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Le timbre de la trompette est noble et éclatant; il convient aux idées guerrières, aux cris
de fureur et de vengeance, comme aux chants de triomphe, il se prête à l’expression de
tous les sentiments énergiques, fiers et grandioses, à la plus part des accents tragiques.
Il peut même figurer dans un morceau joyeux, pourvu que la joie y prenne un caractère
d’emportement ou de grandeur pompeuse.

—H. Berlioz [4]

Introduction

Symplectic reduction of Hamiltonian spaces is a rich source of symplectic manifolds. It has
been widely applied to the study of Hamiltonian systems with symmetries since the days
of Jacobi (see [16] for a historical survey). Symplectic reduction also arises naturally in
classical field theories, such as Yang-Mills theory, and in Guillemin’s and Sternberg’s work
[8] on asymptotic multiplicity formulas for group representations. A general framework for
symplectic reduction at regular values of a momentum map has been set up by Meyer [18]
and by Marsden and Weinstein [17]. In many of the applications, however, one would like
to carry out reduction at singular values of a momentum map. It is therefore of interest
to devise a reduction scheme for singular levels of a momentum map and to study the
singularities arising from it.

Over the past decade many results have been obtained in this direction. See [2] for
a survey of and a comparison between various different approaches. Our point of view
is that a reduced space of a Hamiltonian action of a compact Lie group is a stratified

∗Partially supported by a grant from the Netherlands Organization for Scientific Research (NWO)
†Appeared in Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990) (P. Donato

et al., eds.), Progress in Mathematics, vol. 99, Birkhäuser, Boston, 1991.
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symplectic space. (Our results hold also if the group is noncompact, provided that the
action is proper.) Roughly speaking, a stratified symplectic space is a topological space
X with the following properties:

i. the space X decomposes into a locally finite disjoint union of symplectic manifolds;

ii. these manifolds fit together in a nice way, i.e., the decomposition is a stratification;

iii. there is given a subclass of the set of continuous functions on X, a set of ‘smooth
functions’, which forms a Poisson algebra;

iv. the inclusion of each stratum is a Poisson map;

v. there is a unique open stratum in X. It is open and dense in X.

This paper is an overview of joint work of the first author with J. Arms and M. Gotay
[1], and of the second author with E. Lerman [13], [21]. The exposition is informal; for
most of the proofs we shall refer to the original articles. Instead we shall consider a few
simple examples of the theory in detail. Further examples will be described in [14]. We
would like to suggest the following two problems for future research:

A. Try to generalize the results of this paper to any of the various infinite-dimensional
situations arising in mathematical physics, e.g. Yang-Mills theory (cf. [3]) and the
Einstein equations (cf. [11]);

B. Try to generalize the multiplicity formulas of Guillemin and Sternberg [8] to singular
reduced spaces, using the concept of a stratified symplectic space.

1 A Poisson Bracket on a Reduced Phase Space

Throughout this article (M,ω) will denote a symplectic manifold and G a compact Lie
group acting on M in a Hamiltonian fashion, with momentum map J : M → g∗. We
shall always assume that the map J is equivariant with respect to the given action on M
and the coadjoint action on g∗. In the sequel we shall make frequent use of the following
equality, which follows easily from the definition of a momentum map:

im dJp = anngp, (1)

for all points p in M . Here im dJp denotes the image of the tangent map dJp, gp denotes
the infinitesimal stabilizer of the point p, and anngp denotes the annihilator of gp in g∗.

For any point µ in g∗, let Oµ denote the coadjoint orbit through µ. If µ is a regular
value of the momentum mapping, the pre-image J−1(Oµ) of the coadjoint orbit is a G-
invariant submanifold of M , and it follows immediately from (1) that the action of G on
J−1(Oµ) is locally free. Marsden and Weinstein defined the reduced space Mµ to be the
quotient orbifold

Mµ = J−1(Oµ)/G,
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and they showed that there is a unique symplectic form ωµ on the space Mµ such that the
pullback of ωµ to J−1(Oµ) equals the restriction of the form ω to J−1(Oµ).

If µ is not a regular value of J , then the set J−1(Oµ) is not in general a manifold, and
one sees from (1) that the action of G on J−1(Oµ) is no longer locally free. However, the
definition Mµ = J−1(Oµ)/G still makes sense topologically. We will see that the space
Mµ, which is not in general a manifold, or even an orbifold, has many nice properties.

In the first place, there is a natural concept of ‘smooth functions’ on Mµ. A continuous
function f : Mµ → R is called smooth if there exists a smooth G-invariant function
F : M → R such that

F |J−1(Oµ) = f ◦ π,

where π : J−1(Oµ) → Mµ is the quotient map. We denote the algebra of all smooth
functions on Mµ by C∞(Mµ).

If the group G is finite, its ‘Lie algebra’ is {0} and the ‘reduced space’ is just the
quotient M/G. In this case, the smooth functions on M/G are the G-invariant functions
on M .

Secondly, we define the bracket of two smooth functions f and h on Mµ by

{f, h}Mµ = {F, H}M ,

where F and H are smooth G-invariant functions on M such that F |J−1(Oµ) = f ◦ π, resp.
H|J−1(Oµ) = h◦π. One then checks that the bracket is well-defined, i.e., it does not depend
on the choice of F and H, and so the algebra C∞(Mµ) becomes a Poisson algebra with
this bracket; see [1] for a proof. Moreover, it turns out that if µ is a regular value of the
momentum map, this Poisson structure coincides with the Poisson structure defined by
the Marsden-Weinstein symplectic form ωµ.

1.1. Example. Let M be C2 with its standard symplectic form and let G be the circle
{ eiθ : θ ∈ R }, acting on M by eiθ · (z1, z2) = (eiθz1, e

−iθz2). This is the (1,−1)-resonance,
the action generated by the Hamiltonian

J(z1, z2) = (|z1|2 − |z2|2)/2.
We want to compute the reduced space at the zero level. To this end we compute the
algebra of G-invariant real polynomials on C2. It is easy to check that this algebra is
generated by the following polynomials:

σ1 = |z1|2 σ2 = (z1z2 + z1z2)/2
σ3 = (z1z2 − z1z2)/2i σ4 = 2J = |z1|2 − |z2|2.

(We choose this particular set of generators because it is well-suited to our further com-
putations.) The only relation among the generators is: σ1(σ1 − σ4) = σ2

2 + σ2
3. Define the

Hilbert map σ : M → R4 by

σ(m) = (σ1(m), σ2(m), σ3(m), σ4(m)).
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The image σ(J−1(0)) of the zero level set is contained in the hyperplane { (x1, x2, x3, x4) :
x4 = 0 }. Let us identify this hyperplane with R3. Then σ(J−1(0)) is the quadratic
half-cone in R3 given by

x2
1 = x2

2 + x2
3 and x1 ≥ 0. (2)

Since the Hilbert map is invariant, its restriction to J−1(0) descends to a map σ̃ : M0 → R3.
It is not difficult to show that this map is a homeomorphism onto its image. This describes
the reduced space as a topological space.

We claim that the algebra of smooth functions on M0 is isomorphic to the algebra
C∞(R3)/I, where I is the ideal in C∞(R3) of all functions vanishing on the set given
by (2), and where the isomorphism is given by pulling back functions via σ̃. Indeed, if h
is a smooth function on R3, the function H given by H(m) = h(σ1(m), σ2(m), σ3(m)) is
a smooth invariant function on M = C2, and therefore descends to a smooth function on
M0. This gives us the map

σ̃∗ : C∞(R3) → C∞(M0). (3)

By definition, its kernel is the ideal I. To see that the map is surjective, pick an arbitrary
smooth function f on M0. Let F be an invariant smooth function on M such that F |J−1(0)

descends to f . By a theorem of Schwarz [20], a smooth function on Rn invariant under
a linear action of a compact Lie group K is always a smooth function of the K-invariant
polynomials on Rn. In our case, this means that we can find a smooth function h defined
on R4 such that h ◦ σ = F . But then σ̃∗(h|R3) = f . So σ̃ is surjective.

We can describe the Poisson bracket on M0 in terms of the generators x̄1, x̄3, x̄3 of the
algebra C∞(R3)/I. (Here f̄ denotes the equivalence class f mod I of a function f .) It is
given by the following table:

{·, ·} x̄1 x̄2 x̄3

x̄1 0 4x̄3 4x̄2

x̄2 −4x̄3 0 −4x̄1

x̄3 −4x̄2 4x̄1 0

1.2. Remark. In the above table, replace the x̄i’s by the coordinates xi on R3. It is
easy to check that the resulting table is the structure matrix of the Lie-Poisson bracket on
sl(2,R)∗ (with respect to a suitable basis). This means that there exists a Poisson bracket
on R3 such that the map (3) becomes a morphism of Poisson algebras and the ideal I a
Poisson ideal.

Now let V be an arbitrary symplectic representation space for a compact Lie group, and
let j be any embedding of the reduced space V0 into a Euclidean space Rn constructed by
means of invariant polynomials, analogous to the embedding of Example 1.1.

1.3. Conjecture. There exists a Poisson bracket on Rn such that the embedding j of
the reduced space V0 into Rn becomes a Poisson map.

A proof of this conjecture in the special case where the algebra of invariant polynomials
has a basis of polynomials of degree ≤ 2 can be found in [13].
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As illustrated by Example 1.1, there is a natural notion of an embedding of a reduced
space into a Euclidean space. Likewise, there is a natural concept of diffeomorphisms
between reduced spaces, and of a smooth action of a Lie group on a reduced space.

1.4. Example. Here is another way of computing the reduced space of Example 1.1.
Consider the diagonal map ∆ : C → M = C2, assigning w 7→ (w, w). The image of ∆ is
contained in the zero level set J−1(0), and one readily checks that it intersects each orbit
in J−1(0). In other words, the diagonal map induces a surjective map C → M0. Under
this map two points w, w′ in C are mapped to the same orbit in the reduced space M0 if
and only if they are antipodes, w′ = −w. So we get a bijection between orbit spaces,

∆̃ : C/Z2 → M0

(where the nontrivial element in Z2 acts on C as the antipodal map). We claim that this
map is an isomorphism in the sense that smooth functions on M0 pull back to smooth
functions on C/Z2 and that the pullback map

∆̃∗ : C∞(M0) → C∞(C/Z2)

is an isomorphism of Poisson algebras. In other words, the reduced space M0 is isomorphic
to the symplectic orbifold C/Z2. That the map ∆̃∗ is well-defined follows from the fact
that G-invariant functions on M = C2 restrict to Z2-invariant functions on the diagonal.
That it is a morphism of Poisson algebras follows from the fact that the diagonal map
∆ is symplectic. It is easy to see that ∆̃∗ is injective. Finally, we have to show that it
is surjective. Consider the algebra of Z2-invariant real polynomials on C = R2. It is
generated by the three polynomials

ρ1 = |w|2 ρ2 = (w2 + w2)/2 ρ3 = (w2 − w2)/2i.

Each of these is the pullback of a G-invariant polynomial on M , namely:

ρ1 = σ1 ◦∆ ρ2 = σ2 ◦∆ ρ3 = σ3 ◦∆.

Now let h be an arbitrary Z2-invariant smooth function on C. By Schwarz’s theorem (loc.
cit.) there exists a smooth function of three variables H such that

h(w) = H(ρ1(w), ρ2(w), ρ3(w)).

Define the G-invariant smooth function F on C2 by F = H ◦ σ. Then F descends to a
smooth function f on M0, and we have ∆̃∗(f) = h. So ∆̃∗ is surjective.

1.5. Example. Consider the symplectic manifold M × O−
µ , the symplectic product of

M with the coadjoint orbit Oµ through µ, endowed with the opposite of the Kirillov
symplectic form. The diagonal action of G on M × O−

µ is Hamiltonian with momentum
map Jµ given by Jµ(m, ν) = J(m) − ν. It is easy to check that the cartesian projection
Π : M ×O−

µ → M restricts to an equivariant bijection J−1
µ (0) ∼= J−1(Oµ). As a result, Π

descends to a bijection between reduced spaces,

Π̃ : (M ×O−
µ )0

∼→ Mµ.
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1.6. Proposition (the ‘shifting trick’). The map Π̃ is an isomorphism of reduced spaces.

Sketch of Proof. We want to show that Π̃ induces an isomorphism of Poisson algebras,

Π̃∗ : C∞(Mµ)
∼=−→ C∞((M ×O−

µ )0).

It is not hard to show that smooth functions on (M ×O−
µ )0 pull back to smooth functions

on Mµ and that Π̃∗ is injective. Moreover, the map Π̃∗ is a morphism of Poisson algebras,
because the Cartesian projection M ×O−

µ → M is a Poisson map.

The gist of the argument is showing that Π̃∗ is surjective. Pick an arbitrary smooth
function φ on (M ×O−

µ )0. Let Φ be a smooth G-invariant function on M ×O−
µ such that

the restriction of Φ to J−1
µ (0) equals the pullback of φ to J−1

µ (0). Because the group G is
compact, the coadjoint orbit Oµ is a closed subset of g∗. Therefore the product M ×Oµ

is included in M × g∗ as a closed submanifold, and we can find a smooth extension Φ̄ of
Φ to the whole of M × g∗. We may furthermore assume that Φ̄ is G-invariant (if not,
replace it by its average over G). Now let j : M → M × g∗ be the natural map from M
onto the graph of the momentum map J , j(m) = (m, J(m)), and define a function F on
M by putting F = Φ̄ ◦ j. Then F is a smooth G-invariant function on M , and therefore
induces a smooth function f on the reduced space Mµ. For all (m, ν) in J−1

µ (0) one has

F ◦ Π (m, ν) = Φ̄(m, J(m)) = Φ̄(m, ν) = Φ(m, ν).

This shows that Π̃∗f = φ. Thus Π̃∗ is surjective. 2

As far as we know, this proposition was first proved by Guillemin and Sternberg [8] under
the assumption of regularity. It allows us to restrict our attention from now on to reduction
at the zero level.

1.7. Remark. The shifting trick breaks down for Hamiltonian actions of a noncompact
group. The reason is that for a noncompact group G the coadjoint orbits are not necessarily
closed in g∗; cf. also [1, § 2, last two paragraphs]. It is not hard to show that the shifting
trick works for reduction at a closed coadjoint orbit of a noncompact group G, provided
the action of G on M is proper in the sense of [19]. All the other results in this paper go
through for Hamiltonian actions of an arbitrary Lie group G, provided that the action is
proper. (The only statement that requires a slight modification is the density theorem,
Theorem 2.7; cf. the remark following that theorem.)

Many other concepts defined for smooth symplectic manifolds carry over to singular
reduced phase spaces in a routine manner. For instance, one defines a smooth curve in
Mµ as a continuous map γ : [0, 1] → Mµ such that the pullback f ◦ γ of a smooth function
f on Mµ is a smooth function on the interval [0, 1]. If h is a smooth function on Mµ, it
makes no sense to talk about the Hamiltonian vector field of h on Mµ, since Mµ is not a
manifold. One can however define the Hamiltonian derivation ad h of h. It operates on a
smooth function f on Mµ as follows:

ad h · f = {h, f}Mµ . (4)
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Now an integral curve of the Hamiltonian h through a point m is defined as a smooth
curve γ(t) with γ(0) = m, such that for all functions f ∈ C∞(Mµ)

d

dt
f(γ(t)) = − ad h · f (γ(t)). (5)

One proves the existence and uniqueness of such integral curves by considering the flow of
a lift of the Hamiltonian h to M ; see [13].

If K is a Lie group acting smoothly on M0, then for each element ξ of the Lie algebra
k of K one has the associated fundamental derivation ξM0 on the algebra C∞(M0). It
operates on a smooth function f as follows:

(ξM0 · f)(x) = − d

dt
f(exp tξ · x)

∣∣∣∣∣
t=0

,

for x in M0. This is well-defined since f(exp tξ · x) depends smoothly on t. We call a K-
action on M0 Hamiltonian if it has a momentum map, i.e., a smooth Ad(K)-equivariant
map I : M0 → k∗ such that for each ξ in k one has

ad Iξ = −ξM0 .

Here Iξ is the ξ-th component of I, defined by Iξ(x) = 〈I(x), ξ〉, and ad Iξ is the Hamil-
tonian derivation on C∞(M0) corresponding to the function Iξ. Given a Hamiltonian
K-action on M0, one can reduce once more and obtain a space with a Poisson algebra.

An important special case of a Hamiltonian action on a reduced space arises in the
following situation. Assume that the group G is the product of two Lie groups G1 and
G2. Then the momentum map for the G-action on M splits into a product of two maps,
J = J1 × J2, where J1 : M → g∗1 and J2 : M → g∗2 are momentum maps for the actions
of G1 and G2, respectively. The actions of G1 and G2 on M commute, and it follows
from the G-equivariance of J that J1 is invariant with respect to the action of G2. Let X1

be the reduced space of M with respect to the G1-action. Then the action of G2 on M
descends to an action on X1 and the map J2 descends to a smooth map J̄2 : M → g∗. It
is not difficult to show that this G2-action is Hamiltonian with momentum map J̄2. Let
X12 denote the reduced space of X1 with respect to this action.

We might just as well carry these two reductions out in reverse order. That is, first
reducing M with respect to the G2-action we obtain a Hamiltonian G1-space X2 with
momentum map J̄1, and reducing once again we obtain a space X21. We claim that the
answer does not depend on the order of the reductions.

1.8. Theorem (reduction in stages). The reduced spaces X12 and X21 are isomorphic.

Reduction in stages is a useful computational tool and it plays an important role in [13].
The proof rests on the observation that both spaces can be obtained by reducing the
original manifold M with respect to the action of the product group G = G1 × G2; see
[13] for the details.
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2 A Stratification of a Reduced Phase Space

For Poisson manifolds Weinstein [23] has introduced the notion of symplectic leaves. If P
is a Poisson manifold and p a point in P , the symplectic leaf of P through p is the set of
all points q in P such that q can be joined to p by means of a finite number of trajectories
of Hamiltonian vector fields on P . The symplectic leaves of a Poisson manifold are always
symplectic manifolds.

In the previous section we showed that the reduced space M0 of a Hamiltonian G-space
M comes equipped with a natural Poisson algebra, and that there is a suitable concept
of Hamiltonian flows on M0, despite the fact that this space may be singular. Because of
this, it makes sense to talk about the symplectic leaves of M0 (cf. also Gonçalves [7]). It
will turn out that the leaves of M0 are smooth symplectic manifolds, which fit together in
a neat way.

There is an alternative definition of these symplectic pieces, which is better suited to
the study of the local structure of M0. For a closed subgroup H of G the set of points in
M of orbit type (H) is defined as

M(H) = {m in M : stabilizer of m is conjugate to H }.

It is a familiar fact from the theory of Lie group actions that M(H) is a locally closed
submanifold of M (see e.g. Bredon [5]), possibly consisting of connected components of
various dimensions. It follows from (1) that the restriction of the momentum map J to
M(H) is of constant rank equal to the codimension of H in G. As a consequence, the
intersection J−1(0) ∩M(H) is a submanifold of M . In fact, we can say much more.

2.1. Theorem. The quotient (M0)(H) := (J−1(0) ∩ M(H))/G is a manifold and there
exists a unique symplectic form ω(H) on (M0)(H) whose pullback to J−1(0) ∩M(H) equals
the restriction of the symplectic form ω to J−1(0) ∩M(H).

We have thus decomposed the reduced space into a collection of symplectic manifolds,

M0 =
∐

H<G

(M0)(H).

The symplectic pieces (M0)(H) are called the strata of M0. It is not hard to check that the
inclusion maps (M0)(H) → M0 are Poisson, i.e., smooth functions on M0 restrict to smooth
functions on (M0)(H), and the restriction map C∞(M0) → C∞((M0)(H)) is a morphism
of Poisson algebras. The restriction map is not surjective, unless (M0)(H) is closed. It
is, however, easy to see that any smooth function on (M0)(H) with compact support can
be extended to a smooth function on M0. (See the argument preceding Theorem 2.5.)
Therefore the image of the restriction map is dense in C∞((M0)(H)). One can also show
that the Hamiltonian flow of a smooth function h on M0 leaves the strata (M0)(H) invariant.
Because of this, a Hamiltonian derivation on the algebra C∞(M0), as defined by (4), can
be regarded as a collection of Hamiltonian vector fields, one on each stratum of M0, glued
together in a smooth manner.

8



Sketch of Proof. Let p be a point in the zero level set of J and let H be the stabilizer
of p. Let m denote the tangent space at p to the orbit G ·p through p. It is easy to see that
any G-orbit in J−1(0) is isotropic, i.e., m ⊂ mω, where mω denotes the skew orthogonal
complement of m. Therefore we can define a symplectic vector space V = mω/m, called
the symplectic slice at p to the G-action. It is a symplectic representation space for H.
Marle [15] and, independently, Guillemin and Sternberg [9] have shown how to reconstruct
the Hamiltonian space M in a neighbourhood of the orbit G · p from the data G, H
and V . The tangent space to M at p can be written (noncanonically) as a direct sum,
TpM = m⊕m∗ ⊕ V . The topological normal bundle of the orbit G · p is a vector bundle,

Y = G×H (m∗ × V ),

associated to the principal bundle H → G → G/H. The space Y can also be seen as a
vector bundle with symplectic fibre V and symplectic base G ×H m∗ = T ∗(G · p). As a
manifold, the space Y can be obtained from the Hamiltonian G×H-space

T ∗G× V (6)

by means of reduction with respect to the H-action. (Here G acts by left translations
on T ∗G, and H acts by right translations on T ∗G and as the given representation on V .)
This provides Y with a symplectic structure. It turns out that the left G-action on the
space Y is Hamiltonian with momentum map J given by:

J [g, µ, v] = (Ad∗g)(µ + ΦV (v)).

Here [g, µ, v] denotes the class of a triple (g, µ, v) in G×m× V , and ΦV : V → h∗ is the
quadratic momentum map for the linear H-action on V , given by:

〈ΦV (v), η〉 = 1/2 ωV (η · v, v).

It now follows from the G-equivariant version of Weinstein’s isotropic embedding theorem
[22] that a neighbourhood of the orbit G · p in M is G-equivariantly symplectomorphic to
a neighbourhood of the zero section in the vector bundle Y over G/H. This is the local
normal form of Marle-Guillemin-Sternberg.

It is easy to compute the set (M0)(H) inside the local model. It is equal to the subspace
VH of fixed points in the symplectic vector space V , which is again symplectic. This proves
Theorem 2.1. 2

2.2. Remark. As a corollary of this proof we obtain a local model for the reduced space,
namely the product space (6), successively reduced with respect to the H-action and the
G-action. By Theorem 1.8, we may reverse the order of the two reductions. The reduced
space of T ∗G× V with respect to the G-action is equal to the H-space V ; reducing once
more we obtain the conical space Φ−1

V (0)/H. Consequently, any reduced space is in the
neighbourhood of each point isomorphic to the reduced space of some linear Hamiltonian
space. This observation plays an important role in the proof of the embedding theorem in
[13], which says that every reduced space can be embedded in a Euclidean space in such
a way that the image is a Whitney stratified space. Also, this enables one to show that
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the stratification of M0 satisfies the condition of the frontier, i.e., the closure of a stratum
is a union of (connected components of) strata.

2.3. Example (the ‘lemon’). Let M be the product S2 × S2 of two copies of the unit
sphere in R3, both equipped with the symplectic form given by restriction of the standard
volume form on R3. Consider the diagonal action of the circle on M given by rotations
round a fixed axis on each factor. This space turns up in the study of perturbed Keplerian
systems with axial symmetry, cf. [6]. In that article the reduced space M0 is computed
by means of invariant polynomials. Eugene Lerman showed us the following alternative
computation. The Hamiltonian space M can be identified with the product of two copies
of CP 1 with a circle action defined by:

eiθ · ((z1 : z2), (z3 : z4)) = ((eiθz1 : e−iθz2), (e
iθz3 : e−iθz4)).

A momentum map is given by:

J((z1 : z2), (z3 : z4)) =
1

2

( |z1|2 − |z2|2
|z1|2 + |z2|2 +

|z3|2 − |z4|2
|z3|2 + |z4|2

)
.

The image of J is the interval [−1, 1], and its critical values are −1, 0 and 1.
There are two orbit types in M . The fixed point set consists of four points:

P1 = ((1 : 0), (1 : 0)) P2 = ((0 : 1), (1 : 0))
P3 = ((1 : 0), (0 : 1)) P4 = ((0 : 1), (0 : 1))

For all other points the stabilizer is { eiθ : θ ≡ 0 mod π } ∼= Z2. The points P2 and P3 are
contained in the zero level set, and P1 and P4 are the points where J takes its maximum,
respectively its minimum.

The reduced space M−1 is obviously a point. The Marle-Guillemin-Sternberg local
model tells us that near P4 the Hamiltonian space M can be identified with a neigh-
bourhood of the origin in the tangent space to P4, which is a complex plane C2 with its
standard S1-action, eiθ · (w1, w2) = (eiθw1, e

iθw2), and momentum map

J(w1, w2) = 1/2 (|w1|2 + |w2|2)− 1.

It follows that for small ε the inverse image J−1(−1+ ε) is a three-sphere and the reduced
space M−1+ε is a CP 1. But then Mξ has to be a CP 1 for all ξ in (−1, 0). Guillemin and
Sternberg [10] have shown that the space Mε for ε > 0 can be obtained from M−ε by a
succession of blowing-ups and blowing-downs. Since M−ε has only one degree of freedom,
there can be no blowing-ups and blowing-downs, so Mε is again a CP 1. It also follows from
Guillemin’s and Sternberg’s analysis that the reduced space M0 at the critical level 0 is
homeomorphic to CP 1. The stratification of M0 consists of three pieces: two single points,
corresponding to the fixed points P2 and P3, and one open piece. Using the local model,
one can easily figure out what M0 looks like near the singular points. The symplectic
slices at P2 and P3 are both equal to the complex plane C2 with the following S1-action:
eiθ · (w1, w2) = (eiθw1, e

−iθw2). This is the (1,−1)-resonance discussed in Example 1.1. As
a consequence, near both singular points the stratified symplectic space M0 is isomorphic
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to the cone in R3 given by (2), and M0 can be pictured as two copies of this cone glued
together along the base.

From the previous examples the reader may be tempted to infer that reduced spaces
are always orbifolds. The following example shows that this is not the case.

2.4. Example. The (1, 1,−1,−1)-resonance is the circle action on C4 generated by the
Hamiltonian

J(z1, z2, z3, z4) = 1/2 (|z1|2 + |z2|2 − |z3|2 − |z4|2).
We want to describe the topology of the reduced space at the zero level and show that it
has a singularity that is worse than an orbifold singularity. The zero level set is given by:

|z1|2 + |z2|2 = |z3|2 + |z4|2.
Consider the unit seven-sphere S7 in C4, given by |z1|2 + |z2|2 + |z3|2 + |z4|2 = 1. Its
intersection with the zero level set of J is an S1-invariant submanifold of C4, namely the
product of two three-spheres of radius 1/2,

J−1(0) ∩ S7 = S3 × S3 ⊂ C2 ×C2.

The circle action on the first copy of S3 is given by eiθ · (z1, z2) = (eiθz1, e
iθz2), and on the

second copy of S3 it is given by eiθ · (z3, z4) = (e−iθz3, e
−iθz4). The quotient of S3 × S3 by

the S1-action is denoted by S3×S1 S3. It is an S3-bundle over the complex projective line
CP 1, associated to the Hopf fibration S3 → CP 1. Topologically, the reduced space (C4)0

can now be written as a cone,

(C4)0 ∼ C(S3 ×S1 S3),

i.e., the product (S3 ×S1 S3)× [0,∞) with the boundary (S3 ×S1 S3)× {0} collapsed to a
point. It is obvious from this description that the reduced space cannot be an orbifold. For
instance, an easy computation shows that the local homology in degree 3 at the singular
point is nonzero,

H3((C
4)0, (C

4)0 − {vertex};Q) = Q,

which is impossible for a six-dimensional orbifold. (All orbifolds are rational homology
manifolds; see e.g. [5, Chapter III].)

One can desingularize the reduced space in the following way. Consider the S1-
equivariant map Ψ from C4 to itself defined by:

Ψ : (z1, z2, z3, z4) 7→ ((|z3|2 + |z4|2)1/2z1, (|z3|2 + |z4|2)1/2z2, z3, z4).

It maps the subset

S3 ×C2 = { (z1, z2, z3, z4) : |z1|2 + |z2|2 = 1 }
of C4 onto J−1(0). Therefore it descends to a surjective map Ψ̃ : S3×S1 C2 → (C4)0. The
space S3 ×S1 C2 is a C2-bundle over CP 1. The map Ψ̃ is a diffeomorphism everywhere,
except on the zero section of this bundle, which is mapped to the vertex of (C4)0. The
reduced space (C4)0 can therefore be regarded as a plane bundle over CP 1 with the zero
section collapsed to a point.
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Why are the strata of a reduced space equal to its symplectic leaves, as claimed at the
outset of this section? In fact, the strata may be disconnected, whereas the leaves are by
definition always connected, so in general they are not the same. We claim, however, that
the symplectic leaves of M0 are precisely the connected components of the strata (M0)(H).
Indeed, let m be a point in (M0)(H). It is not hard to show that the symplectic leaf of m
has to be contained in (M0)(H). It suffices therefore to prove that it is open in (M0)(H).
This amounts to showing that an arbitrary point in (M0)(H) sufficiently close to p can be
joined to p by means of an integral curve of a Hamiltonian that is defined globally on M0.
Of course, it is easy to find such a Hamiltonian, call it f , that lives on (M0)(H) only. The
problem is to extend f to a smooth function on the whole of M0. We may assume that
f has compact support on (M0)(H). We can lift f to a compactly supported G-invariant
function F on the locally closed submanifold J−1(0)∩M(H) of M . Because F has compact
support, we can extend it to a smooth function F̌ defined on the whole of M , and we may
assume that F̌ is still G-invariant. So F̌ descends to a smooth function f̌ on the reduced
space, whose restriction to (M0)(H) equals f , as desired. We have proved:

2.5. Theorem. The symplectic leaves of the reduced space M0 coincide with the con-
nected components of its strata (M0)(H), H < G.

This implies that the stratification of a reduced space depends only on its Poisson algebra
of smooth functions.

The manifold of orbit type (H) contains the manifold of symmetry H, defined by

MH = {m in M : stabilizer of m is equal to H }.
This is a symplectic submanifold of M , which is invariant under the action of the normalizer
NG(H) of H in G. Let n denote the Lie algebra of NG(H). The action of NG(H) on MH

is Hamiltonian; a momentum map is given by the restriction of J to MH , followed by the
canonical projection g∗ → n∗. Because H iself acts trivially on MH , the action descends
to an action of the quotient group L = NG(H)/H, and the momentum map descends to
a momentum map for the L-action, JH : MH → l∗. Since L acts freely on MH , the origin
in l∗ is a regular value of JH .

2.6. Theorem. The stratum (M0)(H) of the reduced space of type (H) is symplectomor-
phic to the Marsden-Weinstein reduced space J−1

H (0)/L.

Because of this theorem, the procedure for lifting a Hamiltonian flow on M0 to M is
completely analogous to the regular case. Lifting an integral curve of a Hamiltonian
through a point in (M0)(H) amounts to solving a differential equation on the group L.
Theorem 2.6 also enables one to write down a version of Smale’s criterion for relative
equilibria from which the assumption of regularity has been removed. See [13] for a
further discussion.

We conclude by quoting one more theorem from [13]. Its proof hinges on the fact
proved by Kirwan [12] that the fibres of a proper momentum map are connected.

2.7. Theorem. Assume that the momentum map J : M → g∗ is proper. Then there
exists a unique open stratum in the reduced space M0. It is connected and dense.
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2.8. Remark. If the momentum map is not proper, the reduced space is not necessarily
connected. Similarly, if G is a noncompact Lie group acting properly on M , the reduced
space M0 is well-defined as a stratified symplectic space, but it needn’t be connected.
However, in both these cases it is still true that each component C of M0 has a unique
open stratum, which is connected and dense in C.

2.9. Remark. As an immediate corollary to Theorem 2.7 we see that the Poisson algebra
C∞(M0) of the reduced space is nondegenerate, i.e., its centre consists of the (locally)
constant functions only.
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