THE MOMENT POLYTOPE OF A KAHLER G-MANIFOLD

REYER SJAMAAR

Dedicated to the memory of Chepe Escobar

ABSTRACT. This is the transcript of an introductory talk on the Kirwan con-
vexity theorem for Kihler manifolds and some of its generalizations.

1. INTRODUCTION

This expository note contains a sketch of the proof of the convexity theorem for
moment maps on Kahler manifolds, which is due independently to Guillemin and
Sternberg [9] and to Mumford [18, Appendix], with improvements due to Brion [3].
It also explains how the idea behind this proof has been extended and generalized
in various ways. This material is based on lectures I gave at the International
Conference in Memory of José Hscobar in Cali, Colombia, and at the Séminaire
Itinérant de Géométrie et Physique in Ha Néi, Viét Nam. I thank my hosts at the
Universidad del Valle in Cali and at the Ha N6i University of Education for their
hospitality.

2. FROM ALGEBRAS TO POLYTOPES

Let T be a torus (compact connected abelian real Lie group) and let A =
@2, Ar be a commutative graded algebra over the field of complex numbers C.
We make the following assumptions on A.

(i) A is finitely generated.
(ii) A has no zero divisors.
(iii) The torus T acts on A. The action is linear,

t-(crar tc2az2) = ci(t-ar) +ca(t-az)
forallte€T,cy, c2 € C and aj, az € A; multiplicative,
t-(araz) = (t-a1)(t-az)
for all t € T and a1, az € A; and preserves the grading,
t-a€ A,

forallte Tand a € A,.
(iv) For all r, the action of T on A, is continuous.
(v) Ao = C, the trivial one-dimensional representation of T.
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Notice that, by assumptions (i) and (iii), each of the summands A, is a finite-
dimensional T-module. Therefore assumption (iv) makes sense; it simply means,
by definition, that the action of T on A, is given by a continuous homomorphism
from T to the matrix group GL(A.). These assumptions enable us to refine the
grading of A into a bigrading by weight and degree. Let X(T) = Hom(T, U(1)) be
the character group of T, where U(1) = {z € C | |z| = 1} denotes the unit circle.
Define A » to be the collection of all a € A, such that t-a =A(t)aforallteT.

Then
A= P A
(AT)EX(T)XN
Assumption (iii) implies
(v) fa€e Ayrand be A, then ab € Axyy rqs.
Let Z(A) be the set of all (A, 1) € X(T) x N for which the direct summand A, ,

is nonzero.
2.1. Lemma. X(A) is a finitely generated submonoid of X(T) x N.

Proof. Assumption (ii) and assertion (v) imply that Z(A) is closed under addition.
Assumption (v) implies that (0,0) € £(A). Therefore £(A) is a submonoid. By as-
sumption (i), the algebra A is finitely generated. Let a1 € Ax, +,, @2 € Ax, 1y - -
aix € A, r, be a set of homogeneous generators. Then it follows from assumption
(iii) that every (A,r) € X(A) can be written in the form (A,r) = Z{L] (A, 1)
with n; € N. Thus X(A) is finitely generated as a monoid. QED

?

The monoid X(A) can be quite complicated. Somewhat easier to understand is
its “classical limit”,

PA) = { % ‘ (A1) € Z(A), T > o},

which is a subset of the Q-vector space X(T)q = X(T)®z Q. Recall that a convez
polytope in a vector space V over an ordered field is a subset of V which is the
convex hull of a finite subset of V.

2.2. Lemma. P(A) s a convez polytope in X(T)q.

Proof. Let A/r, u/s € P(A). Then it follows from assumption (ii) and assertion (v)
that (A+u)/(r+s) € P(A). Hence P(A) is convex. In fact, if (A1,17), (A2,12),...,
(Ak, Tk ) are generators of X(A), then every element of P(A) is a convex combination
of A1/r1, A2/72,..., A/Tk. Thus P(A) is a convex polytope. QED

An example of an algebra A satisfying assumptions (i)—(v) is the homogeneous
coordinate ring of an irreducible projective variety equipped with a linear action
of the torus T. More generally, we will consider the following situation. Let M be
a compact connected complex manifold and let L be a positive holomorphic line
bundle over M. Let G be a compact connected Lie group with maximal torus T.
Suppose that G acts holomorphically on M and that this action lifts to an action on
L by holomorphic bundle transformations. Then the space of global holomorphic
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sections I'(M, L) of L is a G-module. Likewise, G acts naturally on the global
sections of the tensor powers L®" and hence on the graded algebra

S(M,L) = é.; r'(m,L®"),
r=0

It follows from a theorem of Bochner and Montgomery (see e.g. [15, Ch. III]) that
the G-actions on M and L extend uniquely to holomorphic Gg-actions, where G¢
denotes the complexification of G. Therefore the algebra S(M, L) carries a natural
action of the complex reductive group Gc. Now we choose a maximal unipotent
subgroup N of G¢ which normalizes T and we define A(M,L) = S(M,L)N, the
subalgebra of S(M, L) consisting of N-invariant sections.

2.3. Proposition. The algebra A(M,L) satisfies assumptions (i)—(v).

Proof. 1t follows from the Kodaira embedding theorem that M can be embedded
into a complex projective space. Serre’'s GAGA theorems [21] imply that L is an
algebraic line bundle and that the action of G¢c on M and L is algebraic. The
results of [20] now imply that the algebra S(M, L) is finitely generated. The fact
that the subalgebra A(M,L) of S(M, L) is finitely generated then follows from a
theorem of Hadziev and Grosshans; see e.g. [17, Section III.3.2]. It follows from
the identity principle for holomorphic functions that S(M, L) has no zero divisors,
and therefore the subalgebra A (M, L) has no zero divisors. The subgroup N of G¢
normalizes T and therefore T acts on N by conjugation. Hence, if s € A(M, L),
teTand g€ N,

g-(t-s)=t-((t7"'gt)-s) =t-s,

sot-s € A(M,L). In other words, T acts on A(M, L). The remaining assumptions
are now easy to check. QED

We will denote the convex polytope P(A(M,L)) associated with the algebra
A(M,L) by P(M,L). Let t be the Lie algebra of the torus T. The Lie algebra of
U(1) is the imaginary axis iR, so the differential A, of a character A € X(T) is a
linear map t — iR, that is to say, an element of it*. The map X(T) — t* which
sends a character A to the real-valued functional (27ti)~'A, is an embedding of X(T)
onto a lattice in t* known as the weight lattice. As is common practice, we will
identify X(T) with the weight lattice by means of this embedding. Similarly, we
will regard the Q-vector space X(T)q as a (dense) subset of t*, the set of rational
points of t*.

Let C denote the closed Weyl chamber in t* which is positive with respect to N.
Recall that a character A € X(T) is dominant if A € C. The following fundamental
result of representation theory, often called the Cartan-Weyl theorem, says that
there is a bijective correspondence between dominant characters and (isomorphism
classes of) irreducible complex representations of G. See e.g. [2, Ch. 9.7], [5, Ch. 4],
or [17, Section III.1.5] for a proof.

2.4. Theorem. (i) Let V be an irreducible G-module. Then dimV™ = 1.
Let A € X(T) be the weight of the T-action on VN. Then A € C.
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(i1) For each A € X(T)NC there ezists an irreducible G-module V such that
the T-action on VN has weight A. This G-module V s unique up to
isomorphism.

The character A in part (i) is called the highest weight of V (because it is the
largest weight of T occurring in V with respect to a certain natural partial ordering
on t*). This theorem implies the following statement.

2.5. Proposition. The polytope P(M,L) s contained in C.

Proof. Let u € P(M,L). Choose A € X(T) and a positive integer r such that
p = A/r and such that there exists a nonzero element s of A(M, L), ,. Choose
an irreducible G-submodule V of S(M, L) containing s. Then s € VN, so, by the
Cartan-Weyl theorem, the weight A of s is dominant. Hence p = A/r is contained
in C. QED

3. EXAMPLE: QUADRATIC FORMS

To illustrate Propositions 2.3 and 2.5, we let G be the unitary group U(n) and
T = U(1)"™ its standard maximal torus, which consists of all diagonal matrices

t 0
0 (1)
th
with [t1] = |t2| = --- = |tn| = 1. Then G¢ is the complex general linear group

GL(n, C) and T¢ is the subgroup of all matrices (1) with tq, t2,..., tn, € C\{0}. A
convenient choice for N is the subgroup consisting of all unipotent upper triangular
matrices

T %
0
A basis of the Lie algebra t of T is given by
2mi 0 0
0 2mi 0
€1 = , €2 = yeooy En =
0 0 2mi

The dual vectors €3, €3,..., €} are a basis of the weight lattice X((T). The closed
positive chamber C is the set of all A € t* such that (A, &5) > (A, g541) for j =1,
2,..., n, where (-,-) denotes the pairing between t and t*. Let V be a finite-
dimensional G-module, let M = P(V), the space of lines in V, and let L = O(1),
the canonical quotient bundle over M. This is by definition the line bundle dual

to the tautological bundle
{LvyeMxV|vel}

over M, from which one sees that the G-action on M lifts naturally to a G-action on
L. The space of sections I'(M, L) is naturally isomorphic as a G-module to the dual
V* of V and, similarly, I'(M, L®") is naturally isomorphic to its rth symmetric power
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ST(V*). Thus S(M, L) = S(V*), the algebra of polynomials on V. To take a specific
example, let V = S2(C™)*, the space of quadratic forms in n variables, on which
G acts by substitution. If we think of elements of V as symmetric n x n-matrices,
the action is given by g-v="tg 'vg~! for g€ G and v € V. For 1 < r < n define
the polynomial function a, on V by

V1,1 e V1
QT(V) = )

Vir oo Vregr

the principal r X r-minor of v. Then a, has degree r and one checks by direct
computation that a, is N-invariant and transforms under T with weight

Ar=2(el +e5+---+€F).

Thus a, € A(M, L), r. By [24, Proposition 1], the algebra A(M,L) = S(M,L)N is
freely generated by a1, az,..., an,

A—(le—) = C[a1)a2) v )an]v

and therefore P(M, L) is the n — 1-simplex with vertices Ay, %7\2, ey %An. This
example is taken from [3], where one can find several further examples.

4. THE MOMENT MAP

Let M and L be as in Section 2. It was discovered by Guillemin and Sternberg
that the polytope P(M, L) has an alternative interpretation in terms of Kahler
geometry. Their discovery was inspired by the theory of geometric quantization
and Kirillov’s orbit method, an introduction to which can be found in [11]. A key
element of their argument is the Borel-Weil theorem, which establishes a corre-
spondence between irreducible G-modules and integral coadjoint orbits of G, and
can be regarded as a geometric version of the Cartan-Weyl theorem, Theorem 2.4.
This section is a summary of Guillemin and Sternberg’s argument, which follows
in large part Brion’s exposition in [3].

Because the line bundle L is positive, there exist a G-invariant Hermitian bundle
metric ||-|| on L and a G-invariant Hermitian connection V such that the curvature
form w € Q?(M) is positive definite and hence a Kihler form. Each Lie algebra
element & € g = Lie(G) defines two first-order differential operators on the space of
holomorphic sections I'(M, L): covariant differentiation V; and the Lie derivative

Lels) = o explte) 5|
It was observed by Kostant [16, Theorem 4.3.1] that V; and L; have the same
principal symbol and that the zeroth order operator L; — V¢ is multiplication by
an imaginary-valued function. Thus we have a map ¢: g — C°(M, R) defined by
BlE) = 5 (5 — V), 2
Kostant showed that ¢ is G-equivariant with respect to the adjoint action on g and
the action on C*° (M, R) dual to the action on M. Moreover, it satisfies ddp(&) =
&m)w, where &ny denotes the vector field on M induced by &. Let (-,-) denote
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the pairing between g and its dual. The map ®@: M — g* defined by (®(m), &) =
&(&)(m) is known as the moment map for the G-action on the Kahler G-manifold
(M, w). By construction, it is G-equivariant (with respect to the given action on
M and the coadjoint action on g*) and therefore its image ®(M) is a G-invariant
subset of g*. The chamber C in t* is a fundamental domain for the coadjoint
action, so the image ®(M) is completely determined by its intersection with C.
The following theorem goes back to [9] and [18, Appendix].

4.1. Theorem. (i) P(M,L) s the set of rational points in ®(M) N C.

(i) ®(M)N C=P(M,L).
(iiil) ®(M) N C is a rational convez polytope in t*.

Outline of proof. Let uw € P(M,L). Then there exist a positive integer r and
A € X(T)such that p =A/r and A(M, L)) » #{0}. Choose anonzeros € A(M,L)x+
and let U be the complement in M of the zero locus of s. Define f: U — R by
f(x) = (47t) " log||s(x)||?>. A calculation using (2) shows that

%f(exp(it&) -x) ‘t:o = —A(g) + 1(®(x), &) (3)
for all & € g. (See e.g. [8, Section 3].) Now let x € U be a point at which f
attains its maximum. Then the left-hand side of (3) vanishes, so ®(x) =A/r = .
This shows that P(M, L) is contained in ®(M) N C. Conversely, let © € C be a
rational point. To finish the proof of (i) we need to show that p € ®(M) N C
implies p € P(M,L). First assume that © = 0. An important fact (for which see
[10, 12, 18, 22]) is that every x € ® '(0) is semistable in the sense that there
exists a section s € I'(M,L")€ such that s(x) # 0. A G-invariant section is an
N-invariant section of weight 0. Thus 0 € ®(M)N C implies 0 € P(M, L). The case
of an arbitrary pu can be reduced to the case u = 0 by the “shifting trick”, which
consists in replacing the triple M, L, ® with a new triple M', L', ®' such that

pedMINC & 0 @' M')NC, (4)
pePM,L) & 0ePM',L". (5)

To do this, we write u = A/n, where A € X(T)N C and n is a positive integer.
The coadjoint orbit O_, = Ad*(G)(—A) is equipped with a standard G-invariant
symplectic form w_,, known as the Kirillov-Kostant-Souriau form. Moreover, it
possesses a G-invariant complex structure such that w_» is Kéhler. These facts
are true for any coadjoint orbit, but since A is integral, there is in addition a G-
equivariant Hermitian holomorphic line bundle L _, on O_, whose curvature form
is equal to w_x. (See e.g. [11].) The moment map for the G-action on O_, is the
inclusion O_» < g*. We define M’ =M x O_» and L' = pr} L®" @ pr} L_,, where
pri: M/ - M and pr,: M/ — O_, denote the projections onto the respective
factors. The curvature form of L’ is equal to nw ® w_,, and the moment map @'
for the diagonal G-action on M’ is given by ®'(x, ) = n®(x) + &, from which one
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easily obtains (4). The algebra associated with the pair (M/,L') is

(o o] o
=Prm’( =@rMm, (pr; L @prsL A)%7)
r=0 =0

=@Prm,1*™ T (0, L%5).
r=0
The Borel-Weil theorem says that I'(O_x, L_») = V(A)*, the dual of the irreducible
G-module with highest weight A. (See e.g. [11] or [5, Ch. 4].) The orbits O_, and
O_: are isomorphic as holomorphic G-manifolds and under this isomorphism the
line bundles L?; and L_,, are G-equivariantly equivalent. Therefore

S(MI» I—I) = @ F(M, L®Tn) ® V(r}\)* = @ HOIII(V(T}\), F(M, L®rn))’
=0 =0
so in particular

S(M', LS =~ é Hom (V (TA), (M, L®™)) €
=0

It follows from this that 0 € P(M’,L’) if and only if, for some r > 0, I'(M,L®™)
contains a copy of the irreducible G-module V(rA). By Theorem 2.4, this is the
case if and only if p = rA/rn € P(M, L), which proves (5). This completes our
sketch of the proof of part (i). For the proof of part (ii) we refer to [18, Appendix]
or, for an alternative proof, [8, Section 4]. Finally, part (iii) follows immediately
from (i) and (ii). QED

5. GENERALIZATIONS

Hamiltonian G-manifolds. In their paper [9], Guillemin and Sternberg also con-
jectured the following more general statement, which does away with the K&hler
and integrality hypotheses, and which was shortly afterwards proved by Kirwan
[13].

5.1. Theorem. Let M be a compact Hamiltonian G-manifold with moment
map ®: M — g*. Then ®(M)N C s a rational convez polytope.

This result was subsequently extended in many different ways. Below I will
list a few of these generalizations and give some pointers to the literature. I will
concentrate on those versions that rely on the “Kéhler” argument given in Section
4 (which is different from the argument used by Kirwan).

Complex subvarieties. Let M and L be as in Section 2. Let X be a G-invariant
closed irreducible complex subvariety of M. (Such a variety is necessarily Gc-
invariant.) Defining A(X,L) = S(M,L)N/I(X,L)N, where I(X,L) is the ideal of
S(M, L) consisting of all sections vanishing on X, one checks as in the proof of
Proposition 2.3 that the algebra A(X,L) satisfies all the assumptions imposed in
Section 2. (That A(X,L) has no zero divisors follows from the irreducibility of X.)
The arguments of Section 4 go through with a few trivial changes and the upshot
is the following generalization of Theorem 4.1, due to Brion [3].
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5.2. Theorem. P(X,L) = O(X)NCNX(T)q and ®(X)N C = P(X,L). Hence
®(X) N C s a rational convex polytope.

Here ® denotes the moment map for the G-action on the ambient Kédhler man-
ifold M. The most interesting kind of subvariety to which this result applies is
perhaps that of the closure of a G¢-orbit in M.

More recently, it was noted in [8] that for Theorem 5.2 to hold it is not even
necessary for X to be G-invariant, but that it suffices for X to be B-invariant, where
B = TcN is the Borel subgroup containing N. Examples of such varieties are
closures of B-orbits in M.

Real subvarieties. Let M and L be as in Section 2. Let y be an anti-Kahler
involution of M, i.e. an antiholomorphic map M — M satisfying y? = idp and
v*w = —w. The fixed-point set X = MY, if nonempty, is a totally real Lagrangian
submanifold of M, which we call a real form of M. Suppose that y is compatible
with the G-action in the sense that y(g-x) = o(g)-vy(x) for all g € G and x € M,
where o is an involution of G. The submanifold X is not G-invariant, but K-
invariant, where K = G° is the subgroup fixed under 0. Suppose that vy lifts
to a map L — L which is conjugate linear on the fibres. Then one can show that
D(y(x)) = —0*(D(x)) for all x € M, where 0*: g* — g* denotes the transpose of the
derivative 0,: g — g of 0. This implies that the image of X under @ is contained in
the subspace p* of g* consisting of all A € g* satisfying 0*(A) = —A. (This subspace
can be naturally identified with the dual of p ={& € g | 0.(§) = —&}, the tangent
space of the symmetric space P = G/K.) A result of [19] asserts the following.

5.3. Theorem. ®(X)NC = d(M)NCNp*. Hence ®(X)NC s a rational conver
polytope.

(For this to be true, the maximal torus T and the chamber C must be chosen
“correctly” with respect to the involution, but this can always be done.) If G is
a torus, this is a special case of the main theorem of [4]. The proof of this result
combines the argument behind Theorem 4.1 with the following two facts: the real
form X is dense in M with respect to the complex Zariski topology (and therefore
any nonzero global section of L is not identically zero on X); and for all x € X and
& € p the curve exp(ité)-x is contained in X.

Affine G-varieties. Let V be a finite-dimensional unitary G-module and let X be
a G-invariant closed irreducible affine subvariety of V. Let A(X) = S(X)N, where
S(X) is the affine coordinate ring of X. The algebra A (X) has all the properties listed
in Section 2, except that it has in general no grading. But we can still decompose
it into weight spaces, A(X) = @Aex(T]A(X)M where A (X)) consists of all a € A
such that t-a = A(t)a for all t € T. Hence we can define

I(X) ={A € X(T) | A(X)a #{0} },

a finitely generated submonoid of X(T). Let us define P(X) to be the convex hull in
X(T)q of the monoid X(X). This is a convex polyhedral cone in X(T)q, contained
in the chamber C. Let ®: V — g* be the moment map for the flat Kihler form
on V, which is given by (®(v), ) = %(E,vv,v), where &y € gl(V) is the linear map
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defined by & € g and (+,-) is the inner product on V. One of the results of [23] is
as follows.

5.4. Theorem. P(X) =®(X)NCNX(T)q and ®(X)NC =P(X). Hence ®(X)NC
1s a rational convex polyhedral cone.

Another fact proved in [23] is that every isotropic G-orbit in an arbitrary Hamil-
tonian G-manifold has an invariant neighbourhood which is isomorphic, as a Hamil-
tonian G-manifold, to a germ (in the classical topology) of an affine G-variety. By
means of a local-to-global argument, this fact can be combined with Theorem 5.4
to give an alternative proof of Kirwan’s convexity theorem; see [23, Section 6]. (By
an analogous reasoning it is possible to prove ‘“real forms” of Theorems 5.4 and 5.1;
see [19].)

6. CONCLUSION

The Kirwan convexity theorem is a perennial favourite of symplectic geometers
and in these few pages I cannot possibly do justice to all the people who have
contributed to it. But I would be remiss not to mention its close relationship to
various problems of linear algebra concerning matrices and their eigenvalues, such
as Horn’s problem on sums of Hermitian matrices. In such eigenvalue problems one
is often concerned with finding an explicit minimal set of inequalities for a special
moment polytope. For more on this matter, and for an ample bibliography, see
[6, 14, 7].

This note has focussed on the algebro-geometric approach to the convexity theo-
rem. This approach seems to hold the best promise of obtaining explicit inequalities
for moment polytopes and also, as far as I am aware, yields the only available proof
of the real form and various other versions of Kirwan’s theorem. But other valid
approaches exist, in particular to the local-to-global principle, which give rise to
different generalizations of the convexity theorem. For this I refer to the mono-
graph [7] and to the recent preprints [25] (in which convexity is cast in terms of
affine geometry) and [1].
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