Notes on the Orbit Method and Quantization

Reyer Sjamaar

Les Diablerets, March 1997

Contents

- 1. Orbit method and quantization
- 2. Index theorem in symplectic geometry

Orbit method and quantization

A. A. Kirillov

G = Lie group (infinite-dimensional group, quantum group...)

Category of unitary representations of G

Objects: continuous homomorphisms $T: G \rightarrow U(\mathcal{H})$ (\mathcal{H} a Hilbert space)

Morphism ("intertwining operator") from T_1 to T_2 : continuous linear $A: \mathcal{H}_1 \to \mathcal{H}_2$

3

Example. X = G-manifold with G-invariant measure μ . Unitary representation on $L^2(X, \mu)$: $T(g)f(x) = f(g^{-1}x)$. Map $F \colon X_1 \to X_2$ induces intertwining map $F^* \colon L^2(X_2, \mu_2) \to L^2(X_1, \mu_1)$ (if μ_2 is absolutely continuous w.r.t. $F_*\mu_1$).

T is *indecomposable* if $T \neq T_1 \oplus T_2$ for nonzero T_1 and T_2 . T is *irreducible* if does not have nontrivial invariant subspaces.

For unitary representation irreducible \iff indecomposable.

"Unirrep" = unitary irreducible representation.

Main problems of representation theory

1. Describe unitary dual:

 $\widehat{G} = \{ \text{unirreps of } G \} / \text{equivalence.}$

2. Decompose any T into unirreps:

$$T(g) = \int_{Y} T_{y}(g) d\mu(y).$$

Special cases: for H < G closed ("little group"),

(a) for $T \in \hat{G}$ decompose *restriction* $\operatorname{Res}_{H}^{G} T$.

(b) for $S \in \hat{H}$ decompose *induction* $\operatorname{Ind}_{H}^{G} S$.

3. Compute character of $T \in \hat{G}$.

Ad 2b: let $S: H \to U(\mathcal{H})$. Suppose G/H has Ginvariant measure μ . Ind $_{H}^{G}S = L^{2}$ -sections of $G \times^{H} \mathcal{H}$. Obtained by taking space of functions $f: G \to \mathcal{H}$ satisfying $f(gh^{-1}) = S(h)f(g)$, and completing w.r.t. inner product

$$\langle f_1, f_2 \rangle = \int_{G/H} \langle f_1(x), f_2(x) \rangle_{\mathcal{H}} d\mu(x).$$

Ad 3: let $\phi \in C_0^{\infty}(G)$. Put

$$T(\phi) = \int_{G} \phi(g) T(g) dg.$$

With luck $T(\phi) \colon \mathcal{H} \to \mathcal{H}$ is of trace class and $\phi \mapsto \operatorname{Tr} T(\phi)$ is a distribution on G, the *charac*-*ter* of T.

Solutions proposed by orbit method

1. Let $\mathfrak{g} = \text{Lie}$ algebra of G. Coadjoint representation = (non-unitary) representation of G on \mathfrak{g}^* .

 $\widehat{G} = \mathfrak{g}^*/G$, the space of coadjoint orbits

2. Let $T_{\mathcal{O}}$ be unirrep corresponding to $\mathcal{O} \in \mathfrak{g}^*/G$. For H < G have projection pr: $\mathfrak{g}^* \to \mathfrak{h}^*$. Then

$$\operatorname{Res}_{H}^{G} T_{\mathcal{O}} = \int_{\substack{\mathcal{O}' \in \mathfrak{h}^{*}/H \\ \mathcal{O}' \subset \operatorname{pr} \mathcal{O}}} m(\mathcal{O}, \mathcal{O}') T_{\mathcal{O}'} \quad \text{for } \mathcal{O} \in \mathfrak{g}^{*}/G,$$
$$\operatorname{Ind}_{H}^{G} T_{\mathcal{O}'} = \int_{\substack{\mathcal{O}' \in \mathfrak{g}^{*}/G \\ \operatorname{pr} \mathcal{O} \supset \mathcal{O}'}} m(\mathcal{O}, \mathcal{O}') T_{\mathcal{O}} \quad \text{for } \mathcal{O}' \in \mathfrak{h}^{*}/H.$$

Same $m(\mathcal{O}, \mathcal{O}')$ (Frobenius reciprocity).

3. For $\mathcal{O} \in \mathfrak{g}^*/G$ let $\chi_{\mathcal{O}} =$ character of $T_{\mathcal{O}}$. Kirillov character formula: for $\xi \in \mathfrak{g}$

$$\sqrt{j(\xi)} \chi_{\mathcal{O}}(\exp \xi) = \int_{\mathcal{O}} e^{2\pi i \langle f,\xi \rangle} df,$$

Fourier transform of $\delta_{\mathcal{O}}$. (df = canonical measure on \mathcal{O} , $j = \sqrt{j_l j_r}$, where $j_{l,r}$ = derivative of left resp. right Haar measure w.r.t. Lebesgue measure.)

Theorem (Kirillov). Above is exactly right for connected simply connected nilpotent groups (where $j(\xi) = 1$).

Examples

 $G = \mathbb{R}^n$. Then $\mathfrak{g}^*/G = \mathfrak{g}^* = (\mathbb{R}^n)^*$. Unirrep corresponding to $\lambda \in (\mathbb{R}^n)^*$ is

$$T_{\lambda}(x) = e^{2\pi i \langle \lambda, x \rangle} \qquad (\mathcal{H} = \mathbb{C})$$

(Fourier analysis).

Heisenberg group: G = group of matrices

$$g = \begin{pmatrix} 1 & g_1 & g_3 \\ 0 & 1 & g_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Typical element of Lie algebra ${\mathfrak g}$ is

$$\xi = \begin{pmatrix} 0 & \xi_1 & \xi_3 \\ 0 & 0 & \xi_2 \\ 0 & 0 & 0 \end{pmatrix}$$

Basis:

$$p = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Note [p,q] = z, z generates centre of \mathfrak{g} .

Complete list of unirreps (Stone-von Neumann)

For $\hbar \neq 0$: $T_{\hbar} \colon G \to L^2(\mathbb{R})$ is generated by

$$p \longmapsto \hbar \frac{d}{dx}, \quad q \longmapsto ix, \quad z \longmapsto i\hbar,$$

i.e. $T_{\hbar}(e^{tp})f(x) = f(x + t\hbar), \ T_{\hbar}(e^{tq})f(x) = e^{itx}f(x), \ T_{\hbar}(e^{tz}) = e^{it\hbar}.$ Note $[T_{\hbar}p, T_{\hbar}q] = T_{\hbar}z$ (uncertainty principle).

For α , $\beta \in \mathbb{R}$: $S_{\alpha,\beta} \colon G \to \mathbb{C}$ is generated by $p \longmapsto i\alpha, \quad q \longmapsto i\beta, \quad z \longmapsto 0.$

Description of \mathfrak{g}/G

Adjoint action:

$$g \cdot \xi = g\xi g^{-1} = \begin{pmatrix} 0 & \xi_1 & \xi_3 - g_2\xi_1 + g_1\xi_2 \\ 0 & 0 & & \xi_2 \\ 0 & 0 & & 0 \end{pmatrix}$$

Adjoint orbits:

Description of \mathfrak{g}^*/G

Identify \mathfrak{g}^* with lower triangular matrices. Typical element is

$$f = \begin{pmatrix} 0 & 0 & 0\\ f_1 & 0 & 0\\ f_3 & f_2 & 0 \end{pmatrix}$$

Pairing $\langle f, \xi \rangle = \text{Tr} f \xi = f_1 \xi_1 + f_2 \xi_2 + f_3 \xi_3$. Coadjoint action:

$$g \cdot f = \text{ lower triangular part of } gfg^{-1} = \\ \begin{pmatrix} 0 & 0 & 0 \\ f_1 + g_2 f_3 & 0 & 0 \\ f_3 & f_2 - g_1 f_3 & 0 \end{pmatrix}$$

Coadjoint orbits:

 $\begin{array}{c|c} f_3 \\ & \\ & \\ & \\ f_1 \end{array} \xrightarrow{f_2} \end{array}$

Two-dimensional orbits correspond to T_{\hbar} , zero-dimensional orbits to $S_{\alpha,\beta}$

"Explanation" for orbit method

Classical	Quantum
Symplectic manifold (M, ω)	Hilbert space $\mathcal{H} = Q(M)$
	(or $\mathbb{P}\mathcal{H}$)
Observable (function) f	skew-adjoint operator
	$Q(f)$ on ${\mathcal H}$
Poisson bracket $\{f,g\}$	commutator $[Q(f), Q(g)]$
Hamiltonian flow of f	1-PS in U(\mathcal{H})

Dirac's "rules": Q(c) = ic (c constant), $f \mapsto Q(f)$ is linear, $[Q(f_1), Q(f_2)] = \hbar Q(\{f_1, f_2\}).$

I.e. $f \mapsto \hbar^{-1}Q(f)$ is a Lie algebra homomorphism $C^{\infty}(M) \to \mathfrak{u}(\mathcal{H})$.

So Lie algebra homomorphism $\mathfrak{g} \to C^{\infty}(M)$ gives rise to unitary representation of G on \mathcal{H} .

Last "rule": if G acts transitively, Q(M) is a unirrep.

Hamiltonian actions

 (M, ω) symplectic manifold on which G acts. Action is *Hamiltonian* if there exists G-equivariant map $\Phi: M \to \mathfrak{g}^*$, called *moment map* or *Hamiltonian*, such that

$$d\langle \Phi, \xi \rangle = \iota(\xi_M) \omega,$$

where ξ_M = vector field on M induced by $\xi \in \mathfrak{g}$.

If G connected, equivariance of Φ is equivalent to: transpose map $\phi \colon \mathfrak{g} \to C^{\infty}(M)$ defined by $\phi(\xi)(m) = \Phi(m)(\xi)$ is homomorphism of Lie algebras.

Triple (M, ω, Φ) is a Hamiltonian G-manifold.

Notation: $\Phi^{\xi} = \phi(\xi) = \text{composite map } M \xrightarrow{\Phi} \mathfrak{g}^* \xrightarrow{\xi} \mathbb{R}$ (ξ -component of Φ).

Examples

1. Q = any manifold w. G-action $\rho: G \rightarrow$ Diff(Q). $M = T^*Q$ with lifted action

$$\bar{\rho}(g)(q,p) = (\rho(g)q, \rho(g^{-1})^*p),$$

where $q \in Q$, $p \in T_q^*Q$. $\omega = -d\alpha$, where $\alpha_{(q,p)}(v) = p(\pi_*v)$; $\pi =$ projection $M \to Q$. Moment map:

$$\Phi^{\xi}(q,p) = p(\xi_Q).$$

2. Poisson structure on \mathfrak{g}^* : for φ , $\psi \in C^{\infty}(\mathfrak{g}^*)$, $f \in \mathfrak{g}^*$,

$$\{\varphi,\psi\}(f) = \langle f, [d\varphi_f, d\psi_f] \rangle.$$

(Here $d\varphi_f$, $d\psi_f \in \mathfrak{g}^{**} \cong \mathfrak{g}$.)

Leaves: orbits for coadjoint action. For coadjoint orbit \mathcal{O} moment map is *inclusion* $\mathcal{O} \to \mathfrak{g}^*$. **Theorem** (Kirillov–Kostant–Souriau). Let (M, ω, Φ) be homogeneous Hamiltonian G-manifold. Then $\Phi: M \to \mathfrak{g}^*$ is local symplectomorphism onto its image. Hence, if G compact, Φ is global symplectomorphism.

Sketch proof. M homogeneous \Rightarrow image of Φ is single orbit in \mathfrak{g}^* , and therefore a symplectic manifold.

 Φ equivariant $\Rightarrow \Phi$ is Poisson map. Conclusion: Φ preserves symplectic form.

If G compact all coadjoint orbits are simply connected.

Prequantization

First attempt: $Q(M) = L^2(M, \mu)$, where $\mu = \omega^n/n!$, Liouville volume element on M. For f function on M put

$$Q(f) = \hbar \, \Xi_f$$

skew-symmetric operator on L^2 ($\Xi_f =$ Hamiltonian vector field of f).

Wrong: Q(c) = 0! Second try:

 $Q(f) = \hbar \Xi_f - if.$

But then $[Q(f_1), Q(f_2)] = \cdots = \hbar^2 \Xi_{f_3} + 2i\hbar f_3 \neq \hbar Q(f_3)$, where $f_3 = \{f_1, f_2\}$.

(Sign convention: $\{f,g\} = \omega(\Xi_f, \Xi_g) = -\Xi_f(g)$.)

Third attempt: suppose $\omega = -d\alpha$. Put

$$Q(f) = \hbar \Xi_f + i \Big(\alpha(\Xi_f) - f \Big).$$

Works! But: depends on α ; and what if ω not exact? Note: first two terms are covariant differentation w.r.t. connection one-form α/\hbar .

Definition (Kostant-Souriau). *M* is *prequantizable* if there exists a Hermitian line bundle *L* (*prequantum bundle*) with connection ∇ such that curvature is ω/\hbar .

Prequantum Hilbert space is L^2 -sections of L, and operator associated to $f \in C^{\infty}(M)$ is

$$Q(f) = \hbar \nabla_{\Xi_f} - if.$$

Example

 $M = \mathbb{R}^{2n}, \ \omega = \sum_k dx_k \wedge dy_k, \ L = \mathbb{R}^{2n} \times \mathbb{C}, \ \alpha = -\sum_k x_k dy_k.$ Inner product:

$$\langle \varphi, \psi \rangle = \int_{\mathbb{R}^{2n}} \varphi(x, y) \overline{\psi}(x, y) \, dx \, dy.$$

 $\equiv_{x_k} = -\partial/\partial y_k$ and $\equiv_{y_k} = \partial/\partial x_k$ so

$$Q(x_k) = -\hbar \frac{\partial}{\partial y_k},$$
$$Q(y_k) = \hbar \frac{\partial}{\partial x_k} - iy_k.$$

Snag: prequantization is too big. For n = 2 get $L^2(\mathbb{R}^2)$. \mathbb{R}^2 is homogeneous space under Heisenberg group, but $L^2(\mathbb{R}^2)$ is not unirrep for this group.

Polarizations

Polarization on M = integrable Lagrangian subbundle of $T^{\mathbb{C}}M$, i.e. subbundle $\mathcal{P} \subset T^{\mathbb{C}}M$ s.t. \mathcal{P}_m is Lagrangian in $T_m^{\mathbb{C}}M$ for all m, and vector fields tangent to \mathcal{P} are closed under Lie bracket.

 \mathcal{P} is totally real if $\mathcal{P} = \overline{\mathcal{P}}$. \mathcal{P} is complex if $\mathcal{P} \cap \overline{\mathcal{P}} = 0$.

Frobenius: real polarization \Rightarrow Lagrangian foliation of M

Newlander-Nirenberg: complex polarization \Rightarrow complex structure J on M s.t. \mathcal{P} is spanned by $\partial/\partial z_k$ in holomorphic coordinates z_k .

 \mathcal{P} is *Kähler* if it is complex and $\omega(\cdot, J \cdot)$ is a Riemannian metric.

Section s of L is *polarized* if $\nabla_{\overline{v}}s = 0$ for all v tangent to \mathcal{P} .

Definition. $Q(M) = L^2$ polarized sections of L.

Problems

- 1. Existence of polarizations.
- 2. Q(f) acts on Q(M) only if Ξ_f preserves \mathcal{P} .
- 3. Polarized sections are constant along (real) leaves of \mathcal{P} . Square-integrability?!
- 4. *M* compact, \mathcal{P} complex but not Kähler \Rightarrow there are no polarized sections.
- 5. Q(M) independent of \mathcal{P} ?

Coadjoint orbits

 $\mathcal{O} = \text{coadjoint orbit through } f \in \mathfrak{g}^*$. Assume *G* simply connected, (\mathcal{O}, ω) prequantizable. *G*action on \mathcal{O} lifts to *L*. Infinitesimally,

$$\xi_L = \text{ lift of } \xi_{\mathcal{O}} + 2\pi \Phi^{\xi} \nu_L,$$

where $\xi \in \mathfrak{g}$, $\nu_L =$ generator of scalar S^1 -action on L.

G-invariant polarization \mathcal{P} of \mathcal{O} is determined by $\mathfrak{p} \supset \mathfrak{g}_f^{\mathbb{C}}$, inverse image of \mathcal{P}_f under $\mathfrak{g}^{\mathbb{C}} \rightarrow T_f^{\mathbb{C}} \mathcal{O}$.

 \mathcal{P} integrable $\iff \mathfrak{p}$ subalgebra.

 \mathcal{P} Lagrangian $\iff f|_{[\mathfrak{p},\mathfrak{p}]} = 0$ (i.e. $f|_{\mathfrak{p}}$ is infinitesimal character) and $2\dim_{\mathbb{C}}\mathfrak{p} = \dim_{\mathbb{R}}G + \dim_{\mathbb{R}}G_{f}$.

 \mathcal{P} real $\iff \mathfrak{p} = \mathfrak{p}_0^{\mathbb{C}}$ for $\mathfrak{p}_0 \subset \mathfrak{g}$. Let $P_0 =$ group generated by $\exp \mathfrak{p}_0$. Assume $f \colon \mathfrak{p}_0 \to \mathbb{R}$ exponentiates to character $S_f \colon P_0 \to S^1$; then

$$Q(M) = \operatorname{Ind}_{P_0}^G S_f.$$

If \mathcal{P} complex, Q(M) is *holomorphically* induced representation.

Example

G compact (and simply connected). Let T = maximal torus, $\mathfrak{t}_{+}^{*} =$ positive Weyl chamber, $f \in \mathfrak{t}_{+}^{*}$. Then $\mathcal{O} = Gf$ integral $\iff f$ in integral lattice.

All invariant polarizations are complex and are determined by *parabolic* subalgebras $\mathfrak{p} \supset \mathfrak{g}_f^{\mathbb{C}}$. In fact, $\mathcal{O} = G/G_f \cong G^{\mathbb{C}}/P$, where $P = \exp \mathfrak{p}$.

 $Q(\mathcal{O}) =$ holomorphic sections of $G^{\mathbb{C}} \times^{P} S_{f}$ = unirrep with highest weight f. Character formula:

$$\sqrt{j(\xi)} \chi_{\mathcal{O}}(\exp \xi) = \int_{\mathcal{O}} e^{2\pi i \langle f,\xi \rangle} df,$$

where

$$\sqrt{j(\xi)} = \prod_{\alpha>0} \frac{e^{\langle \alpha, \xi \rangle/2} - e^{-\langle \alpha, \xi \rangle/2}}{\langle \alpha, \xi \rangle}.$$

 $\xi = 0$:

$$\dim Q(\mathcal{O}) = \operatorname{vol}(\mathcal{O}) = \prod_{\alpha > 0} \frac{\langle \alpha, f \rangle}{\langle \alpha, \rho \rangle},$$

where $\rho = 1/2$ sum of positive roots. Compare Weyl dimension formula:

$$\dim Q(\mathcal{O}) = \prod_{\alpha > 0} \frac{\langle \alpha, f + \rho \rangle}{\langle \alpha, \rho \rangle}$$

(ρ -shift).

Index theorem in symplectic geometry

Recall table:

Classical Symplectic manifold (M, ω)	Quantum Hilbert space $\mathcal{H} = Q(M)$ (or $\mathbb{P}\mathcal{H}$)
Observable (function) f	(of $\mathbb{F}\mathcal{H}$) skew-adjoint operator $Q(f)$ on \mathcal{H}
Poisson bracket $\{f,g\}$ Hamiltonian flow of f	commutator $[Q(f), Q(g)]$ 1-PS in U(\mathcal{H})
Continuation:	
Hamiltonian G -action on M	unitary representation on $Q(M)$
Moment polytope $\Delta(M)$	highest weights of irreducible components
Symplectic cross-section $\Phi^{-1}(\mathfrak{t}^*_{\perp})$	highest-weight spaces
Symplectic quotients	isotypical components $\operatorname{Hom}(Q(\mathcal{O}),Q(M))^G$

Lemma. ker $d\Phi_m = T_m (Gm)^{\omega}$, where Gm = G-orbit through m.

im $d\Phi_m = \mathfrak{g}_m^0$, where $\mathfrak{g}_m = \{\xi : (\xi_M)_m = 0\}.$

Hence: if $f \in \mathfrak{g}^*$ is regular value of Φ , G_f acts locally freely on $\Phi^{-1}(f)$.

Theorem (Meyer, Marsden-Weinstein). If f is regular value of Φ , null-foliation of $\omega|_{\Phi^{-1}(f)}$ is equal to G-orbits of G_f -action. Hence the quotient $M_f = \Phi^{-1}(f)/G_f = \Phi^{-1}(\mathcal{O}_f)/G$ is a symplectic orbifold.

Conjecture (Guillemin-Sternberg, "[Q, R] = 0"). $Q(M_0) = Q(M)^G$.

(This implies $Q(M_{\mathcal{O}}) = \text{Hom}(Q(\mathcal{O}), Q(M))^G$.)

Proved by Guillemin-Sternberg in Kähler case using geometric invariant theory.

In compact case can make life easier by changing definition of Q(M): regard prequantum bundle L as element of $K_G(M)$. Let $\pi \colon M \to \bullet$ be map to a point. Define

$$Q(M) = \pi_*([L]),$$

regarded as element of $K_G(\bullet) = \operatorname{Rep}(G)$ (representation ring).

Disadvantages: works only for compact M and G; dimension can be negative; no natural inner product.

Advantages: by and large satisfies Dirac's rules; don't need polarization; can be computed by Atiyah-Segal-Singer Equivariant Index Theorem. Definition of π_* : choose *G*-invariant compatible *almost* complex structure *J*. Splitting of de Rham complex $\Omega^p = \bigoplus_{k+l=p} \Omega^{kl}$.

Dolbeault operator $\overline{\partial}$ is (0, 1)-part of d. $\overline{\partial}^2 \neq 0$ unless J integrable. With coefficients in L:

 $\bar{\partial}_L = \bar{\partial} \oplus 1 + 1 \otimes \nabla \colon \Omega^{0l}(L) \to \Omega^{0,l+1}.$

Dolbeault-Dirac operator:

 $\partial_L = \bar{\partial}_L + \bar{\partial}_L^* \colon \Omega^{0,\text{even}}(L) \to \Omega^{0,\text{odd}}.$

Pushforward of L:

 $Q(M) = \pi_*([L]) = \ker \partial_L - \operatorname{coker} \partial_L,$

a virtual G-representation.

RR(M,L), the *equivariant index* of M, is the character of Q(M). Note $RR(M,L)(0) = index \partial_L$.

 $\mathsf{RR}(M,L)^G$ is by definition $\int_G \mathsf{RR}(M,L)(g) dg$, the multiplicity of 0 in Q(M).

Theorem (Meinrenken, Guillemin, Vergne, ...). If 0 regular value of Φ ,

$$\mathsf{RR}(M,L)^G = \mathsf{RR}(M_0,L_0).$$

(See [S] for attributions.)

Outline of proof for $G = S^1$ [DGMW]

Two ingredients:

Proposition. If $0 \notin \Phi(M)$, then $RR(M,L)^G = 0$. If 0 is minimum or maximum of Φ , then $RR(M,L)^G = RR(M_0,L_0)$.

Theorem (gluing formula).

$$RR(M_{\leq 0}, L_{\leq 0}) + RR(M_{\geq 0}, L_{\geq 0}) =$$

= RR(M, L) + RR(M_0, L_0).

(Cf. gluing formula for topological Euler characteristic.) Here $(M_{\leq 0}, \omega_{\leq 0}, \Phi_{\leq 0})$, $(M_{\geq 0}, \omega_{\geq 0}, \Phi_{\geq 0})$ are Hamiltonian *G*-manifolds (orbifolds) such that

$$\Phi_{\leq 0}(M_{\leq 0}) = \Phi(M) \cap \mathbb{R}_{\leq 0},$$

$$\Phi_{\geq 0}(M_{\geq 0}) = \Phi(M) \cap \mathbb{R}_{\geq 0},$$

and $\Phi_{\leq 0}^{-1}(0)$ and $\Phi_{\geq 0}^{-1}(0)$ are symplectomorphic to M_0 .

By Proposition,

 $\mathsf{RR}(M_{\leq 0}, L_{\leq 0})^G = \mathsf{RR}(M_{\geq 0}, L_{\geq 0})^G = \mathsf{RR}(M_0, L_0).$

Hence, taking G-invariants on both sides in gluing formula

 $2 \operatorname{RR}(M_0, L_0) = \operatorname{RR}(M, L)^G + \operatorname{RR}(M_0, L_0),$ Q.E.D. Proposition and gluing formula follow from equivariant index theorem.

Definition of $M_{\leq 0}$ and $M_{\geq 0}$: symplectic cutting (Lerman). Roughly, $M_{\geq 0}$ is obtained by taking $\Phi^{-1}([0,\infty))$ and collapsing S^1 -orbits on boundary $\Phi^{-1}(0)$. So $M_{\geq 0}$ = union of $M_{>0}$ and M_0 .

 $M_{\geq 0}$

 M_0

 $M_{\leq 0}$

Consider diagonal action of S^1 on $M \times \mathbb{C}$, which has moment map $\tilde{\Phi}(m, z) = \Phi(m) - \frac{1}{2}|z|^2$. Here \mathbb{C} = is complex line w. standard cirle action and symplectic structure. Symplectic cut is symplectic quotient at 0,

$$M_{\geq 0} = (M \times \mathbb{C}) / \!/ S^1.$$

("//" means symplectic quotient at 0.)

Embedding $\Phi^{-1}(0) \hookrightarrow \tilde{\Phi}^{-1}(0)$ defined by $m \mapsto$ (m, 0) descends to symplectic embedding $M_0 \hookrightarrow M_{\geq 0}$.

 $M_{>0} = \Phi^{-1}((0,\infty))$ also embeds symplectically into $M_{\geq 0}$: define $M_{>0} \to \tilde{\Phi}^{-1}(0)$ by sending m to $\left(m, \sqrt{2\Phi(m)}\right)$.

Selected references

A. A. Kirillov, *Elements of the theory of representations*, Grundlehren der mathematischen Wissenschaften, vol. 220, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

_____, Geometric quantization, Dynamical Systems IV (V. I. Arnol'd and S. P. Novikov, eds.), Encyclopaedia of Mathematical Sciences, vol. 4, Springer-Verlag, Berlin-Heidelberg-New York, 1990, pp. 137–172.

N. M. J. Woodhouse, *Geometric quantization*, second ed., Oxford Univ. Press, Oxford, 1992.

V. Guillemin and S. Sternberg, *Geometric asymptotics*, revised ed., Mathematical Surveys and Monographs, vol. 14, Amer. Math. Soc., Providence, R. I., 1990.

_____, *Symplectic techniques in physics*, Cambridge Univ. Press, Cambridge, 1990, second reprint with corrections.

J. J. Duistermaat, V. Guillemin, E. Meinrenken, and S. Wu, *Symplectic reduction and Riemann-Roch for circle actions*, Math. Res. Letters **2** (1995), 259–266.

R. Sjamaar, *Symplectic reduction and Riemann-Roch formulas for multiplicities*, Bull. Amer. Math. Soc. (N.S.) **33** (1996), 327–338.