G \rightarrow L^{2}(\mathbb{R})$ is generated by

$$
p \longmapsto \hbar \frac{d}{d x}, \quad q \longmapsto i x, \quad z \longmapsto i \hbar
$$

i.e. $\quad T_{\hbar}\left(e^{t p}\right) f(x)=f(x+t \hbar), T_{\hbar}\left(e^{t q}\right) f(x)=$ $e^{i t x} f(x), T_{\hbar}\left(e^{t z}\right)=e^{i t \hbar}$. Note $\left[T_{\hbar} p, T_{\hbar} q\right]=T_{\hbar} z$ (uncertainty principle).

For $\alpha, \beta \in \mathbb{R}: S_{\alpha, \beta}: G \rightarrow \mathbb{C}$ is generated by

$$
p \longmapsto i \alpha, \quad q \longmapsto i \beta, \quad z \longmapsto 0 .
$$

Description of \mathfrak{g} / G

Adjoint action:

$$
g \cdot \xi=g \xi g^{-1}=\left(\begin{array}{ccc}
0 & \xi_{1} & \xi_{3}-g_{2} \xi_{1}+g_{1} \xi_{2} \\
0 & 0 & \xi_{2} \\
0 & 0 & 0
\end{array}\right)
$$

Adjoint orbits:

Description of \mathfrak{g}^{*} / G

Identify \mathfrak{g}^{*} with lower triangular matrices. Typical element is

$$
f=\left(\begin{array}{ccc}
0 & 0 & 0 \\
f_{1} & 0 & 0 \\
f_{3} & f_{2} & 0
\end{array}\right)
$$

Pairing $\langle f, \xi\rangle=\operatorname{Tr} f \xi=f_{1} \xi_{1}+f_{2} \xi_{2}+f_{3} \xi_{3}$. Coadjoint action:
$g \cdot f=$ lower triangular part of $g f g^{-1}=$

$$
=\left(\begin{array}{ccc}
0 & 0 & 0 \\
f_{1}+g_{2} f_{3} & 0 & 0 \\
f_{3} & f_{2}-g_{1} f_{3} & 0
\end{array}\right)
$$

Coadjoint orbits:

Two-dimensional orbits correspond to T_{\hbar}, zerodimensional orbits to $S_{\alpha, \beta}$

"Explanation" for orbit method

Classical Quantum
Symplectic manifold (M, ω) Hilbert space $\mathcal{H}=Q(M)$ (or $\mathbb{P} \mathcal{H}$)
Observable (function) f skew-adjoint operator $Q(f)$ on \mathcal{H}
Poisson bracket $\{f, g\}$
commutator $[Q(f), Q(g)]$ Hamiltonian flow of f 1-PS in $\mathrm{U}(\mathcal{H})$

Dirac's "rules": $Q(c)=i c$ (c constant), $f \mapsto$ $Q(f)$ is linear, $\left[Q\left(f_{1}\right), Q\left(f_{2}\right)\right]=\hbar Q\left(\left\{f_{1}, f_{2}\right\}\right)$.
I.e. $f \mapsto \hbar^{-1} Q(f)$ is a Lie algebra homomorphism $C^{\infty}(M) \rightarrow \mathfrak{u}(\mathcal{H})$.

So Lie algebra homomorphism $\mathfrak{g} \rightarrow C^{\infty}(M)$ gives rise to unitary representation of G on \mathcal{H}.

Last "rule": if G acts transitively, $Q(M)$ is a unirrep.

Hamiltonian actions

(M, ω) symplectic manifold on which G acts. Action is Hamiltonian if there exists G-equivariant map $\Phi: M \rightarrow \mathfrak{g}^{*}$, called moment map or Hamiltonian, such that

$$
d\langle\Phi, \xi\rangle=\iota\left(\xi_{M}\right) \omega,
$$

where $\xi_{M}=$ vector field on M induced by $\xi \in \mathfrak{g}$.

If G connected, equivariance of Φ is equivalent to: transpose map $\phi: \mathfrak{g} \rightarrow C^{\infty}(M)$ defined by $\phi(\xi)(m)=\Phi(m)(\xi)$ is homomorphism of Lie algebras.

Triple (M, ω, Φ) is a Hamiltonian G-manifold.

Notation: $\Phi^{\xi}=\phi(\xi)=$ composite map $M \xrightarrow{\Phi}$ $\mathfrak{g}^{*} \xrightarrow{\xi} \mathbb{R}$ (ξ-component of Φ).

Examples

1. $Q=$ any manifold w. G-action $\rho: G \rightarrow$ $\operatorname{Diff}(Q) . M=T^{*} Q$ with lifted action

$$
\bar{\rho}(g)(q, p)=\left(\rho(g) q, \rho\left(g^{-1}\right)^{*} p\right),
$$

where $q \in Q, \quad p \in T_{q}^{*} Q . \quad \omega=-d \alpha$, where $\alpha_{(q, p)}(v)=p\left(\pi_{*} v\right) ; \pi=$ projection $M \rightarrow Q$. Moment map:

$$
\Phi^{\xi}(q, p)=p\left(\xi_{Q}\right)
$$

2. Poisson structure on \mathfrak{g}^{*} : for $\varphi, \psi \in C^{\infty}\left(\mathfrak{g}^{*}\right)$, $f \in \mathfrak{g}^{*}$,

$$
\{\varphi, \psi\}(f)=\left\langle f,\left[d \varphi_{f}, d \psi_{f}\right]\right\rangle
$$

$\left(\right.$ Here $\left.d \varphi_{f}, d \psi_{f} \in \mathfrak{g}^{* *} \cong \mathfrak{g}.\right)$

Leaves: orbits for coadjoint action. For coadjoint orbit \mathcal{O} moment map is inclusion $\mathcal{O} \rightarrow \mathfrak{g}^{*}$.

Theorem (Kirillov-Kostant-Souriau). Let
(M, ω, Φ) be homogeneous Hamiltonian G-manifold.
Then $\Phi: M \rightarrow \mathfrak{g}^{*}$ is local symplectomorphism onto its image. Hence, if G compact, Φ is global symplectomorphism.

Sketch proof. M homogeneous \Rightarrow image of Φ is single orbit in \mathfrak{g}^{*}, and therefore a symplectic manifold.
Φ equivariant $\Rightarrow \Phi$ is Poisson map. Conclusion: Φ preserves symplectic form.

If G compact all coadjoint orbits are simply connected.

Prequantization

First attempt: $Q(M)=L^{2}(M, \mu)$, where $\mu=$ ω^{n} / n !, Liouville volume element on M. For f function on M put

$$
Q(f)=\hbar \bar{\Xi}_{f}
$$

skew-symmetric operator on $L^{2}\left(\equiv_{f}=\right.$ Hamiltonian vector field of f).

Wrong: $Q(c)=0$! Second try:

$$
Q(f)=\hbar \bar{\Xi}_{f}-i f .
$$

But then $\left[Q\left(f_{1}\right), Q\left(f_{2}\right)\right]=\cdots=\hbar^{2} \equiv_{f_{3}}+2 i \hbar f_{3} \neq$ $\hbar Q\left(f_{3}\right)$, where $f_{3}=\left\{f_{1}, f_{2}\right\}$.
(Sign convention: $\{f, g\}=\omega\left(\bar{\Xi}_{f}, \bar{\Xi}_{g}\right)=-\bar{\Xi}_{f}(g)$.)

Third attempt: suppose $\omega=-d \alpha$. Put

$$
Q(f)=\hbar \bar{\Xi}_{f}+i\left(\alpha\left(\bar{\Xi}_{f}\right)-f\right) .
$$

Works! But: depends on α; and what if ω not exact? Note: first two terms are covariant differentation w.r.t. connection one-form α / \hbar.

Definition (Kostant-Souriau). M is prequantizable if there exists a Hermitian line bundle L (prequantum bundle) with connection ∇ such that curvature is ω / \hbar.

Prequantum Hilbert space is L^{2}-sections of L, and operator associated to $f \in C^{\infty}(M)$ is

$$
Q(f)=\hbar \nabla_{\Xi_{f}}-i f .
$$

Example

$$
M=\mathbb{R}^{2 n}, \omega=\sum_{k} d x_{k} \wedge d y_{k}, L=\mathbb{R}^{2 n} \times \mathbb{C}, \alpha=
$$

$$
-\sum_{k} x_{k} d y_{k} . \text { Inner product: }
$$

$$
\begin{gathered}
\langle\varphi, \psi\rangle=\int_{\mathbb{R}^{2 n}} \varphi(x, y) \bar{\psi}(x, y) d x d y . \\
\equiv_{x_{k}}=-\partial / \partial y_{k} \text { and } \equiv_{y_{k}}=\partial / \partial x_{k} \text { so } \\
Q\left(x_{k}\right)=-\hbar \frac{\partial}{\partial y_{k}}, \\
Q\left(y_{k}\right)=\hbar \frac{\partial}{\partial x_{k}}-i y_{k} .
\end{gathered}
$$

Snag: prequantization is too big. For $n=2$ get $L^{2}\left(\mathbb{R}^{2}\right) . \mathbb{R}^{2}$ is homogeneous space under Heisenberg group, but $L^{2}\left(\mathbb{R}^{2}\right)$ is not unirrep for this group.

Polarizations

Polarization on $M=$ integrable Lagrangian subbundle of $T^{\mathbb{C}} M$, i.e. subbundle $\mathcal{P} \subset T^{\mathbb{C}} M$ s.t. \mathcal{P}_{m} is Lagrangian in $T_{m}^{\mathbb{C}} M$ for all m, and vector fields tangent to \mathcal{P} are closed under Lie bracket.
\mathcal{P} is totally real if $\mathcal{P}=\overline{\mathcal{P}} . \mathcal{P}$ is complex if $\mathcal{P} \cap \overline{\mathcal{P}}=0$.

Frobenius: real polarization \Rightarrow Lagrangian foliation of M

Newlander-Nirenberg: complex polarization \Rightarrow complex structure J on M s.t. \mathcal{P} is spanned by $\partial / \partial z_{k}$ in holomorphic coordinates z_{k}.
\mathcal{P} is Kähler if it is complex and $\omega(\cdot, J \cdot)$ is a Riemannian metric.

Section s of L is polarized if $\nabla_{\bar{v}} s=0$ for all v tangent to \mathcal{P}.

Definition. $Q(M)=L^{2}$ polarized sections of L.

Problems

1. Existence of polarizations.
2. $Q(f)$ acts on $Q(M)$ only if \equiv_{f} preserves \mathcal{P}.
3. Polarized sections are constant along (real) leaves of \mathcal{P}. Square-integrability?!
4. M compact, \mathcal{P} complex but not Kähler \Rightarrow there are no polarized sections.
5. $Q(M)$ independent of \mathcal{P} ?

Coadjoint orbits

$\mathcal{O}=$ coadjoint orbit through $f \in \mathfrak{g}^{*}$. Assume G simply connected, (\mathcal{O}, ω) prequantizable. G action on \mathcal{O} lifts to L. Infinitesimally,

$$
\xi_{L}=\text { lift of } \xi_{\mathcal{O}}+2 \pi \Phi^{\xi} \nu_{L}
$$

where $\xi \in \mathfrak{g}, \nu_{L}=$ generator of scalar S^{1}-action on L.
G-invariant polarization \mathcal{P} of \mathcal{O} is determined by $\mathfrak{p} \supset \mathfrak{g}_{f}^{\mathbb{C}}$, inverse image of \mathcal{P}_{f} under $\mathfrak{g}^{\mathbb{C}} \rightarrow T_{f}^{\mathbb{C}} \mathcal{O}$.
\mathcal{P} integrable $\Longleftrightarrow \mathfrak{p}$ subalgebra.
\mathcal{P} Lagrangian $\left.\Longleftrightarrow f\right|_{[\mathfrak{p}, \mathfrak{p}]}=0$ (i.e. $\left.f\right|_{\mathfrak{p}}$ is infinitesimal character) and $2 \operatorname{dim}_{\mathbb{C}} \mathfrak{p}=\operatorname{dim}_{\mathbb{R}} G+$ $\operatorname{dim}_{\mathbb{R}} G_{f}$.
\mathcal{P} real $\Longleftrightarrow \mathfrak{p}=\mathfrak{p}_{0}^{\mathbb{C}}$ for $\mathfrak{p}_{0} \subset \mathfrak{g}$. Let $P_{0}=$ group generated by $\exp \mathfrak{p}_{0}$. Assume $f: \mathfrak{p}_{0} \rightarrow \mathbb{R}$ exponentiates to character $S_{f}: P_{0} \rightarrow S^{1}$; then

$$
Q(M)=\operatorname{Ind}_{P_{0}}^{G} S_{f} .
$$

If \mathcal{P} complex, $Q(M)$ is holomorphically induced representation.

Example

G compact (and simply connected). Let $T=$ maximal torus, $\mathfrak{t}_{+}^{*}=$ positive Weyl chamber, $f \in \mathfrak{t}_{+}^{*}$. Then $\mathcal{O}=G f$ integral $\Longleftrightarrow f$ in integral lattice.

All invariant polarizations are complex and are determined by parabolic subalgebras $\mathfrak{p} \supset \mathfrak{g}_{f}^{\mathbb{C}}$. In fact, $\mathcal{O}=G / G_{f} \cong G^{\mathbb{C}} / P$, where $P=\exp p$.
$Q(\mathcal{O})=$ holomorphic sections of $G^{\mathbb{C}} \times{ }^{P} S_{f}$
$=$ unirrep with highest weight f.

Character formula:

$$
\sqrt{j(\xi)} \chi_{\mathcal{O}}(\exp \xi)=\int_{\mathcal{O}} e^{2 \pi i\langle f, \xi\rangle} d f
$$

where

$$
\sqrt{j(\xi)}=\prod_{\alpha>0} \frac{e^{\langle\alpha, \xi\rangle / 2}-e^{-\langle\alpha, \xi\rangle / 2}}{\langle\alpha, \xi\rangle}
$$

$\xi=0:$

$$
\operatorname{dim} Q(\mathcal{O})=\operatorname{vol}(\mathcal{O})=\prod_{\alpha>0} \frac{\langle\alpha, f\rangle}{\langle\alpha, \rho\rangle},
$$

where $\rho=1 / 2$ sum of positive roots. Compare Weyl dimension formula:

$$
\operatorname{dim} Q(\mathcal{O})=\prod_{\alpha>0} \frac{\langle\alpha, f+\rho\rangle}{\langle\alpha, \rho\rangle}
$$

(ρ-shift).

Index theorem in symplectic geometry

Recall table:
Classical
Quantum
Symplectic manifold (M, ω) Hilbert space $\mathcal{H}=Q(M)$ (or $\mathbb{P H}$)
Observable (function) f skew-adjoint operator $Q(f)$ on \mathcal{H}
Poisson bracket $\{f, g\}$ Hamiltonian flow of f commutator $[Q(f), Q(g)]$ 1-PS in $\mathrm{U}(\mathcal{H})$

Continuation:
Hamiltonian G-action on M unitary representation on $Q(M)$
Moment polytope $\Delta(M)$
Symplectic cross-section

$$
\Phi^{-1}\left(\mathrm{t}_{+}^{*}\right)
$$

Symplectic quotients

$$
\Phi^{-1}(\mathcal{O}) / G \quad \operatorname{Hom}(Q(\mathcal{O}), Q(M))^{G}
$$

Lemma. $\operatorname{ker} d \Phi_{m}=T_{m}(G m)^{\omega}$, where $G m=$ G-orbit through m.
$\operatorname{im} d \Phi_{m}=\mathfrak{g}_{m}^{0}$, where $\mathfrak{g}_{m}=\left\{\xi:\left(\xi_{M}\right)_{m}=0\right\}$.

Hence: if $f \in \mathfrak{g}^{*}$ is regular value of Φ, G_{f} acts locally freely on $\Phi^{-1}(f)$.

Theorem (Meyer, Marsden-Weinstein). If f is regular value of Φ, null-foliation of $\left.\omega\right|_{\Phi^{-1}(f)}$ is equal to G-orbits of G_{f}-action. Hence the quotient $M_{f}=\Phi^{-1}(f) / G_{f}=\Phi^{-1}\left(\mathcal{O}_{f}\right) / G$ is a symplectic orbifold.

Conjecture (Guillemin-Sternberg, " $[Q, R]=0 "$).

$$
Q\left(M_{0}\right)=Q(M)^{G}
$$

(This implies $\left.Q\left(M_{\mathcal{O}}\right)=\operatorname{Hom}(Q(\mathcal{O}), Q(M))^{G}.\right)$

Proved by Guillemin-Sternberg in Kähler case using geometric invariant theory.

In compact case can make life easier by changing definition of $Q(M)$: regard prequantum bundle L as element of $K_{G}(M)$. Let $\pi: M \rightarrow \bullet$ be map to a point. Define

$$
Q(M)=\pi_{*}([L]),
$$

regarded as element of $K_{G}(\bullet)=\operatorname{Rep}(G)$ (representation ring).

Disadvantages: works only for compact M and G; dimension can be negative; no natural inner product.

Advantages: by and large satisfies Dirac's rules; don't need polarization; can be computed by Atiyah-Segal-Singer Equivariant Index Theorem.

Definition of π_{*} : choose G-invariant compatible almost complex structure J. Splitting of de Rham complex $\Omega^{p}=\oplus_{k+l=p} \Omega^{k l}$.

Dolbeault operator $\bar{\partial}$ is $(0,1)$-part of $d . \bar{\partial}^{2} \neq 0$ unless J integrable. With coefficients in L :

$$
\bar{\partial}_{L}=\bar{\partial} \oplus 1+1 \otimes \nabla: \Omega^{0 l}(L) \rightarrow \Omega^{0, l+1}
$$

Dolbeault-Dirac operator:

$$
\not \partial_{L}=\bar{\partial}_{L}+\bar{\partial}_{L}^{*}: \Omega^{0, \text { even }}(L) \rightarrow \Omega^{0, \text { odd }}
$$

Pushforward of L :

$$
Q(M)=\pi_{*}([L])=\operatorname{ker} \not \partial_{L}-\operatorname{coker} \not \partial_{L},
$$

a virtual G-representation.
$\operatorname{RR}(M, L)$, the equivariant index of M, is the character of $Q(M)$. Note $\operatorname{RR}(M, L)(0)=$ index $\not \boldsymbol{\phi}_{L}$.
$\operatorname{RR}(M, L)^{G}$ is by definition $\int_{G} \operatorname{RR}(M, L)(g) d g$, the multiplicity of 0 in $Q(M)$.

Theorem (Meinrenken, Guillemin, Vergne, ...). If 0 regular value of Φ,

$$
\operatorname{RR}(M, L)^{G}=\operatorname{RR}\left(M_{0}, L_{0}\right) .
$$

(See [S] for attributions.)

$$
\text { Outline of proof for } G=S^{1} \text { [DGMW] }
$$

Two ingredients:
Proposition. If $0 \notin \Phi(M)$, then $\operatorname{RR}(M, L)^{G}=$ 0 . If 0 is minimum or maximum of Φ, then $\operatorname{RR}(M, L)^{G}=\operatorname{RR}\left(M_{0}, L_{0}\right)$.

Theorem (gluing formula).

$$
\begin{aligned}
\operatorname{RR}\left(M_{\leq 0}, L_{\leq 0}\right)+ & \operatorname{RR}\left(M_{\geq 0}, L_{\geq 0}\right)= \\
& =\operatorname{RR}(M, L)+\operatorname{RR}\left(M_{0}, L_{0}\right) .
\end{aligned}
$$

(Cf. gluing formula for topological Euler characteristic.)

Here $\left(M_{\leq 0}, \omega_{\leq 0}, \Phi_{\leq 0}\right),\left(M_{\geq 0}, \omega_{\geq 0}, \Phi_{\geq 0}\right)$ are Hamiltonian G-manifolds (orbifolds) such that

$$
\begin{aligned}
& \Phi_{\leq 0}\left(M_{\leq 0}\right)=\Phi(M) \cap \mathbb{R}_{\leq 0}, \\
& \Phi_{\geq 0}\left(M_{\geq 0}\right)=\Phi(M) \cap \mathbb{R}_{\geq 0},
\end{aligned}
$$

and $\Phi_{\leq 0}^{-1}(0)$ and $\Phi_{\geq 0}^{-1}(0)$ are symplectomorphic to M_{0}.

By Proposition,
$\operatorname{RR}\left(M_{\leq 0}, L_{\leq 0}\right)^{G}=\operatorname{RR}\left(M_{\geq 0}, L_{\geq 0}\right)^{G}=\operatorname{RR}\left(M_{0}, L_{0}\right)$. Hence, taking G-invariants on both sides in gluing formula

$$
2 \operatorname{RR}\left(M_{0}, L_{0}\right)=\operatorname{RR}(M, L)^{G}+\operatorname{RR}\left(M_{0}, L_{0}\right),
$$

Q.E.D.

Proposition and gluing formula follow from equivariant index theorem.

Definition of $M_{\leq 0}$ and $M_{\geq 0}$: symplectic cutting (Lerman). Roughly, $M_{\geq 0}$ is obtained by taking $\Phi^{-1}([0, \infty))$ and collapsing S^{1}-orbits on boundary $\Phi^{-1}(0)$. So $M_{\geq 0}=$ union of $M_{>0}$ and M_{0}.

$$
M_{\geq 0}
$$

M_{0}

$$
M_{\leq 0}
$$

Consider diagonal action of S^{1} on $M \times \mathbb{C}$, which has moment map $\tilde{\Phi}(m, z)=\Phi(m)-\frac{1}{2}|z|^{2}$. Here $\mathbb{C}=$ is complex line w . standard cirle action and symplectic structure. Symplectic cut is symplectic quotient at 0 ,

$$
M_{\geq 0}=(M \times \mathbb{C}) / / S^{1}
$$

("//" means symplectic quotient at 0.)
Embedding $\Phi^{-1}(0) \hookrightarrow \widetilde{\Phi}^{-1}(0)$ defined by $m \mapsto$ ($m, 0$) descends to symplectic embedding $M_{0} \hookrightarrow$ $M_{\geq 0}$.
$M_{>0}=\Phi^{-1}((0, \infty))$ also embeds symplectically into $M_{\geq 0}$: define $M_{>0} \rightarrow \tilde{\Phi}^{-1}(0)$ by sending m to $(m, \sqrt{2 \Phi(m)})$.

Selected references

A. A. Kirillov, Elements of the theory of representations, Grundlehren der mathematischen Wissenschaften, vol. 220, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
__, Geometric quantization, Dynamical Systems IV (V. I. Arnol'd and S. P. Novikov, eds.), Encyclopaedia of Mathematical Sciences, vol. 4, Springer-Verlag, Berlin-Heidelberg-New York, 1990, pp. 137-172.
N. M. J. Woodhouse, Geometric quantization, second ed., Oxford Univ. Press, Oxford, 1992.
V. Guillemin and S. Sternberg, Geometric asymptotics, revised ed., Mathematical Surveys and Monographs, vol. 14, Amer. Math. Soc., Providence, R. I., 1990.
_ , Symplectic techniques in physics, Cambridge Univ. Press, Cambridge, 1990, second reprint with corrections.
J. J. Duistermaat, V. Guillemin, E. Meinrenken, and S. Wu, Symplectic reduction and RiemannRoch for circle actions, Math. Res. Letters 2 (1995), 259-266.
R. Sjamaar, Symplectic reduction and RiemannRoch formulas for multiplicities, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 327-338.

