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Introduction

The construction of the reduced space for a symplectic manifold with symmetry, as for-
malized by Marsden and Weinstein [13], has proved to be very useful in many areas of
mathematics ranging from classical mechanics to algebraic geometry. In the ideal situa-
tion, which requires the value of the moment map to be weakly regular, the reduced space
is again a symplectic manifold. A lot of work has been done in the last ten years in the
hope of finding a ‘correct’ reduction procedure in the case of singular values. For example,
Arms, Gotay and Jennings describe several approaches to reduction in [4]. At some point
it has also been observed by workers in the field that in all examples the level set of a
moment map modulo the appropriate group action is a union of symplectic manifolds.
Recently Otto has proved that something similar does indeed hold, namely that such a
quotient is a union of symplectic orbifolds [16]. Independently two of us, R. Sjamaar
and E. Lerman, have proved a stronger result [21]. We proved that in the case of proper
actions the reduced space, which we simply took to be the level set modulo the action,
is a stratified symplectic space. Thereby we obtained a global description of the possible
dynamics, a procedure for lifting the dynamics to the original space and a local charac-
terization of the singularities of the reduced space. (The precise definitions will be given
below.) The goal of this paper is twofold. First of all, we would like to present a number
of examples that illustrate the general theory. Secondly, in computing the examples we
have noticed that many familiar methods for computing reduced spaces work nicely in the
singular situations. For instance, in the case of a lifted action on a cotangent bundle the
reduced space at the zero level is the ‘cotangent bundle’ of the orbit space. And in some
cases the reduced space can be identified with the closure of a coadjoint orbit.
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1 A Simple Example

Consider the standard action of the circle group SO(2) on R2, and lift this action to
T ∗R2 ' R2 ×R2. In coordinates,




q1

q2

p1

p2


 7→




cos θ − sin θ
sin θ cos θ

0

0
cos θ − sin θ
sin θ cos θ







q1

q2

p1

p2


 ,

and the canonical symplectic form is ω = dq1 ∧ dp1 + dq2 ∧ dp2. The corresponding
momentum map J is the angular momentum J(q, p) = q1p2 − q2p1. Zero is a singular
value of J . Let us compute the reduced space at zero, (T ∗R2)0, which we will take to be
the quotient J−1(0)/SO(2). The zero level set J−1(0) is a union of a point, 0, and of a
hypersurface

Z = { q1p2 − q2p1 = 0 : (q1, q2, p1, p2) 6= 0 }.
The hypersurface is a SO(2)-invariant coisotropic submanifold of T ∗R2. The group SO(2)
acts freely on Z and the null directions of the restriction of the symplectic form ω to Z
are precisely the orbital directions (just as in the regular case). Consequently the quotient
C1 = Z/SO(2) is a symplectic manifold. The other piece of the zero level set, the origin
0, is fixed by the action of SO(2) and we may consider the quotient C0 = {0}/SO(2) as a
zero-dimensional symplectic manifold. Thus the reduced space (T ∗R2)0 is a disjoint union
of two symplectic manifolds,

(T ∗R2)0 = C0

∐
C1. (1)

Let us give a more concrete description of the reduced space. We claim that C1 is R2\{0}
with the standard symplectic structure and that the reduced space as a whole is dif-
feomorphic to the orbifold R2/Z2, where the action of Z2 is generated by the reflection
(x1, x2) → (−x1,−x2).

1.1 Digression: Smooth Structures on Reduced Spaces

Let us explain what is meant by (T ∗R2)0 being diffeomorphic to R2/Z2. In general, let
(M,ω) be a Hamiltonian G-space with corresponding moment map Φ : M → g∗ and let
us assume that G acts properly on M . (In all the examples that follow the group G is
going to be compact and for compact groups the properness of the action is automatic.)
For us the reduced space at zero, M0, is the topological space formed by dividing the zero
level set Φ−1(0) by the group action, i.e.,

M0 = Φ−1(0)/G.

(We will see later that M0 has a lot of structure, not just a topology.) As we have
just seen, Φ−1(0) need not be a manifold and the action of G on the zero level set need
not be free. Thus there is no reason for the reduced space so defined to be a manifold
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(or even an orbifold). However, as Arms et al. have observed [3], it makes sense to
single out a certain subset of the set of continous functions on M0 as follows. Call a
function f : M0 → R smooth if there exists a smooth G-invariant function f̄ on M whose
restriction to the zero level set Φ−1(0) equals the pullback of f to Φ−1(0) by the orbit map
π : Φ−1(0) → Φ−1(0)/G = M0, i.e.,

f̄ |Φ−1(0) = π∗f.

Let us denote the set of smooth functions by C∞(M0). A map F : M0 → N , where N
is a manifold (or an orbifold, or another reduced space), is smooth if for any function
φ ∈ C∞(N) the pullback F ∗φ is a smooth function on M0, φ ◦ F ∈ C∞(M0). It is now
clear what we mean by two singular spaces being diffeomorphic.

1.1. Remark. If G is a discrete group acting symplectically on a manifold (M,ω), it
makes sense to define the corresponding moment map to be the zero map, since the Lie
algebra of G is trivial. The reduced space is then a symplectic orbifold M/G. (See [18] or
[15] for the definition of an orbifold.) For example, the action of Z2 on R2 described above
preserves the standard symplectic form dx1 ∧ dx2 and the reduced space is the symplectic
orbifold R2/Z2 with ring of smooth functions isomorphic to the collection of the smooth
even functions on R2.

1.2 The Reduced Space (T ∗R2)0 as an Orbifold

Let us now go back to our example. Consider the 2-plane

Λ = { (q1, q2, p1, p2) ∈ T ∗R2 : q2 = 0, p2 = 0 }.
This plane is symplectic, it is completely contained in the zero level set of the moment
map J and the SO(2)-orbit of any point (q, p) ∈ J−1(0) intersects Λ in exactly two points.
Indeed, a point (q, p) lies in the zero level set if and only if q and p are collinear as vectors
in R2. Consequently, J−1(0)/SO(2) is homeomorphic to Λ/Z2.

What about the two smooth structures? Clearly any SO(2)-invariant function on
T ∗R2 restricts to a Z2-invariant function on Λ. So the map Λ/Z2 → J−1(0)/SO(2) is
smooth. To show that this map is a diffeomorphism it suffices to prove that any (smooth)
Z2-invariant function on Λ extends to a (smooth) SO(2)-invariant function on T ∗R2. By
Schwarz’s theorem [20] any smooth Z2-invariant function on Λ is a smooth function of the
invariants (q1)2, p1

2 and q1p1 (these functions are a set of generators of the Z2-invariant
polynomials on Λ). Now (q1)2 is the restriction to Λ of the SO(2)-invariant (q1)2 + (q2)2.
Similarly,

p1
2 = (p1

2 + p2
2)

∣∣∣
Λ

q1p1 = (q1p1 + q2p2)
∣∣∣
Λ
.

Consequently the map J−1(0)/SO(2) → Λ/Z2 is smooth as well and, therefore, the two
reduced spaces are diffeomorphic.
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Note that the Z2-invariant functions on Λ form a Poisson subalgebra of C∞(Λ). So
the smooth functions on the reduced space (T ∗R2)0 form a Poisson algebra. This is an
example of the fact proved by Arms et al. (loc. cit.) that the set of smooth functions
on a reduced space M0 has a well-defined Poisson bracket induced by the bracket on the
original manifold M .

The Poisson bracket of C∞((T ∗R2)0) is compatible with the symplectic structure of
the pieces C1 and C0 of the reduced space (see (1)) in the following sense. A pair of
functions f and g in C∞((T ∗R2)0) restrict to a pair of smooth functions on the symplectic
manifold C1. The symplectic structure of C1 defines a Poisson bracket {·, ·}C1 . It is easy
to check that this new bracket coincides with the bracket induced by the Poisson structure
on C∞((T ∗R2)0), i.e.,

{f |C1 , g|C1}C1 = {f, g}(T ∗R2)0

∣∣∣
C1

.

Similarly, one can show that
{f, g}(T ∗R2)0

∣∣∣
C0

= 0,

which is consistent with viewing C0 as a zero-dimensional symplectic manifold. We thus
see that the Poisson bracket of C∞((T ∗R2)0) and the decomposition (1) of the reduced
space into symplectic manifolds are intimately related.

1.3 Reduction via Invariants

Let us present a different calculation of the reduced space (T ∗R2)0. The calculation uses
invariant theory, an approach advocated by R. Cushman. We will realize the reduced
space as a subspace of R4 cut out by the equations





x1
2 = x2

2 + x3
2

x4 = 0
x1 ≥ 0

(2)

In words, this reduced space is diffeomorphic to the top half, with vertex included, of the
standard cone in R3. Consider a change of variables





u1 = 1
2
(q2 − p1)

u2 = 1
2
(q1 − p2)

u3 = 1
2
(q1 + p2)

u4 = 1
2
(q2 + p1)

and set z1 = u1 + iv1 and z2 = u2 + iv2. We have thus identified T ∗R2 with C2. In these
complex coordinates the symplectic form is given by ω = i (dz1 ∧ dz̄1 + dz2 ∧ dz̄2), the
action of the circle group SO(2) ' U(1) by

eiθ · (z1, z2) = (e−iθz1, e
iθz2)
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and the moment map by J(z1, z2) = |z2|2 − |z1|2. It is easy to see that the set of (real)
invariant polynomials is generated by four polynomials:

σ1 = |z2|2 + |z1|2,
σ2 = z1z2 + z1z2,

σ3 = i(z1z2 − z1z2),

σ4 = |z2|2 − |z1|2 .
The map σ = (σ1, σ2, σ3, σ4) : C2 → R4 pushes down to an injective map σ̄ : C2/SO(2) →
R4. The invariants satisfy the relations

{
σ2

1 − σ2
4 = σ2

2 + σ2
3

σ1 ≥ 0.
(3)

Consequently the image of σ̄ is a subset of R4 cut out by the equations x2
1 = x2

2 + x2
3

and x1 ≥ 0. Therefore the reduced space (T ∗R2)0 := {σ4 = 0}/SO(2) embeds in R4 as
the subset cut out by (2) as claimed. If we ignore the fourth coordinate, we see that the
reduced space is simply a round cone in R3. Since the invariants σ1,. . . , σ4 are quadratic,
their linear span in C∞(C2) forms a four-dimensional Lie algebra under the standard
Poisson bracket. Alternatively, it is enough to note that

{σi, σ4} = 0 for i = 1,. . . , 4,

{σ1, σ2} = 2σ3 {σ1, σ3} = −2σ2 {σ2, σ3} = 2σ1.

Therefore, the correspondence

σ4 ↔
(

1 0
0 1

)
σ1 ↔

(
0 1
1 0

)

σ2 ↔
(
−1 0

0 1

)
σ3 ↔

(
0 −1
1 0

)

establishes an isomorphism between the Lie algebra spanned by the generators of the
invariants and gl(2,R). The image cut out by (2) is nothing more than half of the
nilpotent cone, the closure of the connected component of the principal nilpotent orbit in
gl(2,R).

More intrinsically this can be seen as follows. The moment map for the action of
Sp(T ∗R2, ω) ' Sp(2,R) on T ∗R2 ' R4 identifies sp(2,R) with the Poisson algebra of
quadratic polynomials. The polynomials that commute with σ4 then get identified with
u(1, 1), which is isomorphic to gl(2,R). We will come back to this point in Remark 5.4.

2 A Summary of the General Theory

The goal of this section is to introduce the notion of a stratified symplectic space, to
explain how this notion arises naturally in reduction and to describe some properties of
reduced spaces.
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2.1 Stratifications

The main idea of a stratification is that of a partition of a nice topological space into
a disjoint union of manifolds. Thus a manifold is trivially a stratified space. A more
interesting example of a stratified space is that of a cone on a manifold: given a manifold
M the open cone C̊M on M is the product M × [0,∞) modulo the relation (x, 0) ∼ (y, 0)
for all x, y ∈ M . That is, C̊M is M × [0,∞) with the boundary collapsed to a point, the
vertex ∗ of the cone. The cone C̊M is a disjoint union of two manifolds: M × (0,∞) and
the vertex ∗. Similarly one can consider the cone C̊(C̊M) on the cone C̊M ,

C̊(C̊M) =
(
C̊M × [0,∞)

) /
∼ .

The space C̊(C̊M) is a union of three manifolds:

the vertex ∗ of C̊(C̊M);
the open half line {∗} × (0,∞) through the vertex of C̊M ;
the manifold (M × (0,∞))× (0,∞).

In general we will see that locally a stratified space is a cone on a cone on a cone . . . . Let
us now make this precise.

2.1. Definition. A decomposed space is a Hausdorff paracompact topological space X
equipped with a locally finite partition X =

∐
i∈I Si into locally closed subsets Si called

pieces, each of which is a manifold.

We shall only consider decompositions each of whose pieces has the structure of a smooth
manifold. A given space may be decomposed in a number of different ways.

2.2. Example. Consider the subset of R2

Y = { (x1, x2) ∈ R2 : x2 = 0 } ∪ { (x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0 }.
The space Y can be broken up into a union of manifolds as

Y = {x2 = 0} ∪ {x1 > 0, x2 > 0} ∪ {x1 = 0, x2 > 0}, (4)

or as
Y = {x1 > 0, x2 > 0} ∪ {x1 = 0, x2 > 0} ∪ {(0, 0)}

∪{x1 < 0, x2 = 0} ∪ {x1 > 0, x2 = 0}. (5)

2.3. Example. A triangulated space is a decomposed space, if we declare the strata to
be the (combinatorial) interiors of the simplexes.

2.4. Example. If X =
∐

i∈I Si is a decomposed space, the cone C̊X has a natural de-
composition

C̊X = {∗} ∪ ∐

i∈I
Si × (0,∞).
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2.5. Example. The product of two decomposed spaces X =
∐
Si and Y =

∐
Pj is a

decomposed space

X × Y =
∐

i,j

Si × Pj.

Define the dimension of a decomposed space X to be dimX = supi∈I dimSi. We shall only
consider finite-dimensional spaces. A stratification is a particular kind of decomposition.
Its definition is recursive on the dimension of a decomposed space.

2.6. Definition (cf. [7]). A decomposed space X = {Si}i∈I is called a stratified space if
the pieces of X, called strata, satisfy the following local condition:

Given a point x in a piece S there exist an open neighbourhood U of x in X, an open ball
B around x in S, a compact stratified space L, called the link of x, and a homeomorphism
ϕ : B × C̊L→ U that preserves the decomposition, i.e., maps pieces onto pieces.

2.7. Remark. We say that a decomposed space X satisfies the condition of the frontier
if the closure of each piece is a union of connected components of pieces of X. It follows
easily from Definition 2.6 that stratified spaces satisfy the condition of the frontier.

2.8. Example. The decomposition (5) satisfies the frontier condition while (4) does not.
So decomposition (4) is not a stratification. We leave it to the reader to check that
decomposition (5) is a stratification.

2.9. Example. A triangulated space is stratified by the interiors of its simplexes. The
proof is an elementary exercise in PL-topology.

We are now in a position to define a stratified symplectic space.

2.10. Definition. A stratified symplectic space is a stratified space X together with a
distinguished subalgebra C∞(X) (a smooth structure) of the algebra of continuous func-
tions on X such that:

(i) each stratum S is a symplectic manifold;

(ii) C∞(X) is a Poisson algebra;

(iii) the embeddings S ↪→ X are Poisson.

Condition (iii) means that given two functions f, g ∈ C∞(X) their restrictions, f |S and
g|S, to a stratum S are smooth functions on S and their Poisson bracket at the points of S
coincides with the Poisson brackets of the restrictions defined by the symplectic structure
on S: {f, g}

∣∣∣
S

= {f |S, g|S}S.

2.11. Theorem (cf. [21]). Let (M,ω) be a Hamiltonian G-space with moment map J :
M → g∗ and suppose that the action of the Lie group G is proper. Then given an orbit
O ∈ g∗ the reduced space MO := J−1(O)/G is a stratified symplectic space.
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2.12. Theorem (loc. cit.). Assume that the level set J−1(O) is connected. Then the
reduced space MO has a unique open stratum. It is connected and dense.

2.13. Remark. We note two important cases when the level set is connected. First, if
M is a symplectic vector space and G acts linearly on M then the zero level set is conical
and so is connected. Secondly, F. Kirwan has proved [11] that if the moment map J is
proper (for example if M is compact) and M is connected then the zero level set J−1(0)
is connected. It follows then from the shifting trick, Proposition 2.16 below, that the level
set J−1(O) is connected for any compact orbit O.

The symplectic structure on the dense open stratum determines the Poisson structure
on the whole reduced space and, therefore, the symplectic structures on all the lower-
dimensional strata by condition (iii) of Definition 2.10. We will refer to the dense open
stratum as the top stratum. Condition (i) also has some interesting consequences. Suppose
that the top stratum is two-dimensional as in Section 1. Then all the other strata are zero-
dimensional, i.e., they are isolated points. There is a temptation in view of Theorem 2.12
to discard all the lower-dimensional strata. We will see in the next section that giving in
to such a temptation leads to a loss of interesting information.

2.2 Hamiltonian Mechanics on a Stratified Symplectic Space

Just as we defined in Section 1.1 a diffeomorphism between two reduced spaces, one can
define an isomorphism between two stratified symplectic spaces.

2.14. Definition. Let X and Y be two stratified symplectic spaces. A map φ : X → Y
is an isomorphism if φ is a homeomorphism and the pullback map φ∗ : C∞(Y ) → C∞(X),
f 7→ f ◦ φ is an isomorphism of Poisson algebras.

Note that we do not explicitly require that φ be strata-preserving. The reason for this is
that the stratification of a stratified symplectic space X is completely determined by the
Poisson algebra structure on the space of smooth functions on X, as we shall see shortly.

2.15. Example (the ‘shifting trick’). Let M be a Hamiltonian G-space with momentum
map J : M → g∗ and let O be any coadjoint orbit of G. Consider the symplectic
manifold M × O−, the symplectic product of M with the coadjoint orbit O, endowed
with the opposite of the Kirillov symplectic form. The diagonal action of G on M ×O−

is Hamiltonian with momentum map JO given by JO(m, ν) = J(m) − ν. It is easy to
check that the cartesian projection Π : M ×O− →M restricts to an equivariant bijection
J−1
O (0) ∼= J−1(O). As a result, Π descends to a bijection between reduced spaces,

Π̃ : (M ×O−)0
∼→MO.

2.16. Proposition. Assume that the orbit O is a closed subset of g∗. Then the map Π̃
is an isomorphism of stratified symplectic spaces.

See [5] for a proof.
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2.17. Definition. A flow {φt} on a stratified symplectic space X is a one-parameter
family of isomorphisms φt : X → X, t ∈ R, such that φt+s = φt ◦ φs for all t and s.

2.18. Definition. Let h be a smooth function on a stratified symplectic space X, h ∈
C∞(X). A Hamiltonian flow of h is a flow {φt} having the property that for any function
f ∈ C∞(X)

d

dt
(f ◦ φt) = {f, h} ◦ φt. (6)

This is Heisenberg’s form of Hamilton’s equations. Since the space X is not necessarily a
manifold, (6) cannot be reduced to a system of ordinary differential equations. For this
reason the existence and uniqueness of the Hamiltonian flow is not immediately obvious. If
X is a reduced space, the Hamiltonian flow does indeed exist and is unique [21]. Moreover,
the following lemma holds.

2.19. Lemma (cf. [21]). Let MO be the reduced space of a Hamiltonian G-space M at a
coadjoint orbit O of G. The Hamiltonian flow of a smooth function h ∈ C∞(MO) preserves
the stratification. The restriction of the flow of h to a stratum S equals the Hamiltonian
flow of the restriction h|S.

The connected components of the strata are the symplectic leaves of MO, i.e., given any
pair of points p, q in a connected component of a stratum of MO, there exists a piecewise
smooth path joining p to q, consisting of a finite number of Hamiltonian trajectories
of smooth functions on MO. Thus the Poisson structure of C∞(MO) determines the
stratification of MO.

2.20. Remark. It follows that a zero-dimensional stratum of the reduced space MO is
automatically a fixed point of any Hamiltonian flow. Thus the zero-dimensional strata of
MO determine relative equilibria in the original space M .

2.3 Orbit Types

We now explain where the stratification of a reduced space comes from and how it can be
computed. Let G be a Lie group acting properly on a manifold M . (For example if G is
compact then its action is automatically proper.) For a subgroup H of G denote by M(H)

the set of all points whose stabilizer is conjugate to H,

M(H) = {m ∈M : Gm is conjugate to H }.
By virtue of the slice theorem for proper actions (see e.g. Palais [17]), the set M(H) is
a smooth submanifold of M , called the manifold of orbit type (H). Thus we have a
decomposition M =

∐
H<GM(H) of M into a disjoint union of manifolds. Theorem 2.11

can now be restated as follows.

2.21. Theorem. Let (M,ω) be a Hamiltonian G-space with moment map J : M → g∗

and let O be a coadjoint orbit of G. Assume that the action of G on J−1(O) is proper.
Then the intersection of the preimage of the orbit J−1(O) with a manifold of the form
M(H), H < G, is a manifold. The orbit space
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(MO)(H) := (J−1(O) ∩M(H))/G

is also a manifold. There exists a unique symplectic form ω(H) on (MO)(H) such that
the pullback of ω(H) by the orbit map J−1(O) ∩ M(H) → (MO)(H) coincides with the
restriction to J−1(O) ∩ M(H) of the symplectic form ω. Finally, the decomposition of
MO := J−1(O)/G, the reduced space of M at the orbit O, given by

MO =
∐

H<G

(MO)(H),

is a symplectic stratification of MO.

It is a curious fact that each stratum (MO)(H) may also obtained by a regular Marsden-
Weinstein reduction. To keep the discussion simple let us assume that O is the zero orbit.
(This is no loss of generality by virtue of the shifting trick.) For a subgroup H of G define

MH = {m ∈M : Gm is exactly H }.
It is well-known that MH is a symplectic submanifold of M . The action of G does not
preserve the manifold MH . However, the smaller group L = NG(H)/H does act on MH ,
where NG(H) denotes the normalizer of H in G. Moreover, the action of L is Hamiltonian
and the corresponding moment map JL : MH → l∗ is essentially the restriction of the
moment map J : M → g∗ to MH .

2.22. Theorem (cf. [21]). Zero is a regular value of the moment map JL. The Marsden-
Weinstein reduced space (JL)−1(0)/L is symplectically isomorphic to the stratum (M0)(H).

This theorem provides us with a simple recipe for lifting integral curves of a reduced
Hamiltonian flow on the reduced space M0 to the level set J−1(0). Namely, let h̄ be an
invariant smooth function on the manifold M , and let h be the smooth function on the
reduced space induced by h̄. Let Φ̄t and Φt denote the Hamiltonian flows of h̄ and h,
respectively. If γ(t) is an integral curve of the function h, then it lies inside some stratum
(M0)(H), and the classical recipe for lifting a reduced flow (see e.g. [1]) can be used to lift
γ(t) to an integral curve of the Hamiltonian h̄, lying in the manifold MH .

2.4 The Closure of a Coadjoint Orbit as a Stratified Symplectic Space

The object of this section is to show that for a large class of Lie groups the closure of every
coadjoint orbit is a stratified symplectic space. In Section 4 we shall see that in some cases
a reduced space of a Hamiltonian space can be identified with the closure of a coadjoint
orbit of a different group.

2.23. Theorem. Let H be a reductive Lie group and let O ⊂ h∗ be a coadjoint orbit of
H. Then the closure Ō of O is a stratified symplectic space. The strata are the H-orbits
in Ō.
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Proof. We take the space C∞(Ō) of smooth functions on Ō to be the space of Whitney
smooth functions. Recall that a continuous map f : Ō → R is called Whitney smooth if
and only if there exists a function F ∈ C∞(h∗) such that F |Ō = f .

It is easy to see that C∞(Ō) is naturally a Poisson algebra. Indeed, the coadjoint orbits
are the symplectic leaves of the Poisson structure on h∗, so for all F , G ∈ C∞(h∗) and
x ∈ Ō the bracket {F,G}(x) depends only on the restrictions of F and G to the coadjoint
orbit of x, which is contained in Ō. Thus the bracket {·, ·}Ō given by

{F |Ō, G|Ō}Ō(x) := {F,G}(x)
is well-defined. The partition of Ō into coadjoint orbits is a decomposition. The local
finiteness follows from the assumption that H is reductive. The proof of the fact that Ō
is a stratified space requires some machinery.

2.24. Definition. Let X be a subspace of Rn. A decomposition of X is called a Whitney
stratification if the pieces of X are smooth submanifolds of Rn and if for each pair of pieces
P,Q with P ≤ Q the following condition of Whitney holds:

Whitney’s Condition B. Let p be an arbitrary point in P and let {pi} and {qi} be
sequences in P , resp. Q, both converging to p. Assume that the lines li joining pi and
qi converge (in the projective space RP n−1) to a line l, and that the tangent planes Tqi

Q
converge (in the Grassmannian of (dimQ)-planes in Rn) to a plane τ . Then l is contained
in τ .

It follows from Mather’s theory of control data (see [14]) that a Whitney stratified subset
of Euclidean space is a stratified space in the sense of our Definition 2.6. An outline of
the argument can be found in [8, page 40]. So it suffices to show that Ō is a Whitney
stratified space.

Since H is reductive, the coadjoint representation Ad∗ : H → Gl(h∗) is algebraic, i.e.,
the image Ad∗(H) is an algebraic subgroup of Gl(h∗) and the coadjoint action of Ad∗(H)
on h∗ is algebraic (see e.g. [23] for a proof). Now for every q ∈ h∗ the coadjoint orbit
Ad∗(H) · q is semialgebraic by the Seidenberg-Tarski theorem, since it is the image of
Ad∗(H) under the algebraic map ‘evaluation at q’, which sends a ∈ Ad∗(H) to a · q. Let
O1 and O2 be two orbits in Ō with O1 contained in the closure of O2. The two orbits are
smooth and semialgebraic. Therefore a theorem of Wall [24, p. 337] applies. In this case
the theorem says that Whitney’s condition B for the pair (O1,O2) holds at all points of
O1 except possibly for the points in a semialgebraic subvariety of dimension strictly less
than the dimension of O1. In particular condition B holds at some point of O1. But the
pair (O1,O2) is H-homogeneous, so condition B holds everywhere. This proves that Ō is
a Whitney stratified space. 2

3 Reduction of Cotangent Bundles

3.1 The Cotangent Bundle of a Quotient Variety

We have seen in Section 1 that the singular reduced space (T ∗R2)0 is a symplectic orb-
ifold. There are a few other interesting examples of singular reduced spaces coming from
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reduction of cotangent bundles which turn out to be orbifolds. In order to understand
what makes these examples work it will be helpful to consider lifted actions on cotangent
bundles in general. (We caution the reader that not every reduced space is an orbifold;
see [5] for a counterexample.) Let G be a Lie group acting smoothly and properly on a
smooth manifold X. Let x be a point in X and H the stabilizer of x in G. Since the
action is proper H is compact. Therefore there exists an H-equivariant splitting of the
tangent space to X at x:

TxX = Tx(G · x)⊕ V

where V is some subspace of the tangent space. Let B be a small H-invariant ball in V
centered at the origin. The slice theorem asserts that a neighbourhood of the orbit G · x
in X is G-equivariantly diffeomorphic to the associated bundle G×H B.

If the action of G is free, it follows from the slice theorem that X is a principal G-
bundle over the orbit space Q = X/G. Lift the action of G to an action on the cotangent
bundle. It is well-known (see e.g. [1]) that in this case the reduced space at the zero
level is simply the cotangent bundle of the base, (T ∗X)0 = T ∗Q. This result has been
recently generalized by Emmrich and Römer [6] to the case when the action of G on X is
of constant orbit type, that is, there exists a subgroup H of G such that for any x ∈ X
the orbit G · x is diffeomorphic to the homogeneous space G/H. Alternatively, by virtue
of the slice theorem, the action of G on X is of constant orbit type if and only if X is a
fibre bundle over the orbit space Q = X/G with typical fibre G/H. Emmrich and Römer
showed that in this case the reduced space (T ∗X)0 is again T ∗Q, the cotangent bundle of
the orbit space.

Let us now consider the general case of an action of G on X, that is, we make no
assumption concerning the structure of the orbits. Lift the action of G to an action on the
cotangent bundle T ∗X and let J : T ∗X → g∗ be the corresponding moment map. Recall
that for (x, η) ∈ T ∗xX the value of J is defined by

〈ξ, J(x, η)〉 = −〈ξX(x), η〉, (7)

where 〈·, ·〉 on the left hand side of the equation denotes the pairing between the Lie
algebra g and its dual, and on the right hand side the pairing between the tangent and
the cotangent spaces of X at x, while ξX(x) is the vector obtained by evaluating at x the
vector field defined by the infinitesimal action ξ on X. Let us compute the zero level set
of the moment map. It follows from (7) that

J−1(0) ∩ T ∗xX = { η : 〈ξX(x), η〉 = 0 for all ξ ∈ g }.
We have proved:

3.1. Lemma. Let J : T ∗X → g∗ be the moment map induced by the lift of the action G
on X to an action on T ∗X. Then the intersection of the zero level set of the moment map
with the fibre of the cotangent space at a point x ∈ X is (Tx(G · x))◦, the annihilator of
the tangent space to the orbit through x. Consequently,

J−1(0) =
∐

x∈X

(Tx(G · x))◦. (8)
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3.2. Remark. It follows from the description (8) of the zero level set that it retracts onto
X. In particular, if X is connected then the level set J−1(0) is connected as well.

For a point x in X we call the orbit space (Tx(G · x))◦/Gx the cotangent cone of X/G at
the point G · x ∈ X/G. It is easy to see that this definition does not depend on the choice
of the point x ∈ G ·x, i.e., if x′ = a ·x for some a ∈ G, then multiplication by a induces an
isomorphism between the orbit spaces (Tx(G · x))◦/Gx and (Tx′(G · x′))◦/Gx′ . Moreover,
the quotient

J−1(0)/G =
( ∐

x∈X

(Tx(G · x))◦
)/

G

is set-theoretically the disjoint union of all cotangent cones to X/G. Therefore the follow-
ing definition makes sense.

3.3. Definition. The cotangent bundle of an orbit spaceX/G is the stratified symplectic
space T ∗(X/G) := J−1(0)/G.

3.4. Example. Suppose that G is finite. Then J = 0, so T ∗(X/G) := J−1(0)/G =
T ∗(X)/G.

3.5. Remark. The cotangent bundle T ∗(X/G) is not a locally trivial bundle over the
base variety X/G, since the fibres may vary from point to point. Nor is the projection
T ∗(X/G) → X/G a stratification-preserving map.

3.6. Example. Let X = R2 and let G = SO(2) act on X in the standard way. Then
the quotient X/G is a closed half-line [0,∞). It consists of two strata: the end-point {0}
and the open half-line (0,∞). We saw in Section 1 that the cotangent bundle T ∗(X/G) of
the half-line is a cone. The fibre π−1(x) of the projection π : T ∗(X/G) → X/G is a line if
x ∈ (0,∞), but it is a closed half-line if x = 0. So T ∗(X/G) is not a locally trivial bundle
over X/G. Notice that π−1(0) intersects the top stratum of T ∗(X/G). So the preimage of
the stratum {0} is not a union of strata.

It seems unlikely to us that the smooth structure of a cotangent bundle T ∗(X/G) depends
on the way in which the orbit space X/G is written as a quotient. More precisely, we
make the following

3.7. Conjecture. Let G and H be Lie groups and let X, resp. Y , be smooth manifolds
on which G, resp. H act properly. Assume that the orbit spaces X/G and Y/H are
diffeomorphic in the sense that there exists a homeomorphism φ : X/G → Y/H such
that the pullback map φ∗ is an isomorphism from C∞(Y/H) := C∞(Y )H to C∞(X/G) :=
C∞(X)G. Then the cotangent bundles of X/G and Y/H are isomorphic in the sense of
Definition 2.14.

In his unpublished thesis [19], Schwarz showed that modulo some assumptions T ∗(X/G)
and T ∗(Y/H) are homeomorphic if X/G and Y/H are diffeomorphic. In the next sections
we prove a version of this result and provide some experimental evidence for Conjecture 3.7.
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3.2 Cross-sections

Let X be a smooth manifold and G a Lie group acting on X. Often one can compute the
cotangent bundle of the quotient variety X/G by means of a cross-section of the G-action,
i.e., a pair (Y,H), where Y is an embedded submanifold of X and H a Lie group acting on
Y such that every G-orbit in X intersects Y in exactly one H-orbit. If (Y,H) is a cross-
section, it is easy to see that the natural map Y/H → X/G is a homeomorphism. On an
additional assumption we show now that the cotangent bundles T ∗(X/G) and T ∗(Y/H)
are also homeomorphic.

3.8. Proposition. Let X be a Riemannian G-manifold. Assume that (Y,H) is a cross-
section of the G-action on X. Assume further that the cross-section is orthogonal in the
sense that for all y in Y

Ty(G · y) =
(
(TyY )⊥ ∩ (Ty G · y)

)
⊕

(
TyY ∩ Ty(G · y)

)
. (9)

Then the inclusion Y ⊂ X induces a homeomorphism (T ∗Y )0
'−→ (T ∗X)0.

3.9. Remark. Suppose the cross-section Y is the set of fixed points for some subgroup K
of G. Let H be the ‘Weyl group’ N(K)/K. The statement (9) regarding the orthogonality
of the intersections of the G-orbits with Y holds automatically in this case. This follows
easily from the proof of the slice theorem.

Proof. The metric allows us to identify equivariantly tangent and cotangent bundles of
X and of Y , giving rise to a symplectic embedding

T ∗Y ' TY ↪→ TX ' T ∗X.

Let JX : TX → g∗ and JY : TY → h∗ denote the moment maps. Let y be a point in Y .
Since the orbit G · y intersects Y in a single H-orbit, (9) implies that

Ty(G · y) =
(
(TyY )⊥ ∩ (Ty G · y)

)
⊕ (Ty(H · y))

is an orthogonal decomposition. Hence (Ty(G·y))⊥ = V1⊕V2, where V1 = (Ty H ·y)⊥∩TyY
and V2 = (Ty G · y)⊥ ∩ (TyY )⊥, so that

J−1
X (0) ∩ T ∗yX = V1 ⊕ V2,

J−1
Y (0) ∩ T ∗y Y = V1.

This gives us an inclusion J−1
Y (0) → J−1

X (0). Composing with the orbit map J−1
X (0) →

J−1
X (0)/G = (T ∗X)0 gives us a map from J−1

Y (0) to (T ∗X)0. We claim that this map
descends to a map from J−1

Y (0)/H to (T ∗X)0. Indeed, suppose (y′, η′) and (y, η) are two
points in J−1

Y (0) and a ·(y′, η′) = (y, η) for some a ∈ H. By assumption G ·y∩Y = H ·y, so
there is b ∈ G with b · y′ = y. It is therefore no loss of generality to assume that y = y′. In
this case η and η′ both lie in V1 and a ∈ Hy. Locally near y the space Y is H-equivariantly
diffeomorphic to the associated bundle H ×Hy V1, so locally
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Y/H ' (H ×Hy V1)/H = V1/Hy.

Here Hy denotes the stabilizer of y in H. Similarly,

X/G ' (G×Gy (V1 ⊕ V2))/G = (V1 ⊕ V2)/Gy,

where Gy denotes the stabilizer of y in G. We have assumed that (Y,H) is a cross-section
for the G-action, and therefore X/G ' Y/H. It follows that η, η′ ∈ V1 lie in the same
Hy-orbit if and only if η, η′ ∈ V = V1 ⊕ V2 lie in the same Gy orbit. We conclude that
there is c ∈ G with c · (y, η) = (y′, η′), thereby proving the existence of a continuous map

ϕ : (T ∗Y )0 = J−1
Y (0)/H → (T ∗X)0.

A similar argument shows that ϕ is bijective and that ϕ−1 is continuous. 2

3.10. Remark. This proof shows that each G-orbit in J−1
X (0) intersects J−1

Y (0) in a single
H-orbit, in other words, that the pair (J−1

Y (0), H) is a cross-section of the G-action on
J−1

X (0).

3.3 Row, Row, Row your Boat

Let X be the unit two-sphere in R3 and let G be the circle acting on X by rotations on
the z-axis. The space X is the configuration space of the spherical pendulum and G is its
group of symmetries. Now let Y be a great circle through the poles and let H be the group
Z2 acting on Y by reflection in the z-axis. Then the pair (Y,H) is obviously an orthogonal
cross-section of the G-action on X. Let JX be the momentum map of the lifted action of
G on T ∗X. The lifted action of H on T ∗Y has trivial momentum map, since H is finite.
By Proposition 3.8, the pair (T ∗Y,H) is a cross-section for the G-action on J−1

X (0). The
physical meaning of this fact is that a spherical pendulum with zero angular momentum
is just a planar pendulum.

Let us describe the orbifold (T ∗Y )/H in some detail. We identify the meridian Y with
S1 = { eiθ : θ ∈ R } in such a manner that the south pole is mapped to 1 ∈ S1. We cover
(T ∗Y )/H = (S1×R)/Z2 with two orbifold charts. The domain of both charts is the strip
D = (−π, π)×R ⊂ R2 equipped with the Z2-action generated by reflection in the origin.
The chart maps ψ1 and ψ2 are given by:

ψ1 : D → (S1 ×R)/Z2, (θ, r) 7→ [eiθ, r],

ψ2 : D → (S1 ×R)/Z2, (θ, r) 7→ [−eiθ, r],

where [x, y] denotes the equivalence class of (x, y) ∈ S1 ×R. It is easy to write down the
transition map from one chart to the other. The resulting space has the shape of a ‘canoe’
with two isolated conical singularities. We encourage the reader to construct this orbifold
with paper and glue.

We claim that the natural homeomorphism

φ : (T ∗Y )/H = T ∗(Y/H) → T ∗(X/G) (10)

15



is an isomorphism of reduced spaces. It obviously suffices to show that φ : Oi → φ(Oi) is
an isomorphism, where Oi = ψi(D) for i = 1, 2. Note that φ(ψi(D)) is the space obtained
by reducing T ∗(X − {∗}) at zero, where {∗} is either the south or the north pole of the
sphere X, depending on whether i = 1 or 2. But X−{∗} is G-equivariantly diffeomorphic
to the plane R2, if we let G = SO(2) act on R2 in the standard fashion. So the maps
φ : Oi → φ(Oi) are, up to changes of coordinates, equal to the map R2/Z2 → (T ∗R2)0

exhibited in Section 1, which is an isomorphism. Therefore, the map (10) is also an
isomorphism.

The two isolated singularities of the ‘canoe’ are relative equilibria of the spherical
pendulum. Both are actually absolute equilibria, corresponding to the pendulum point-
ing straight up or down. For an alternative computation of the ‘canoe’ using invariant
polynomials, see [3].

3.4 Reduction of the Cotangent Bundle of a Symmetric Space

Consider the special orthogonal group SO(n) acting by conjugation on S2(Rn), the space
of real symmetric n× n-matrices. Let Sn denote the symmetric group on n letters acting
on Rn by permuting the coordinates and hence on T ∗Rn by permuting the coordinates
in pairs. Note that Rn embeds into S2(Rn) as the set of diagonal matrices. Since any
symmetric matrix is diagonalizable, the pair (Rn, Sn) is a cross-section of the SO(n)-
action on S2(Rn). Therefore S2(Rn)/SO(n) is homeomorphic to Rn/Sn. The vector
space S2(Rn) has a natural SO(n)-invariant inner product:

((aij), (bkl)) = trace((aij)(bkl)) =
∑

ij

aijbij.

Remark 3.9 implies that the cross-section (Rn, Sn) is orthogonal. Therefore Proposition 3.8
provides us with a homeomorphism φ : (T ∗Rn)0 → (T ∗S2(Rn))0. We contend that φ is
an isomorphism of reduced spaces. Since the group Sn is finite, the zero level set of the
Sn-moment map is the whole space Rn ×Rn, which embeds naturally into T ∗S2(Rn) '
S2(Rn)× S2(Rn). In fact Rn ×Rn is a subset of the zero level set of the SO(n)-moment
map J : T ∗S2(Rn) → so(n)∗. Clearly any SO(n)-invariant function on T ∗S2(Rn) restricts
to an Sn-invariant function on Rn×Rn. This implies that φ∗C∞((T ∗S2(Rn))0) is contained
in C∞((T ∗Rn)0) = C∞(Rn×Rn)Sn . To show that φ is an isomorphism of reduced spaces
we need to prove that φ∗C∞(T ∗S2(Rn)) is equal to C∞((T ∗Rn)0). By the same argument
as the one we have used in the example of Section 1, it is enough to show that there
is a set {σij} of polynomials that generates the Sn-invariant polynomials on Rn × Rn

and has the property that each σij is the restriction of an SO(n)-invariant polynomial on
S2(Rn)× S2(Rn). According to Weyl [25], the polynomials

σkl(x, y) =
∑

ij

xk
i y

l
j, 1 ≤ k, l ≤ n, (11)

generate the Sn-invariant polynomials on Rn×Rn. On the other hand, σkl is the restriction
of the SO(n)-invariant polynomial τkl(A,B) = trace(AkBl), so the polynomials (11) are
the required set. We have thus proved that
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(T ∗S2(Rn))0 ' (Rn ×Rn)/Sn

as stratified symplectic spaces.
More generally, let G be a semisimple Lie group over R, K a maximal compact sub-

group of G and g = k ⊕ p a Cartan decomposition of g = Lie(G). Then K acts on p
by conjugation. Pick a maximal abelian subspace a of p and let W = N(a)/C(a) denote
the Weyl group. It is well-known that the restriction map R[p] → R[a] from polynomials
on p to polynomials on a gives rise to an isomorphism R[p]K → R[a]W . The quotient
spaces a/W (the Weyl chamber) and p/K are therefore isomorphic. The computation
above verifies Conjecture 3.7 in the special case G = Sl(n,R), showing that we have an
isomorphism of cotangent bundles, (T ∗a)/W = T ∗(a/W ) ∼= T ∗(p/K). For arbitrary G,
Conjecture 3.7 would follow from (but is not equivalent to):

3.11. Conjecture. The restriction map R[p× p]K → R[a× a]W is surjective.

4 Poisson Embeddings of Reduced Spaces

The goal of this section is to show that in some cases a reduced space of a symplectic
representation space can be realized as the closure of a coadjoint orbit in the dual of some
Lie algebra (cf. Section 2.4). For the remainder of this section, let K be a compact group
acting linearly on a symplectic vector space V and preserving its symplectic form ω. Then
the action of K is Hamiltonian. Let J : V → k∗ denotes the corresponding moment map.
The ring of invariant polynomials R[V ]K is finitely generated. We now make the following
assumption:

Assumption Q. The ring of all K-invariant polynomials on V is generated by the ho-
mogeneous quadratic K-invariant polynomials.

The space of homogeneous quadratic polynomials, R2[V ], and the space of invariant poly-
nomials are both closed under the Poisson bracket. It follows that their intersection,

h := R2[V ]K ,

which is the space of invariant homogeneous quadratic polynomials, is also closed under
the Poisson bracket. The algebra R2[V ] is canonically isomorphic to the Lie algebra sp(V )
of all infinitesimally symplectic linear transformations: the isomorphism takes a quadratic
polynomial to its associated Hamiltonian vector field. The inverse map sends ξ ∈ sp(V, ω)
to the polynomial 1/2ω(ξv, v). Thus we can view h as a subalgebra of sp(V ).

Consider the map σ : V → h∗ defined by

〈σ(v), P 〉 = P (v),

where P ∈ h and 〈·, ·〉 denotes the canonical pairing of a vector space with its dual. This is
the Hilbert map of classical invariant theory. It is manifestly K-invariant, and so induces
a map σ̄ : V/K → h∗. Assumption Q above implies that σ separates K-orbits. Thus σ̄ is
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a homeomorphism onto its image σ(V ) ⊂ h∗. Let H be the connected subgroup of Sp(V )
whose Lie algebra is h. Note that the map σ is the momentum map for the H-action on
V . It is H-equivariant. (Here H acts on h∗ by the coadjoint action.)

It is perhaps helpful to rephrase the above discussion in coordinates. Let σ1, . . . , σN

be a basis for the space h of invariant homogeneous quadratic polynomials. The Poisson
bracket of any two generators is again a homogeneous quadratic K-invariant polynomial
(or zero), which demonstrates that h is a Lie algebra. The map σ, in terms of this choice
of coordinates on h∗, is

σ : V → RN , v 7→ (σ1(v), . . . , σN(v)),

where we have identified RN with h∗, the isomorphism being the one associated to choosing
the basis of h∗ which is dual to the basis σi.

4.1. Remark. Motivated by problems in representation theory, Howe [9] defined a re-
ductive dual pair to be a pair of reductive subgroups of Sp(V ) that are each other’s
centralizers. The groups K and H above clearly commute with each other and it is easy
to see that H is (the identity component of) the centralizer of K. It is not true in general
that K is the centralizer of H, as the example of K = SU(2) acting on V = C2 clearly
indicates. One can get around the problem of K not being the full centralizer of H in
Sp(V ) by replacing it with K ′ := the centralizer of H in Sp(V ). However, it is not at all
clear why K ′ and H should be reductive. Also, given a dual pair (K,H) with K compact,
it is not clear whether the quadratic polynomials corresponding to h = Lie(H) generate
R[V ]K .

However, in three interesting physical examples of symplectic representations of K
satisfying condition Q, the groups K and H do form a reductive dual pair:

1. the planar N -body problem (SO(2) acting diagonally on (T ∗R2)N);

2. the d-dimensional N -body problem (O(d) acting diagonally on (T ∗Rd)N), this ex-
ample is worked out in the next section;

3. U(p) acting on Cp ⊗Cq.

These examples seem to hint at an interesting connection between reductive dual pairs
and condition Q.

Now let O be a coadjoint orbit of K. Consider the corresponding reduced space VO =
J−1(O)/K. We claim that the map σ̄ : VO → h∗ induced by the H-momentum map σ is
a Poisson embedding in the following sense.

4.2. Definition. Let X be a stratified symplectic space and let P be a Poisson manifold.
A proper Poisson embedding of X into P is a proper injective map j : X → P such that

(i) the pullback by j of every smooth function on P is a smooth function on X;

(ii) the pullback map j∗ : C∞(P ) → C∞(X) is surjective;
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(iii) the pullback map j∗ is a morphism of Poisson algebras.

We mention a few obvious consequences of this definition: the image of a proper Poisson
embedding j : X → P is closed; j is a homeomorphism onto its image; the kernel of j∗,
which is the set of smooth functions vanishing on the image j(X), is a Poisson ideal inside
C∞(P ); and the set of Whitney smooth functions on j(X) is a Poisson algebra, which is
isomorphic to C∞(X). Therefore j(X) is a stratified symplectic space (stratified by the
images of the strata in X) and j : X → j(X) is an isomorphism of stratified symplectic
spaces.

4.3. Theorem. Suppose that assumption Q holds. Let H be the closed connected Lie
subgroup of Sp(V ) described above, and σ : V → h∗ its associated momentum map. Let
O be an arbitrary coadjoint orbit of K. Then the following statements hold.

1. The map σ̄ : VO → h∗ is a proper Poisson embedding of the K-reduced space VO
(where the bracket on h∗ is the usual Lie-Poisson bracket);

2. Each connected component of a symplectic stratum of VO is mapped symplectomor-
phically by σ̄ onto a coadjoint orbit of H contained in σ̄(VO);

3. The image σ̄(VO) of the Poisson embedding is the closure of a single coadjoint orbit
of H.

Proof. 1. We check the conditions of Definition 4.2. The square of the distance to the
origin in V is aK-invariant polynomial function. From this it follows easily that the Hilbert
map σ is proper. Hence the map σ̄ : VO → h∗ is proper. It is injective because the Hilbert
map separates the K-orbits. It is not hard to see from the definition of smooth functions
on VO that σ̄ pulls back smooth functions to smooth functions. That the pullback map
σ̄∗ : C∞(h∗) → C∞(VO) is surjective is an immediate consequence of Schwarz’s theorem
[20]. It is a homomorphism of Poisson algebras, because the Hilbert map σ, being the
H-momentum map, is a Poisson map.
2. The connected components of the symplectic strata are the symplectic leaves of the
reduced space VO, i.e., they are swept out by the Hamiltonian flows of smooth functions
(see Lemma 2.19). Since the Poisson algebras C∞(VO) and C∞(j(VO)) are isomorphic,
the embedding j maps leaves onto leaves. But the leaves of h∗ are simply the coadjoint
H-orbits. (Here we use that H is connected.)
3. Theorem 4.5 below states that the level set J−1(O) is connected. It follows now from
Theorem 2.12 that the reduced space VO has a connected open dense stratum Stop; so the
set σ̄(VO) has to be the closure of σ̄(Stop), which is a single coadjoint orbit by statement 2
of this theorem.

2

4.4. Remark. Denote the stratified symplectic space σ̄(VO) by XO. If the group H is
semisimple then we use a Killing form to identify h with h∗ in anH-equivariant way. IfO is
the zero orbit, then the image X0 = σ(J−1(0)) described in Theorem 4.3 is neccessarily the
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closure of a nilpotent orbit. This is because J(0) = 0 and σ(0) = 0 so that 0 ∈ σ(J−1(0)).
And the only orbits whose closure contains 0 are the nilpotent ones.

More generally XO contains a single semisimple orbit orbit Q and any other orbit P
contained in XO fibres over Q. The fibration πP : P → Q is simply the projection of
η ∈ P onto its semisimple part, πP (η) = ηss. The fibre of πP is the orbit of the nilpotent
part ηn of η under the action of the stabilizer group Hηss of ηss. Note that ηn is nilpotent
in Lie(Hηss). It follows that one can view the map π : XO → Q as a fibre bundle with
typical fibre being the closure of a nilpotent orbit in some smaller reductive group. These
facts about the structure of orbits of a semisimple group are well-known and we refer the
reader to [23] for proofs and further references. It was shown in [12] that if a (co)adjoint
orbit P fibres over an semisimple orbit Q then the fibration is symplectic. Thus the map
π : XO → Q can be viewed as a fibration of stratified symplectic spaces.

To conclude this section, we prove the connectivity statement used in the proof of Theo-
rem 4.3. This result does not use assumption Q.

4.5. Theorem. Let K be a compact group acting linearly on a symplectic vector space V
and preserving its symplectic form ω. Let J : V → k∗ denotes the corresponding moment
map. Then for any coadjoint orbit O of K the set J−1(O) is connected.

Proof. Without loss of generality we may assume that V is Cn with the standard sym-
plectic form and K is a subgroup of the unitary group U(n). Let O be a coadjoint orbit of
K. We will show that for any r > 0 the closed ball B̄(r) = { z ∈ Cn : |z|2 ≤ r } intersects
J−1(O) in a connected set. Clearly this will prove the theorem.

Note first that the central circle subgroup of U(n),

U(1) =







eiθ

. . .

eiθ


 : θ ∈ R





commutes with K and therefore preserves the level set J−1(O). Consider now the space
N(r) obtained from B̄(r) by identifying the points on the boundary that lie in the same
U(1)-orbit. Let q : B̄(r) → N(r) denote the quotient map. Since J−1(O) is U(1)-invariant
and the fibres of q are connected, the set J−1(O) ∩ B̄(r) is connected if and only if its
image under q is connected in N(r). We will see shortly that N(r) is K-equivariantly
symplectomorphic to CP n(r), the complex projective space with the symplectic form
equal to the standard one times r. We will also see that under this identification the
action of K on N(r) becomes Hamiltonian with the moment map Jr : N(r) → k∗ having
the property that J−1

r (O) = q(J−1(O) ∩ B̄(r)).
Consider the action of U(1) on Cn × C corresponding to the Hamiltonian φ(z, w) =

|z|2 + |w|2 − r for (z, w) ∈ Cn ×C. Then

φ−1(0) = { (z, w) ∈ Cn ×C : |z|2 + |w|2 = r }
and φ−1(0)/U(1) ' CP n(r). Now, K acts on Cn × C by acting trivally on the second
factor. Since the actions of K and U(1) on Cn × C commute, the action of K descends
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to a Hamiltonian action on the reduced space CP n(r). The corresponding moment map
Jr is obtained by extending J : Cn → k∗ by zero to a map on Cn × C, restricting the
extension to the sphere φ−1(0) and pushing it down to a map on the quotient CP n(r).

To get the identification of N(r) with CP n(r) we start out by embedding B̄(r) into
φ−1(0) via the map

f : z 7→
(
z,

√
r − |z|2

)
.

Composing f with the orbit map φ−1 → φ−1/U(1) we get a map f ′ from B̄(r) onto
CP n(r). It is easy to see that f ′ descends to a homeomorphism f ′′ from N(r) to CP n(r).
It is also easy to see that

f ′′(q(J−1(O) ∩ B̄(r))) = f ′(q(J−1(O) ∩ B̄(r))) = J−1
r (O).

Obviously, the moment map Jr : CP n(r) → k∗ is proper. So Remark 2.13 implies that
the set J−1

r (O) is connected and we are done. 2

5 Reduced Space at Angular Momentum Zero for n Particles in

d-space

Let V be the phase space for n particles in d-dimensional Euclidean space:

V = T ∗Rd × T ∗Rd × . . . T ∗Rd (n times)
= Rd ×Rd × . . .Rd (2n times).

Take G = O(d) to be the orthogonal group associated to Rd, with g ∈ G acting on V
according to

g · (q1, p1, q2, p
2, . . . , qn, p

n) = (gq1, gp
1, gq2, gp

2, . . . , gqn, gp
n).

We will use Greek indices, µ, ν, etc. for the particle labels, and Latin indices i, j etc.
to index the coordinates on the Euclidean space Rd. So V has coordinates (qi

µ, p
ν
j ), for

µ, ν = 1, 2,. . . , n and i, j = 1, 2,. . . , d, which shows that

M ∼= Rd ⊗R2n. (12)

Under this isomorphism the G-action becomes g(x ⊗ z) = gx ⊗ z. The symplectic form
on V is Ω = Σi,µdq

i
µ ∧ dpµ

i . The momentum map for the O(d)-action is

J(q, p) = Σµqµ ∧ pµ,

where we have used the inner product on Rd to identify Λ2Rd with the Lie algebra of
O(d) and its dual space. Equation (12) expresses V as the tensor product of the inner
product space Rd with the symplectic vector space R2n. Since h ∈ H := Sp(n,R) acts
by h(x ⊗ z) = x ⊗ hz, it is clear that the actions of G = O(d) and of H commute. The
momentum map for the Sp(n,R)-action is given by
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σ(q, p) =

(
qµ · qν qµ · pν

pµ · qν pµ · pν

)
. (13)

Here ‘·’ denotes the inner product on Rd: qµ ·qν = Σiq
i
µq

i
ν . Thus S = σ(q, p) is a symmetric

2n× 2n-matrix which we have written in terms of four n× n-blocks.
In saying that σ is the momentum map we are identifying the space S2(R2n) of symmet-

ric 2n×2n-matrices on R2n with the dual of the Lie algebra of sp(n,R) since the target of
the map σ is S2(R2n). What is the identification S2(R2n) ∼= sp(n,R)∗? The trace pairing
(Killing form) (S1, S2) 7→ traceS1S2 induces an isomorphism sp(n,R) ∼= sp(n,R)∗. The
identification of S2(R2n) with sp(n,R) is described by mapping S to JS where J is the
symplectic operator: J2 = −1, JJ t = I, Ω(v, w) = 〈v, Jw〉. Composing these identifica-
tions yields the desired one: sp(n,R)∗ ∼= S2(R2n). Under this isomorphism the coadjoint
action of Sp(n,R) intertwines with the action S 7→ gSgt of Sp(n,R) on S2(R2n).

The ‘first main theorem of invariant theory’ (see e.g. [25, Theorem 2.9A]) states that the
entries of S = σ(q, p) in the formula for σ form a basis for the O(d)-invariant polynomials
on V . Consequently assumption Q of the previous section holds and so the restriction
of σ̄ to J−1(0)/O(d) is an isomorphism onto its image. (As in the previous section, σ̄ :
M/O(d) → S2(R2n) is the map induced by σ.) What is its image?

Let Σ ⊂ S2(R2n) denote the set of nonnegative symmetric matrices whose kernel is
coisotropic. (This means that the kernel contains its Ω-orthogonal complement.) Let
Σk ⊂ Σ denote the subset of Σ consisting of matrices of rank k, and let

Σk = ∪i≤kΣk (14)

denote the subset of matrices with rank at most k. As a subset of sp(n,R) the set Σj is a
single coadjoint orbit, and Σk = Σk is the union of k + 1 nilpotent orbits, these being the
Σj, j ≤ k, with Σ0 = {0}. These are the strata of Σk. We will show that σ(J−1(0)) = Σk

where k = min(d, n). Once this is shown we will have proven:

5.1. Theorem. Let V0 denote the reduced space at angular momentum 0 for the action
of O(d) on the phase space V of of n particles in d-space. Then V0 is isomorphic as a
stratified symplectic space to the set Σk described in (14), where k = min(d, n). The
isomorphism is the one induced by the Sp(n,R)-momentum map, namely the restriction
of σ̄ to J−1(0)/O(d).

Proof. We proved in the previous section that σ induces an isomorphism with all the
desired properties. It remains to prove that the image of σ restricted to J−1(0) is Σk. We
have
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σ(q, p) =




q1
q2
...
qn
p1

p2

...
pn




(
(q1)

t (q2)
t . . . (qn)t (p1)t (p2)t . . . (pn)t

)
.

From this expression, it is clear that σ(q, p) is nonnegative. Since each of the two factors
of σ(q, p) is a matrix with rank less than or equal to d, the matrix σ(q, p) has rank less
than or equal to d.

5.2. Remark. These are the only constraints on the image of σ. This is the content of
the the ‘second main theorem of invariant theory’ for the orthogonal group [25, Theorem
2.17A]. However, we do not need this result to prove our theorem, as it will in our case
follow from equivariance.

Now let us restrict σ to J−1(0). There we have q1 ∧ p1 + q2 ∧ p2 + . . . qn ∧ pn = 0. Let us
assume for simplicity that the qi are linearly independent. Then Cartan’s lemma (see e.g.
[22, p. 19]) states that we have pµ = ΣSµνqν for some symmetric n×n matrix S. A direct
calculation now shows that in this case

σ(q, p) =

(
M MS

SM SMS

)
, (15)

where Mµ,ν = qµ · qν is the matrix of inner products. Note that

σ(q, p)

(
S
−I

)
= 0,

from which it follows that the kernel of the map σ(q, p) contains the Lagrangian subspace
{ (Sy,−y) : y ∈ Rn }. But any subspace containing a Lagrangian one is coisotropic, so we
have proved our result in this particular case.

In general the qi are not linearly independent. But a slight variant of the proof of Car-
tan’s lemma shows us that the dimension of the space spanned by {q1, q2, . . . , p1, p2, . . . , pn}
is less than or equal to n. It follows from the factorization of σ that the rank of σ(q, p) is
always less than or equal to n. We have proved the statement regarding the rank of the
matrices in σ(J−1(0)).

A few moments’ reflection should convince the reader that each Σj is a single orbit of
the Sp(n,R)-action on S2(R2n). Hint: Write R2n = L1⊕L2 where the Li are Lagrangian
subspaces and A ∈ Σj annihilates L2. Note that Sp(n,R) acts transitively on pairs (L1, L2)
of transverse Lagrangian subspaces, and that, relative to this splitting g ⊕ gt ∈ Sp(n,R)
for any g ∈ Gl(L1). (The symplectic form allows us to identify L2 with the dual of L1.)
Now suppose that we can show that there is some matrix A ∈ Σk ∩ σ(J−1(0)). Then it
follows from the Sp-equivariance of σ and the Sp-invariance of J that Σk ⊂ σ(J−1(0)). It
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is also clear that the closure of Σk is Σk. The map σ, being homogeneous and quadratic,
is a closed map. It now follows from Σk ⊂ σ(J−1(0)) that σ(J−1(0) = Σk as desired. Thus
all we have to do is produce a single matrix A in Σk which we can be written in the form
σ(q, p) for some (q, p) ∈ J−1(0). Take (q, p) = (q, 0). If d ≥ n, set q = (e1, e2, . . . en), the
first n elements of an orthonormal basis {(e1, e2, . . . , ed} for Rd. Then (see (15))

σ(q, p) =

(
I 0
0 0

)
,

where I is the n× n-identity matrix. This proves the theorem for the case d ≥ n. In case
d < n, take q = (e1, e2, . . . , ed, 0, . . . , 0). Then σ(q, p) again has the above form, except
now I is the d× d-identity matrix. 2

5.3. Remark. The dual pair just discussed, (O(d), Sp(n,R)), is the subject of [2]. See
also [9] and [10, pp. 501–507].

5.4. Remark (O(d) versus SO(d)). Suppose, in the above discussion, that we replace
O(d) by the special orthogonal group SO(d). Then the corresponding reduced space will
be a branched double cover over the O(d)-reduced space. This is because O(d)/SO(d) is
the two-element group. Assumption Q fails for the group SO(d). Thus we cannot use dual
pairs alone to construct its reduced space. The additional, nonquadratic invariants are the
d-ple products det[v1, . . . , vd], where the vi are any of the vectors q1, . . . , p

n. They satisfy
the relation det[v1, . . . , vd]

2 = det[vi · vj]. In the special case d = 2, the d-ple product is
quadratic and we can realize the reduced space via dual pairs. Let us consider the case of
our example in Section 1: d = 2, n = 1. The invariants were written down in Section 1.3 as
(σ1, σ2, σ3, σ4). σ3 is the 2-ple product, i.e., the signed area. The other invariants are O(2)-
invariants. There is one relation, equation (3). It is quadratic in σ3, explicitly showing
how the SO(2)-reduced space is a branched double cover of the O(2)-reduced space.
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