
L(2)-COHOMOLOGY OF ORBIT SPACES

REYER SJAMAAR

Abstract. Suppose that a compact Lie group acts on a smooth compact
manifold and that the manifold is equipped with an invariant Riemannian
metric. This metric induces a metric on the open dense stratum of the quotient
space. Then the L(2)-cohomology of the open dense stratum with respect to
the induced metric is isomorphic to the intersection cohomology with upper
middle perversity of the quotient space.
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Introduction

Let M be a smooth compact manifold and let G be a compact Lie group acting
smoothly on M . A smooth differential form ω on M is called invariant with respect
to the action of G if A∗g(ω) = ω for all g ∈ G, where Ag : M → M denotes the action
of the element g. It is called horizontal with respect to the action if ι(ξM )ω = 0 for
all ξ in the Lie algebra of G, where ι(ξM )ω denotes the interior product of ω with
the vector field on M induced by ξ. If a form is both invariant and horizontal, it
is called basic. The graded algebra of all basic forms is denoted by Ω·(M/G). It
follows from the infinitesimal homotopy formula, LξM

ω = ι(ξM ) dω+d ι(ξM )ω, that
the exterior derivative d maps Ω·(M/G) into itself. Hence (Ω·(M/G), d) is a cochain
complex. Koszul [10] has proved that the cohomology of Ω·(M/G) is isomorphic
to the singular cohomology with real coefficients of the orbit space M/G. Here
it is not assumed that the action is free. (Note, by the way, that the singular
cohomology of M/G coincides with its Čech cohomology, since M/G is compact
and locally contractible.) His argument involves slices for the action of G on M ,
a G-equivariant Poincaré lemma and G-invariant partitions of unity on M . If one
interprets the basic forms on M as being the differential forms on the singular space
M/G, one can read Koszul’s theorem as a de Rham theorem for quotient spaces.
The purpose of this note is to sketch the proof of a similar theorem:

Theorem 1. There is a natural isomorphism H·(2)(Mprinc/G) ∼= In̄H·(M/G).

Here H·(2)(Mprinc/G) is the L(2)-cohomology of the open dense (or ‘principal’)
stratum of the orbit space with respect to a metric induced by a G-invariant metric
on M . From the compactness of M it follows that H·(2)(Mprinc/G) does not depend
on the choice of an invariant metric on M . On the right-hand side, n̄ denotes
the upper middle perversity, which associates to a stratum of codimension k the
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integer [(k − 1)/2], and In̄H·(M/G) is the intersection cohomology of M/G with
real coefficients and with respect to the perversity n̄. As a consequence of the
theorem, H·(2)(Mprinc/G) is even a topological invariant of the orbit space M/G.
The proof hinges on the fact that the metric on the quotient space is conical in the
sense of Cheeger [5], [6].

Section 1 is a review the definitions of L(2)-cohomology and harmonic forms.
Section 2 contains an outline of the proof of the L(2) de Rham Theorem and some
comments, in particular on generalized Poincaré duality. Intersection cohomology
with real coefficients and with respect to the upper middle perversity n̄ of a space
Y will be denoted by In̄H·(Y ), and its singular cohomology with real coefficients
will be denoted by H·(Y ).

I would like to thank Eduard Looijenga and my thesis advisor Hans Duistermaat
for useful discussions. This paper is a version of a chapter of my PhD thesis [14].

1. L(2)-Cohomology and Harmonic Forms

This section is a cursory introduction to L(2)-cohomology. See [5] and [15] for
more information and further references.

Let Y be an m-dimensional Riemannian manifold with metric ν. This metric
induces in a natural way inner products on the fibres of the exterior powers of the
cotangent bundle of Y . If α and β are differential forms of the same degree on Y ,
their inner product, regarded as a function on Y , will be denoted by (α, β), and
(α, α)1/2 will be abbreviated to |α|. For a k-form β the form ∗β is defined as the
unique (m− k)-form such that for all k-forms α one has α ∧ ∗β = (α, β) dν, where
dν is the volume form defined by the metric. (There is a little problem here if Y is
not orientable. The solution is to regard dν and ∗α as forms with coefficients in the
orientation bundle of Y ; cf. de Rham [12].) Define the global inner product 〈α, β〉
and norm ‖α‖ by

〈α, β〉 =
∫

Y

α ∧ ∗β =
∫

Y

(α, β) dν, ‖α‖2 = 〈α, α〉 =
∫

Y

α ∧ ∗α,

if these integrals are absolutely convergent. For a k-form α the (k + 1)-form d∗α is
defined to be d∗α = (−1)m(k+1)+1 ∗ d ∗ α. The operator d∗ is the ‘formal adjoint’
of d in the sense that for all k-forms α and (k + 1)-forms β such that either α or β
has compact support we have the equality

(1) 〈d∗α, β〉 = 〈α, dβ〉.
Let Li

(2)(Y ) be the space of i-forms α with measurable coefficients such that
∫

Y
(α, α) dν

is absolutely convergent. Define the domains dom d and dom d∗ of the operators d
and d∗ by

dom di =
{

α is a smooth i-form : α ∈ Li
(2)(Y ) and dα ∈ Li+1

(2) (Y )
}

,

dom(d∗)i =
{

α is a smooth i-form : α ∈ Li
(2)(Y ) and d∗α ∈ Li−1

(2) (Y )
}

.

Then dom d is a cochain complex, whose cohomology is denoted by H·(2)(Y ), or
by H·(2),ν(Y ) if we want to stress its dependence on the metric ν. Also, dom d∗ is
a chain complex and the Hodge ∗-operator induces an isomorphism Hi(dom d∗) '
Hm−i

(2) (Y ), where m is the dimension of Y . Formula (1) implies that the operators d
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and d∗ with the domains defined above have functional-analytic closures, denoted
by respectively d̄ and d̄∗. By means of a regularization argument one can show
that the inclusion dom d· ↪→ dom d̄· induces an isomorphism on cohomology. (See
Cheeger [5].) In other words,

Hi
(2)(Y ) = ker di/ im di−1 ∼= ker d̄i/ im d̄i−1.

A (distributional) differential form α is called harmonic if dα = d∗α = 0 in the weak
(i.e. distributional) sense. The ellipticity of the Laplacian ∆ = dd∗ + d∗d implies
that harmonic forms are smooth. The group of harmonic L(2)-forms is denoted by
H·(2)(Y ). One has

Hi
(2)(Y ) = ker di ∩ ker(d∗)i = ker d̄i ∩ ker(d̄∗)i.

It is not hard to show that the Hodge ∗-operator restricts to give an isomorphism
Hi

(2)(Y ) ∼= Hm−i
(2) (Y ), if Y is orientable. There is a natural map H·(2)(Y ) → H·(2)(Y )

from harmonic forms to L(2)-cohomology, which is in general neither injective nor
surjective.

A diffeomorphism Φ from Y to another Riemannian manifold Y ′ with metric ν′

is called a quasi-isometry if there is a positive real number C such that for all p ∈ Y
and u, v ∈ TpY

C−1ν′(Φ∗u, Φ∗v) ≤ ν(u, v) ≤ Cν′(Φ∗u, Φ∗v).

It is easy to see that a quasi-isometry Φ induces an isomorphism Φ∗ : H·(2),ν′(Y ′)
∼=−→

H·(2),ν(Y ). If Y = Y ′, the metrics ν and ν′ are said to be quasi-isometric, if the
identity mapping is a quasi-isometry from Y with metric ν to Y with metric ν′.

Definition 2. The metric cylinder on Y is the cartesian product Y ×(0, 1) equipped
with the product Riemannian metric. The metric cone CY on Y is the product
CY = Y × (0, 1) with metric r2ν ⊕ dr ⊗ dr, where r is the standard coordinate on
(0, 1).

Theorem 3 (Cheeger [5]). The projection on the first factor p : Y × (0, 1) → Y

induces an isomorphism H·(2)(Y )
∼=−→ H·(2)(Y × (0, 1)).

Theorem 4 (loc. cit.). a. The projection on the first factor p : CY → Y induces
an isomorphism Hi

(2)(Y )
∼=−→ Hi

(2)(CY ) for i ≤ [m/2] (where m is the dimension
of Y ).
b. Hi

(2)(CY ) = 0 for i > (m + 1)/2.
c. If m is odd, i = (m + 1)/2, and the image of d̄i−1

Y is closed, then Hi
(2)(CY ) = 0.

2. An L(2) de Rham Theorem for Orbit Spaces

Let (M, µ) be a compact Riemannian manifold and let G be a compact Lie group
acting on M by isometries. Let π denote the projection from M onto the orbit space
M/G. Pick a point m in M . Let H be the stabilizer of m and let V = (Tm(G ·m))⊥

denote the orthogonal complement in TmM (with respect to the metric µ) of the
tangent space Tm(G ·m) of the orbit. Then V is an orthogonal representation space
for H and the normal bundle of the orbit G·m is the vector bundle G×HV associated
to the principal fibre bundle G → H. The bundle G ×H V is a G-space (where
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G acts by left translations on the first factor) and the exponential map defined by
the metric provides a G-equivariant diffeomorphism from a neighbourhood of the
zero section of G×H V to a G-invariant neighbourhood of the orbit G ·m. (This is
equivalent to the familiar slice theorem, see e.g. Koszul [10] or Bredon [4].) For a
subgroup H of G denote by M(H) the set of all points whose stabilizer is conjugate
to H,

M(H) = {m ∈ M : Gm is conjugate to H }.
By virtue of the slice theorem the set M(H) is a smooth submanifold of M (possibly
consisting of components of different dimensions), called the manifold of orbit type
(H), and the quotient M(H)/G is also a smooth manifold. Thus we have a decom-
position M/G =

∐
H<G M(H)/G of the orbit space M/G into a disjoint union of

manifolds, and it is easy to see that this decomposition is a stratification of M/G
in the sense of [7]. If V H denotes the subspace of fixed vectors in V and W the
orthogonal complement (V H)⊥, then the point π(m) ∈ M/G has a neighbourhood
O of the form O = B(V H)×B(W )/H. Here B(V H) denotes a ball round the origin
in V H and B(W ) a ball round the origin in W . A neighbourhood of this form will
be called a distinguished neighbourhood.

For convenience we shall assume that the orbit space is connected. This implies
that there exists a maximal orbit type (K), in the sense that for all orbit types
(H) occurring in the G-manifold M the group K is conjugate to a subgroup of H
(see Bredon [4]). The stratum M(K)/G is connected, open and dense in M/G. It
follows from the slice theorem that M(K) consists precisely of those points m where
the representation of H = Gm on V is trivial, or equivalently, where the vector
space W = (V H)⊥ is 0. The open dense strata of M and M/G are called principal,
and they are denoted by respectively Mprinc and Mprinc/G. For each open part U
of M , resp. M/G, define Uprinc = U ∩Mprinc, resp. Uprinc = U ∩ (Mprinc/G).

The metric µ induces a Riemannian metric on Mprinc/G, denoted by π∗µ. If m is
a principal point in M , then the restriction of π∗ to the slice V at m is an isometry
V

∼=−→ Tπ(m)(Mprinc/G). Note that all metrics obtained in this way from a G-
invariant metric on M are quasi-isometric to one another. Hence H·(2)(Mprinc/G)
does not depend on the metric µ. Let us describe the behaviour of the metric
π∗µ up to quasi-isometry near the singularities of M/G. Let m ∈ M and let
O = B(V H) × B(W )/H ⊂ M/G be a distinguished neighbourhood of the point
π(m) ∈ M/G. The principal stratum of O comes equipped with two Riemannian
metrics: the restriction of π∗µ and the metric µ̃m induced by the inner product µm

on TmM . If we choose O small enough, these metrics are obviously quasi-isometric.
So in order to study the metric π∗µ near π(m) and the local L(2)-cohomology of
M/G at π(m), we can turn our attention to O with the metric µ̃m. Let S(W )
denote the unit sphere in the vector space W . If m is not a principal point in M ,
then W 6= {0} and the map

Ψ : B(V H)× S(W )princ × (0, 1) → B(V H)×B(W )princ

sending (y, z, r) to (y, rz) is an H-equivariant diffeomorphism. It becomes an isom-
etry as well, if we endow the product S(W )princ × (0, 1) with the conical metric
r2ν ⊕ dr⊗ dr, where ν is the metric µm|S(W )princ and r the standard coordinate on
(0, 1). So Ψ descends to an isometry
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B(V H)× S(W )princ/H × (0, 1)
∼=−→ B(V H)×B(W )princ/H = Oprinc,

where, again, S(W )princ/H × (0, 1) is equipped with a conical metric. The orbit
space S(W )/H is called the link of the point π(m).

There are two naturally defined complexes of sheaves on the orbit space.

Definition 5. For any open subset U of M/G, let Ω·(U) be the set of all smooth
basic differential forms on the G-invariant subset π−1(U) of M . (See the Introduc-
tion for the definition of basic forms.) The de Rham complex of the orbit space is
the complex of sheaves Ω· assigning to U the complex of vector spaces Ω·(U). The
L(2)-complex is the complex of sheaves L· generated by the complex of presheaves
U 7→ dom d·Uprinc . So an element of Li(U) is an i-form ω on Uprinc with the follow-
ing property: For all x ∈ U there is an open neighbourhood O ⊂ U of x such that
ω|Oprinc ∈ dom di

Oprinc .

If ω is an element of L·(U), we shall say that it is a form on Uprinc such that ω
and dω are ‘square-integrable locally on U ’. The complex of vector spaces L·(U)
is not necessarily the same as the complex dom d· of the Riemannian manifold
Uprinc, but may depend on the inclusion Uprinc ↪→ U . But since M/G is compact,
L·(M/G) = dom d·(Mprinc/G), and the cohomology H·(L·(M/G)) of the complex of
global sections of L· is equal to the L(2)-cohomology of the Riemannian manifold
Mprinc/G with metric π∗µ.

Proposition 6. a. For all open subsets U of M/G, Ω·(U) is contained in L·(U).
b. The L(2)-complex L· is a module over the de Rham complex Ω·.
c. The complex L· is fine.

Proof. a. Let U be an open subset of the orbit space and let ω be a smooth basic
form on π−1(U). We want to show that the forms ω|π−1(U)princ and dω|π−1(U)princ ,
which can be regarded in a natural way as differential forms on Uprinc, are square-
integrable locally on U . Let x ∈ U . It follows from the fact that the metric π∗µ is
conical near the singularities that x has a neighbourhood O ⊂ U such that Oprinc

has finite volume. Moreover, it is easy to see from the fact that ω is a smooth form
on the whole of π−1(U), that x also has a neighbourhood O′ ⊂ U such that |ω|
and |dω| are bounded on O′. Hence,

∫
O∩O′ |ω|2 d(π∗µ) and

∫
O∩O′ |dω|2 d(π∗µ) are

finite.
b. If U ⊂ M/G is open and ω ∈ L·(U) and α ∈ Ω·(U), then on Uprinc one has

|α ∧ ω| = |α| · |ω|
|d(α ∧ ω)| ≤ |dα| · |ω|+ |α| · |dω|.

From the fact that |α| and |dα| are bounded locally on U (see the proof of statement
1), it now follows that α ∧ ω and d(α ∧ ω) are square-integrable locally on U .
c. The sheaf Ω0 is fine, because there exist G-invariant smooth partitions of unity
subordinate to any cover of M with G-invariant open subsets. (These can be
obtained e.g. by averaging an arbitrary partition of unity subordinate to the given
cover with respect to the Haar measure on G.) Hence, by a standard theorem of
sheaf theory (see e.g. Bredon [3, Chapter II]), the module L· over Ω0 is also fine.

¤
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Sketch proof of Theorem 1. Let Sk denote the union of all k-dimensional strata of
the orbit space M/G, let n be the dimension of M/G, and let U0 ⊂ U1 ⊂ U2 ⊂ · · ·
be the increasing sequence of open subsets defined by putting U0 = ∅ and Uk+1 =
Uk ∪ Sn−k. Then U1 = Sn = Mprinc/G. If A is a sheaf on M/G, its restriction
to Uk will be written as Ak. Let ik be the inclusion Uk ↪→ Uk+1. Goresky and
MacPherson have given a sheaf-theoretic characterization of intersection cohomol-
ogy in [8]. I will quote this in a version due to Borel [2]. According to [2, Theorem
V 2.3] the hypercohomology of a complex of sheaves A· is isomorphic to the inter-
section cohomology In̄H·(M/G) with respect to the upper middle perversity n̄ if
the following statements hold:

1. The complex A· is bounded, A· = 0 for i < 0, and A·1 is a resolution of the
constant sheaf R on the manifold Sn;
2. The derived sheaves Hi(A·k+1) on Uk+1 are zero for i > [(k−1)/2], where k = 1,
2, . . . , n;
3. The attachment map αk : A·k+1 −→ Rik∗A·k induces an isomorphism of derived

sheaves on Uk+1, αk : Hi(A·k+1)
∼=−→ Hi(Rik∗A·k), for i ≤ [(k − 1)/2], where k = 1,

2, . . . , n.

Remark 7. Goresky and MacPherson have defined intersection cohomology in [7]
only for stratified spaces whose stratum of codimension one is empty. The orbit
space M/G, however, may have a codimension one stratum. King [9] has extended
the definition of intersection cohomology to arbitrary stratified spaces and shown
that it is a topological invariant. The upper middle perversity index of the codimen-
sion one strata is defined to be n̄(1) = 0. Actually, a codimension one stratum of
the orbit space always consists of boundary points. To see this, consider a point x in
a codimension one stratum with distinguished neighbourhood B(V H)×B(W )/H.
Then B(V H) has codimension one in M/G, and so the link S(W )/H must be zero-
dimensional. If dim W > 1, then S(W ) is connected, so the link must be a point.
If dim W = 1, then the action of H must interchange the two points of S(W ), so
S(W )/H is again a point. It follows that x has a neighbourhood homeomorphic to
a half-space Rl ×R≥0.

It is now fairly straightforward to check axioms 1–3 for the complex L·. Axiom 1
follows from the fact that the complex L·1 is just the de Rham complex of the
manifold Sn, which is a resolution of R by the Poincaré lemma. Axioms 2 and 3
follow from Theorems 3 and 4 of Cheeger and from the observation above that the
metric is conical near the singularities. An outline of the argument can be found
in [11]. This leads to the conclusion that the hypercohomology of the complex of
sheaves L· is isomorphic to In̄H·(M/G). But this complex is fine by Proposition 6,
so its hypercohomology is equal to H·(L·(M/G)) ∼= H·(2)(Mprinc/G). This proves
Theorem 1. ¤

By virtue of Remark 7, Theorem 1 implies that the group H·(2)(Mprinc/G) is a
topological invariant of the orbit space M/G.

Remark 8. Assume that the group G is finite. Let m be a point in M and let W
be the orthogonal complement in TmM to the subspace of H-fixed vectors, where
H is the stabilizer of m. Then it follows from Bredon [3, Theorem 19.1] that
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Hi(S(W )/H) ∼= Hi(S(W ))H =

{
R if i = 0;
0 if 0 < i < dim S(W ).

(If i equals the dimension of S(W ), one has Hi(S(W ))H = R, resp. = 0, if the
action of H on W does, resp. does not, preserve an orientation of W . Therefore,
M/G is a rational homology manifold if and only if for all m ∈ M the action of H on
TmM is orientation-preserving.) Using this, one can easily show that the sheaf Ω·
of invariant forms on M/G satisfies the axioms of intersection cohomology. Hence,
the inclusion Ω· ↪→ L· induces an isomorphism H·(M/G)

∼=−→ H·(2)(Mprinc/G).
Note that we do not require the action to be orientation-preserving. An analogous
statement is true for (compact) V -manifolds (i.e., spaces that are locally modelled
on quotient spaces of manifolds by finite group actions, see Satake [13]).

Remark 9. One of the most important properties of intersection cohomology with
respect to the upper middle perversity is that it satisfies Poincaré duality for a large
class of singular spaces. A necessary condition for this to hold was stated in [5]
and [8]. For orbit spaces it reads as follows: For any m in M such that the image
π(m) ∈ M/G lies in a stratum of odd codimension k and for all distinguished
neighbourhoods O ≈ B(V H) × B(W )/H of π(m), the intersection cohomology
(or, equivalently, the L(2)-cohomology) of the link S(W )/H in middle dimension
vanishes:

(2) H
(k−1)/2
(2) (S(W )princ/H) ∼= In̄H(k−1)/2(S(W )/H) = 0.

If this is the case, we have the generalized Poincaré isomorphism

Hi
(2)(M

princ/G) ∼= Hn−i
(2) (M/Gprinc,O)∗,

where O denotes the orientation bundle of Mprinc/G (with a constant fibre metric).
Cheeger [5] has shown that in this case we also have a Hodge-de Rham isomorphism
Hi

(2)(M
princ/G) ∼= Hi

(2)(M
princ/G). Of course, condition (2) is fulfilled at all points

m ∈ M if there are no strata of odd codimension in M/G. For finite G one can
easily deduce from Remark 8 that (2) holds if and only if the orbit space has no
boundary points. So for V -manifolds without boundary we find a Hodge-de Rham
theorem, which was already known to Baily [1]. The following proposition gives a
necessary and sufficient condition for (2) to hold for orbit spaces of circle actions.
It would be interesting to have an analogous result on actions of higher-dimensional
groups. In the proof we use the notion of a regular point.

Definition 10. A point m in M is called regular with respect to the action of G if
all orbits near m are of the same dimension as the orbit through m. Equivalently,
m is regular if the kernel of the slice representation H → Gl(V ) has finite index in
H.

All points in Mprinc are regular, but a regular point is not necessarily principal.

Proposition 11. Assume that G is the circle. Then (2) holds if and only if
a. M/G has no boundary, and
b. The projection π(MG) ⊂ M/G of the fixed point set MG has no connected
components of codimension 1 mod 4 in M/G.



8 REYER SJAMAAR

Proof. Let k be an odd integer, let m be a point in M such that π(m) lies
in a stratum of codimension k in M/G, and let O ≈ B(V H) × B(W )/H be a
distinguished neighbourhood of π(m). We may assume that H acts effectively on
W . (Otherwise replace it by its image under the homomorphism H → Gl(W ).)
Therefore, dim W = k + dim H. The origin in W is the only fixed point, so m is
regular if and only if H is finite. Since G is the circle, every point in M is either
regular or a fixed point.
Case 1: Suppose the point m is regular. Then H is finite, k = dim W and Remark 8
implies that

(3) In̄H(k−1)/2(S(W )/H) ∼= H(k−1)/2(S(W )/H) ∼= H(k−1)/2(S(W ))H .

If k > 1, this cohomology group is 0. If k = 1, the group H must be Z/2Z acting
by reflection on the one-dimensional space W , and S(W ) consists of two points.
Hence H0(S(W ))H = R.
Case 2: Suppose m is a fixed point. Then H ∼= S1. The action of H on S(W ) has
no fixed points, hence each point on S(W ) has finite stabilizer. Therefore S(W )/H
is a V -manifold. So, by Remark 8, its intersection cohomology is the same as its
ordinary cohomology.

The vector space W is a direct sum of two-dimensional subspaces on each of
which H acts by rotations with a certain angular velocity. So one can introduce
complex coordinates (z1, . . . , zr) on W (where r = (k − 1)/2) such that H ∼= S1 =
{ t ∈ C : |t| = 1 } acts by t·(z1, . . . , zr) = (tw1z1, . . . , t

wrzr), with w1, . . . , wr ∈ Z>0.
If w1 = · · · = wr = 1, then S(W )/H is the complex projective space P(W ) of W
with homogeneous coordinates (z1 : · · · : zr), and S(W ) → P(W ) is the Hopf
fibration. Now let w1, . . . , wr be arbitrary positive integers. There is an action of
the product R := Z/w1Z× · · · ×Z/wrZ on P(W ), defined by multiplication of the
homogeneous coordinate zi with the wi-th roots of unity. The quotient P(W )/R is
the weighted projective space with weights w1, . . . , wr. It is easy to see that the
mapping S(W ) → P(W )/R, assigning

(z1, . . . , zr) 7→ ( w1
√

z1 : · · · : wr
√

zr) mod R,

descends to a homeomorphism of S(W )/H onto P(W )/R. Moreover, all (rational)
cohomology classes of P(W ) are invariant under the action of R. Therefore,

Hi(S(W )/H) ∼= Hi(P(W )/R) ∼= Hi(P(W ))R

= Hi(P(W )) ∼=
{

R if i is even;
0 if i is odd.

Consequently, H(k−1)/2(S(W )/H) 6= 0 if and only if k = 4l + 1 with l ∈ N.
It follows from this and (3) that condition (2) is fulfilled at the point m ∈ M if

and only if either of the following two conditions holds:
a. m is regular and π(m) lies in a stratum of codimension k 6= 1, or
b. m is not regular (so it must be a fixed point) and π(m) lies in a stratum of
codimension k 6= 1 mod 4.
This finishes the proof of the Proposition. Note that we did not assume M to be
orientable or the action to be orientation-preserving. ¤
Example 12. Consider the product R × Cn with the circle action defined by
eiθ · (t, z) = (t, eiθz). The action restricts to the sphere S2n ⊂ R × Cn, where it
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has two fixed points, the north pole (1, 0) and the south pole (−1, 0). The orbit
space X := S2n/S1 is (2n− 1)-dimensional, so by Proposition 11 the intersection
complex of X is ‘self-dual’ if and only if n is even. The principal stratum Xprinc

is a product of the complex projective space CPn−1 and an open interval, say
(0, 1). The metric is a ‘Riemannian suspension’, sin2 πr · µ ⊕ dr ⊗ dr, where µ
is the real part of the Fubini-Study metric on CPn−1. The space Xprinc has an
open cover consisting of two open subsets, CPn−1× (0, 2/3) and CPn−1× (1/3, 1),
which are both quasi-isometric to the metric cone on CPn−1. Their intersection is
quasi-isometric to the metric cylinder on CPn−1. A computation using the Mayer-
Vietoris sequence for intersection cohomology, or, alternatively, the L(2)-version of
the Mayer-Vietoris sequence (see Cheeger [5]) yields:

In̄Hi(X) = Hi(CPn−1) for i < n;
In̄Hn(X) = 0;
In̄Hi(X) = Hi−1(CPn−1) for i > n.

We see that Poincaré duality is violated for odd n.
We can find harmonic representatives in L·(2)(Xprinc) for all intersection coho-

mology classes as follows. If α is any k-form on Xprinc, we can write α = α1+α2∧dr,
with α2 = ι(∂/∂r)α and α1 = α−α2 ∧ dr. Let ∗ be the Hodge operator on Xprinc.
A straightforward computation yields:

(4) ∗α = sin2(n−k−1)(πr)(∗′α1) ∧ dr + (−1)k−1 sin2(n−k)(πr)(∗′α2),

where ∗′ is the Hodge operator on CPn−1. Similarly, if α is square-integrable, we
find:

(5)

‖α‖2 =
∫ 1

0

{
(sinπr)2(n−k−1)‖i∗rα‖2CP n−1 + (sin πr)2(n−k)‖i∗r(ι(∂/∂r)α)‖2CP n−1

}
dr.

Now let ω be the imaginary part of the Fubini-Study metric on CPn−1. Then ω
is a harmonic two-form, as are its powers ωi. The ωi are harmonic representatives
for a basis in H·(CPn−1). Let p : Xprinc = CPn−1 × (0, 1) → CPn−1 be the
cartesian projection. Put ζ = p∗(ω). Formula (4) implies that the following forms
are harmonic on Xprinc: ζi and ∗(ζi) for i = 0, . . . , n − 1; and also ζ(n−1)/2 ∧ dr
if n is odd. It follows from (5) that ζ(n−1)/2 ∧ dr ∈ Ln

(2); ζi ∈ L2i
(2) iff i < n; and

∗(ζi) ∈ L
2(n−i)−1
(2) iff i > n. In particular, we see that, for n odd, Hn

(2)(X
princ) 6= 0,

while Hn
(2)(X

princ) = 0, so that the Hodge-de Rham isomorphism breaks down.
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