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Abstract

Let (M, ω) be a Hamiltonian G-space with proper momentum map
J : M → g∗. It is well-known that if zero is a regular value of J
and G acts freely on the level set J−1(0), then the reduced space
M0 := J−1(0)/G is a symplectic manifold. We show that if the reg-
ularity assumptions are dropped the space M0 is a union of symplec-
tic manifolds, i.e., it is a stratified symplectic space. Arms et al., [2],
proved that M0 possesses a natural Poisson bracket. Using their result
we study Hamiltonian dynamics on the reduced space. In particular
we show that Hamiltonian flows are strata-preserving and give a recipe
for a lift of a reduced Hamiltonian flow to the level set J−1(0). Finally
we give a detailed description of the stratification of M0 and prove the
existence of a connected open dense stratum.
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Introduction

Let (M, ω) be a connected Hamiltonian G-space with Ad∗-equivariant mo-
ment map J : M → g∗. Let us assume that the Lie group G is compact.
(Most of the results of the paper hold for proper actions of arbitrary Lie
groups. The proofs, however, are technically more difficult.)

Recall the Marsden–Weinstein reduction procedure (cf. [25]). If zero is
a regular value of the moment map then the zero level set Z = J−1(0) is a
submanifold and the action of G on Z is locally free (i.e., all the stabilizers
are discrete). Let us assume that the action is actually free. Then the orbit
space M0 = Z/G is a manifold. The manifold Z is coisotropic and (this is
the miracle of the reduction) the leaves of the null foliation of ω|Z are the
G-orbits. It follows that there exists a unique symplectic form ω0 on M0 such
that

π∗ω0 = ω|Z ,

where π : Z → M0 is the orbit map. The pair (M0, ω0) is the Marsden–
Weinstein reduced space.
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In general, for a regular value µ of J different from zero, Marsden and
Weinstein defined the reduced space at µ to be the quotient

Mµ = J−1(Oµ)/G,

where Oµ denotes the coadjoint orbit through µ. Consider the symplectic
manifold M × O−µ, the symplectic product of M with the coadjoint orbit
through −µ. The diagonal action of G on M × O−µ is Hamiltonian with a
moment map Jµ sending (m, f) ∈ M × O−µ to J(m) + f . Zero is a regular
value of Jµ and it is easy to see that the Marsden–Weinstein reduced space
at µ can be identified with

Mµ = J−1
µ (0)/G.

This is the so-called ‘shifting trick’, which allows one to talk exclusively about
reduction at zero.

If h is a G-invariant Hamiltonian on M , i.e., h ∈ C∞(M)G, then the
restriction h|Z descends to a smooth function h0 on the reduced space M0 so
that

π∗h0 = h|Z .

Marsden and Weinstein gave a recipe for lifting the reduced flow, that is to
say for computing the Hamiltonian flow of h on Z from the knowledge of the
flow of h0 on M0. They showed that the lifting problem amounts to solving
a differential equation on the group G.

If zero is a singular value of J then the level set Z is not a manifold.
Moreover there are jumps in the dimension of the orbits of the points of Z.
A lot of work has been done over the last ten years in the direction of finding
a ‘correct’ reduction procedure for singular values of the moment map. See
[3] for a description and comparison of several different approaches.

Our point of view is that the reduced space M0 is a stratified symplectic
space. Roughly speaking it means that:

i. M0 is a union of symplectic manifolds (the symplectic strata);

ii. these manifolds fit together nicely;

iii. there exists a naturally defined subclass of the class of continuous func-
tions on M0, a set of ‘smooth functions’, whose members restrict to
smooth functions on the strata;
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iv. these smooth functions form a Poisson algebra and the bracket agrees
with the brackets on the strata defined by the symplectic forms.

We will see that the notions of Hamiltonian dynamics, Liouville volume,
group actions, moment maps, etc. all make sense in the setting of stratified
symplectic spaces.

If the manifold M is Kähler and the group G acts holomorphically on M ,
we can show that all strata of the reduced space are Kähler manifolds. In
this case the action of G extends to an action of the complexified group GC,
and Kirwan [19] has identified the reduced space with a ‘Kähler quotient’,

M0 = M ss//GC,

generalizing results of Guillemin and Sternberg [15] and Kempf and Ness
[18]. In many cases we can show that the symplectic stratification of M0

is identical to the stratification by GC-orbit types. We believe that this is
true in general. However, the minimal complex-analytic stratification of M0

is in general coarser than the stratification by orbit types. These questions
and the related problem of geometric quantization of singular spaces will be
discussed elsewhere.

The paper is organized as follows. In Section 1 we review the definition
of a stratified space and explain what one may mean by a smooth structure
on a singular space. In Section 2 we prove the existence of a decomposition
of the reduced space into a union of symplectic manifolds. Section 3 is a
discussion of Hamiltonian dynamics on M0. We review the definition of
the Poisson bracket and describe a procedure for lifting a reduced flow. In
Section 4 we discuss reduction in stages and momentum maps on stratified
symplectic spaces. Section 5 is a study of a conical local model for M0. In
Section 6 we show that the reduced space can be embedded into a Euclidean
space. This enables us to show that the symplectic decomposition is indeed a
stratification. In Section 7 we prove a tubular neighbourhood theorem for a
stratum. Finally, in the Appendix, Section 8, we explain briefly Sternberg’s
minimal coupling procedure.

A summary of this work appears in [8] (cf. also [32]). A number of
applications will be discussed in [21].

Note on terminology. We use the terms momentum mapping, momen-
tum map, moment mapping and moment map interchangeably.
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1 Stratified Spaces

As with CW and simplicial complexes, the main idea of a stratification is
that of a partition of a nice topological space X into a disjoint union of
manifolds.

1.1. Definition (cf. [12, page 36]). Let X be a Hausdorff and paracompact
topological space and let I be a partially ordered set with order relation
denoted by ≤. An I-decomposition of X is a locally finite collection of
disjoint locally closed manifolds Si ⊂ X (one for each i ∈ I) called pieces
such that

i. X =
⊔

i∈I Si;

ii. Si ∩ S̄j 6= ∅ ⇐⇒ Si ⊂ S̄j ⇐⇒ i ≤ j.

Condition ii. is the frontier condition. If Si ⊂ S̄j we write Si ≤ Sj. If Si ≤ Sj

and Si 6= Sj we write Si < Sj. We call the space X an I-decomposed space.

Define the dimension of a decomposed space X to be dim X = supi∈I dim Si.
We will only consider finite-dimensional spaces. Note that we do not require
the pieces to be connected.

1.2. Example. Let M be a smooth manifold and G a compact Lie group
acting on M by diffeomorphisms. For a subgroup H of G denote by M(H)

the set of all points whose stabilizer is conjugate to H, the stratum of M of
orbit type (H). Here the indexing set I is the set of all possible stabilizer
subgroups modulo the conjugacy relation: H ∼ K ⇐⇒ there exists g ∈ G
with gHg−1 = K. The ordering is by reverse subconjugacy: the class of H
is ‘bigger’ than the class of K, (H) > (K), if and only if there exists g ∈ G
with H ⊂ gKg−1.
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1.3. Remark. There is a problem in the above example which was swept
under the rug: a stratum M(H) may have components of different dimensions.
For instance consider the action of a circle on the complex projective plane
CP 2 given by eiθ · (z0 : z1 : z2) = (eiθz0 : z1 : z2). The set fixed by the
action consists of a point (1 : 0 : 0) and a line at infinity {(0 : z1 : z2)}. The
solution is either to allow the pieces of a decomposition to have components
of different dimensions or to refine the decomposition in question. To keep
the notation manageable we may sometimes refine the decomposition without
saying so explicitly.

1.4. Example. We keep the notation of Example 1.2. The orbit space M/G
is not a manifold, but it is a decomposed space. Its pieces are the manifolds
M(H)/G. For instance, if M is Rn with the standard action of SO(n) then
the orbit space is the closed half-line {x ∈ R : x ≥ 0} = {0} ∪ {x > 0}.
1.5. Definition. Given a decomposition {Si}i∈I of a space X define the
depth of a piece S in X to be the integer

depthX S = sup{n : there exist pieces S = S0 < S1 < · · · < Sn}.
Note that the depth of a piece S is bounded by its codimension dim X−dim S
and so is finite.

1.6. Definition. We define the depth of X to be

depth X = sup
i∈I

depthX Si.

Again we have depth X ≤ dim X. For example, if X is a manifold and has
only one piece, namely X itself, then depth X = 0. If X is a cone over
a manifold Y , X = C̊Y , i.e., if X is obtained by collapsing the boundary
Y × {0} of the half-open cylinder Y × [0,∞), then X decomposes into two
pieces: Y × (0,∞) and the vertex, which is the collapsed boundary, and so
has depth equal to 1. In general given a space X with a decomposition {Si}
the cone over X has a decomposition consisting of the pieces of the form
Si × (0,∞) and of the vertex. Therefore

depth C̊X = depth X + 1.

A decomposition of a space is called a stratification if the pieces fit to-
gether in a particularly nice way. The definition is a recursion on the depth
of the space.
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1.7. Definition (cf. [11]). A space X is called a stratified space if the
pieces of X, called strata, satisfy the following condition:

Given a point x in a piece S there exist an open neighbourhood U of
x in X, an open ball B around x in S, a stratified space L, called the
link of x, and a homeomorphism

ϕ : B × C̊L→ U

that preserves the decompositions.

1.8. Example. It is well-known that the orbit space M/G of Example 1.4
is a stratified space (see, for example, [6]). The proof is easy. The key
ingredient is the existence of slices.

So far our definitions have been purely topological. However, sometimes
when the strata of a space X are smooth manifolds, it makes sense to sin-
gle out a subalgebra C∞(X) of the algebra of continuous functions C0(X)
having the property that for any f ∈ C∞(X) the restriction to a stratum
S is smooth, f |S ∈ C∞(S). We will call such an algebra C∞(X) a smooth
structure on X. Given two spaces X and Y with smooth structures C∞(X)
and C∞(Y ), a continuous map ϕ : X → Y is smooth if for any f ∈ C∞(Y )
the composition f ◦ϕ is smooth, f ◦ϕ ∈ C∞(X). For example, according to
this definition, the inclusion of a stratum into the space is smooth. In the
same vein one can talk about two stratified spaces being diffeomorphic, etc.

There are two basic examples of smooth structures on stratified spaces.

1.9. Example (quotient smooth structures). Let a compact Lie
group G act on a manifold M . The smooth structure on the orbit space M/G
is the smallest subalgebra of C0(M/G) making the orbit map π : M →M/G
smooth, i.e.,

C∞(M/G) = {f : M/G→ R : the composition f ◦ π is smooth }.

The algebra C∞(M/G) is isomorphic to the space C∞(M)G of G-invariant
functions.
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Note that the same stratified space can support a variety of smooth struc-
tures. For example, the orbit space for the standard action of the cyclic
group Zn on the complex line C is again C stratified as

C = {0} ∪C×,

i.e., as a cone over S1. However, the algebras C∞(C/Zn) = C∞(C)Zn are
different for different n.

1.10. Example (Whitney smooth functions). If a stratified space X
is a subspace of a smooth manifold M we define

C∞(X) = {f : X → R : there exists F̄ ∈ C∞(M) with f = F̄ |X}.
(See Whitney [36].) The algebra C∞(X) is isomorphic to the quotient of
C∞(M) by the ideal of functions that vanish on X.

1.11. Example. Arms, Cushman and Gotay [2] used a combination of the
approaches of the examples 1.9 and 1.10 to define smooth structures in a
Hamiltonian setting as follows.

Let M now be a Hamiltonian G-space with moment map J : M → g∗.
We will see in the next few sections that the zero fibre Z = J−1(0) and
its quotient, the reduced space M0 = Z/G, are stratified spaces. Arms et
al. (op. cit.) define a function f0 : M0 → R to be smooth if there exists a
function F ∈ C∞(M)G with F |Z = π∗f0. (Here again π : Z → M0 is the
orbit map.) In other words C∞(M0) is isomorphic to C∞(M)G/IG, where
IG is the ideal of invariant functions vanishing on Z. They also show that
the algebra C∞(M0) inherits a Poisson algebra structure from C∞(M). We
will see that this Poisson bracket is compatible with the symplectic forms on
the strata of M0.

This example leads us to a working definition of a stratified symplectic space.

1.12. Definition. A stratified symplectic space X is a stratified space with
a smooth structure C∞(X) such that:

i. each stratum S is a symplectic manifold;

ii. C∞(X) is a Poisson algebra;

iii. the embeddings S ↪→ X are Poisson.
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2 A Decomposition of a Reduced Phase Space

The main result of this section is

2.1. Theorem. Let (M, ω) be a Hamiltonian G-space with moment map
J : M → g∗. The intersection of the stratum M(H) of orbit type (H) with the
zero level set Z of the moment map is a manifold and the orbit space

(M0)(H) = (M(H) ∩ Z)/G

has a natural symplectic structure (ω0)(H) whose pullback to Z(H) := M(H)∩Z
coincides with the restriction to Z(H) of the symplectic form on M . Conse-
quently the stratification of M by orbit types induces a decomposition of the
reduced space M0 = Z/G into a disjoint union of symplectic manifolds,

M0 =
⊔

H<G

(M0)(H). (1)

The proof of Theorem 2.1 is an application of the local normal form for
the moment map discovered independently by Marle [24] and Guillemin and
Sternberg [16]. Their result is based on the fact that an orbit through a point
in the zero level set of the moment map is embedded isotropically. A theorem
of Weinstein says that given an isotropic embedding of a manifold X in a
symplectic manifold Y , the symplectic form on a small neighbourhood of X is
completely determined by the symplectic normal bundle N(X) = (TX)ω/TX
of the embedding. (The fibre (TpX)ω of (TX)ω is the symplectic perpendic-
ular of TpX in TpY .) Later in the paper we will need a generalization of
the isotropic embedding theorem, and so it seems appropriate to prove this
generalization now.

2.2. Theorem (Constant Rank Embedding). Let B be a manifold fur-
nished with a closed two-form τ of constant rank. Then there exists a one-
to-one correspondence (modulo appropriate equivalences) between

1. symplectic vector bundles over B, and

2. embeddings i of B into higher dimensional symplectic manifolds (A, σ)
such that i∗σ = τ .
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2.3. Remark. Before proving the theorem, we would like to point out three
special cases.

Case 1: The form τ on the manifold B is zero. Then the theorem gives a one-
to-one correspondence between isotropic embeddings and symplectic vector
bundles. This is the isotropic embedding theorem of Weinstein [34].

Case 2: The form τ has maximal rank, i.e., the manifold B is symplectic.
Then this is the symplectic embedding theorem (cf. [22]).

Case 3: If N is the zero bundle over B then the theorem reduces to the
coisotropic embedding theorem of Gotay [13].

Conversely, Theorem 2.2 can be regarded as a synthesis of the coisotropic
and symplectic embedding theorems.

Proof of Theorem 2.2. Given an embedding i : (B, τ) → (A, σ), we
associate to it the symplectic normal bundle N(i), whose fibre at the point b
in B is defined by

N(i)b =
(TbB)σ

TbB ∩ (TbB)σ
.

Here we have identified the manifold B with its image i(B) in A. Since the
pullback of the form σ to B equals the form τ and since τ has constant rank,
N(i) is a well-defined vector bundle over B. By construction, its fibres are
symplectic.

Conversely, suppose we are given a manifold B with a two-form τ of
constant rank and a symplectic vector bundle N over B. We are going to
exhibit an embedding i : B → A of (B, τ) into a symplectic manifold (A, σ)
such that the normal bundle N(i) associated to the embedding is isomorphic
to the bundle N , and such that i∗σ = τ . Roughly speaking, we shall first
embed (B, τ) coisotropically into a symplectic manifold, and then use the
bundle N to embed this symplectic manifold into a higher dimensional one.
The details are as follows.

The form τ determines a subbundle of the tangent bundle TB, namely
the bundle V of vectors tangent to the null foliation, with typical fibre

Vb = {v ∈ TbB : τ(v, w) = 0 for all w ∈ TbB}.
Let V∗ be the dual bundle. There is a natural surjection from the cotangent
bundle T ∗B to V∗,

T ∗B → V∗,
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and by choosing a section s to this surjection we can regard V∗ as a subbundle
of T ∗B. (This amounts to choosing a splitting TB = V ⊕H.) By restricting
the canonical symplectic form γ on T ∗B to V∗ and adding to this the pullback
of the form τ to V∗, we obtain a closed two-form µ on V∗,

µ = (πV∗)∗τ + s∗γ.

It is not difficult to show that this form is nondegenerate in a neighbourhood
U of the zero section of the bundle V∗. The zero section is by construction
coisotropic in V∗, and the form µ pulls back to the form τ on B via the
zero section. Caution: although the total space of V∗ is symplectic in the
neighbourhood U of the zero section, V∗ is not a symplectic vector bundle
over B, since its fibres are not symplectic.

Pulling back the bundle N to V∗ we get a symplectic vector bundle N#

over V∗, which fits into a commutative diagram,

N# −→ N
↓ ↓ πN

V∗ πV∗−→ B.

By means of the minimal coupling procedure (see the Appendix) we can put
a closed two-form on the total space of the vector bundle N# → V∗. If we
identify V∗ with the zero section of this bundle, the minimal coupling form is
nondegenerate in a neighbourhood of the subset U of V∗ (see the Appendix,
Example 8.6).

Note that we can also view the space N# as the Whitney sum V∗⊕N of
the bundles V∗ and N over the base B.

To summarize, we have found a neighbourhood A of the zero section in
the bundle V∗ ⊕ N with a symplectic form σ. It is easy to check that the
pullback of σ via the zero section equals the form τ , and that the symplectic
normal bundle to the zero section is just N .

It remains to prove the uniqueness part of the theorem. Suppose that
i′ : B → A′ is another symplectic embedding of B with symplectic normal
bundle N . The geometric normal bundle ((i′)∗TA′)/TB of B in A′ can be
identified with the direct sum bundle V∗ ⊕N , where V∗ is defined as above.
It follows from the tubular neighbourhood theorem that there exist an open
neighbourhood U of i(B) in A, an open neighbourhood U ′ of i′(B) in A′,

11



and a diffeomorphism f from U onto U ′, such that f ◦ i = i′. The Darboux–
Moser–Weinstein Theorem (see [34] or [17, Theorem 22.1]) now implies that,
after shrinking the neighbourhoods U and U ′ if necessary, we can deform the
map f to a symplectomorphism φ such that φ ◦ i = i′. 2

2.4. Remark. In complete analogy with the Darboux Theorem, there ex-
ists an equivariant version of the constant rank embedding theorem: in the
presence of a compact Lie group L of automorphisms of B preserving the
form τ there is a one-to-one correspondence between symplectic L-vector
bundles over B and L-equivariant symplectic embeddings of B.

Let us now return to the local normal form recipe of Marle, Guillemin
and Sternberg. Let p be a point in the zero level set Z of the momentum
map J : M → g∗, H the stabilizer of p and V the symplectic vector space
(Tp(G · p))ω/Tp(G · p), a fibre of the symplectic normal bundle of the orbit in
M . We will refer to V as a symplectic slice for the action. The symplectic
normal bundle of the orbit is G ×H V , a vector bundle associated to the
principal fibration H → G→ G · p.

We claim that the total space Y of the associated bundle G×H ((g/h)∗×
V ) can be given the structure of a symplectic manifold making the embedding
G/H ↪→ Y (as the zero section) isotropic with the corresponding normal
bundle being G×H V .

To simplify the computations, we fix an Ad(G)-invariant inner product
on the Lie algebra g of G. Then g splits Ad(H)-invariantly as h×m where
m is the orthocomplement of the Lie algebra h of H, and we also have the
dual splitting g∗ = h∗ ×m∗. Note that m∗ is isomorphic to (g/h)∗.

The cotangent bundle of G is trivial: the map L : G × g∗ → T ∗G,
(g, η) 7→ (g, (dLg−1)T η) is an isomorphism (here Lg : G → G denotes left
multiplication by g ∈ G).

Consider the action of G on G by right multiplication:

R(a)(g) = ga−1.

This action lifts to a Hamiltonian action R∗ : G→ Diff (T ∗G). With respect
to the trivialization L the action is given by

R∗(a) : (g, η) 7→ (ga−1, Ad∗(a)η),
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where Ad∗ denotes the coadjoint representation, Ad∗(g) = (Ad(g−1))T . The
corresponding moment map JR is given by the formula

JR(g, η) = −η.

The action of G on G by left multiplication also lifts to a Hamiltonian action
on G× g∗ which is given by

L∗(a) : (g, η) 7→ (ag, η).

The corresponding moment map JL is given by

JL(g, η) = Ad∗(g)η.

Now, the restriction to H of the action R∗ is a Hamiltonian action and the
corresponding moment map ΦR is JR followed by the orthogonal projection
of g∗ onto h∗. Note that ΦR is H-equivariant regardless of whether H is
connected.

The linear symplectic action of H on the vector space V , H → Sp(V, ωV )
is also Hamiltonian. The corresponding moment map ΦV is given by the
formula

〈ξ, ΦV (v)〉 = 1/2 ωV (ξV · v, v), (2)

where ξV denotes the image of ξ ∈ h in the Lie algebra sp(V, ωV ) and v ∈ V .
Again, it is easy to check that ΦV is H-equivariant.

Therefore the product action of H on T ∗G × V is Hamiltonian with H-
equivariant moment map Φ : G×m∗ × h∗ × V → h∗ being simply the sum
ΦR + ΦV ,

Φ : (g, µ, η, v) 7→ ΦV (v)− η.

Zero is a regular value of Φ. We claim that the reduced space Φ−1(0)/H
can be identified with Y = G×H (m∗ × V ). Indeed, the map

G×m∗ × V → Φ−1(0) ⊂ G×m∗ × h∗ × V

(g, µ, v) 7→ (g, µ, ΦV (v), v)

is an H-equivariant diffeomorphism. This endows Y with a symplectic struc-
ture. We leave it to the reader to check that the embedding of G/H to into
Y is isotropic and that the normal bundle is G×H V .
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The equivariant version of the isotropic embedding theorem now implies
that there exist a neighbourhood U0 of the zero section of Y , a neighbourhood
U in M of the orbit G · p, and a G-equivariant symplectic diffeomorphism

ϕ : U0 → U.

Next we describe the Hamiltonian action of G on our model space Y .
Recall that the actions L∗ and R∗ of G on T ∗G commute. We regard
L∗ as an action on the product T ∗G × V by letting G act trivially on V .
Then L∗ commutes with the product action of H and the moment map
JL : G×g∗×V → g∗, (g, η, v) 7→ Ad∗(g)η is H-invariant. Consequently the
action L∗ descends to an action on the H-reduced space Φ−1(0)/H and the
corresponding moment map J : G×H (m∗×V )→ g∗ sends a point [g, µ, v] to
Ad∗(g)(µ+ΦV (v)). (Here [g, µ, v] denotes the image of (g, µ, v) ∈ G×m∗×V
under the projection onto (G ×m∗ × V )/H = G ×H (m∗ × V ).) We have
proved

2.5. Proposition (local normal form for the moment map). Let
H be the stabilizer of p ∈ Z and V be the symplectic slice to the orbit G · p.
Then a neighbourhood of the orbit is equivariantly symplectomorphic to a
neighbourhood of the zero section of Y = G×H (m∗×V ) with the G-moment
map J given by the formula

J([g, µ, v]) = Ad∗(g)(µ + ΦV (v)). (3)

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We compute with the model Y . The intersection
of the zero level set J with the fibre of the bundle m∗ × V → Y → G/H is
simply the quadratic cone {0} ×Φ−1

V (0). On the other hand the intersection
of the stratum Y(H) of orbit type (H) with the fibre consists of the points in
m∗ × V whose stabilizer is conjugate to H. Therefore

(m∗ × V ) ∩ J−1(0) ∩ Y(H) = VH ,

the linear subspace of V which is fixed by H, which is symplectic. Since the
set J−1(0)∩ Y(H) is G-invariant and the action of G on G/H is transitive we
have

J−1(0) ∩ Y(H) = G ·
(
(m∗ × V ) ∩ J−1(0) ∩ Y(H)

)
= G×H VH = G/H × VH .
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We conclude that the orbit space (Y(H) ∩ J−1(0))/G is the symplectic
manifold VH . The first assertion of the theorem now follows; the reduced
space M0 decomposes into a union of symplectic manifolds (M0)(H), H < G.

It remains to show that the symplectic pieces satisfy the frontier condi-
tion (possibly after being decomposed further into connected components).
Suppose a piece (M0)(H) intersects nontrivially the closure of a piece (M0)(K),

(M0)(H) ∩ (M0)(K) 6= ∅.

We want to show that the closure of (M0)(K) contains every connected com-
ponent of (M0)(H) that it intersects nontrivially. Again we compute with the

local model Y for a neighbourhood a point x ∈ (M0)(H) ∩ (M0)(K). It is
easy to see from the model that the group K has to be subconjugate to H.
Without loss of generality we may assume that K is actually a subgroup of
H. Let W be the symplectic perpendicular of VH in the symplectic slice V .
The space W is symplectic and H-invariant. (Since K is a subgroup of H,
W is K-invariant as well.) Denote the momentum map corresponding to the
action of H on W by ΦW . It is nothing more than the restriction of ΦV to
W . Note that ΦV is constant along the directions of VH . It follows that

Φ−1
V (0) = Φ−1

W (0)× VH . (4)

Moreover,
Y(K) = G×H (m∗

(K) × V(K)),

so that
J−1(0) ∩ Y(K) = G×H (Φ−1

W (0) ∩W(K))× VH (5)

Since the map ΦW is homogeneously quadratic, the set is Φ−1
W (0) ∩W(K) is

invariant under multiplication by positive scalars. Combined with (5) this
implies that the closure of the set J−1(0) ∩ Y(K) in Y contains the whole of
the set J−1(0) ∩ Y(H) = (G/H)× VH . Consequently the closure of the piece
(Y0)(K) in Y0 contains (Y0)(H). 2

2.6. Remark. In the strict sense of the word, the piece (M0)(H) is not
always a manifold, since it may contain components of different dimensions.
As an example, consider the S1-action on C3 generated by the Hamiltonian

z = (z1, z2, z3) 7→ |z3|2,
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and, similarly, the action on C2 generated by the Hamiltonian

w = (w1, w2) 7→ |w2|2.

These actions descend to Hamiltonian actions on CP 2 and CP 1, respectively.
The diagonal action on CP 2 ×CP 1 has the Hamiltonian

J : ((z1 : z2 : z3), (w1 : w2)) 7→ |z3|2
‖z‖2 +

|w2|2
‖w‖2 ,

which has the critical levels 0, 1 and 2. The level set J−1(1) contains a
two-dimensional component of the fixed point set, namely

{((z1 : z2 : 0), (0 : 1))},

and also the isolated fixed point ((0 : 0 : 1), (1 : 0)).

3 Dynamics on a Reduced Phase Space

We now discuss Hamiltonian dynamics on the reduced space M0 = Z/G.
Recall that although M0 is not a manifold we can still define a space of
smooth functions C∞(M0) as in Example 1.11.

Note that for each piece (M0)(H) the space {f |(M0)(H)
: f ∈ C∞(M0)} is

dense in the space of smooth functions on the piece. This is because the
pullback to Z of a function compactly supported on (M0)(H) can be easily
extended to a smooth G-invariant function on the whole of M .

The symplectic structures on the pieces allow us to define on C∞(M0) a
Poisson bracket simply by using the Poisson brackets on the function spaces
C∞((M0)(H)). However, it is not a priori clear that the bracket of two smooth
functions on M0 is again a smooth function.

3.1. Proposition. The bracket of two smooth functions on M0 is again a
smooth function.

Proof. Let f and g be two smooth functions on M0 and let f̄ , ḡ be two
G-invariant functions on M with f̄ |Z = π∗f , ḡ|Z = π∗g. Showing that

π∗({f, g}M0) = {f̄ , ḡ}M
∣∣∣
Z

(6)

16



will prove the proposition.
It is enough to establish (6) for a point in M0. So let p be a point in

Z(H), the intersection of the zero level set with the stratum of type (H), for
some subgroup H < G. Let p0 be its image under the orbit map π : Z(H) →
(M0)(H). By Theorem 2.1, the pullback by π of (ω0)(H), the symplectic form
on the piece (M0)(H), is equal to the restriction to Z(H) of the symplectic
form on M ,

π∗(ω0)(H) = ω|Z(H)
.

It follows that if we take the Hamiltonian vector field Ξf̄ of f̄ , which is
tangent to Z(H), evaluate it at p and push it forward by π, we will then get
the Hamiltonian vector field of f evaluated at p0,

π∗(Ξf̄ (p)) = Ξf (p0).

By definition, the Poisson bracket of f and g at the points of (M0)(H) can be
written in terms of their Hamiltonian vector fields as

{f, g} = (ω0)(H)(Ξf , Ξg).

Therefore

π∗{f, g}M0 = π∗[(ω0)(H)(Ξf , Ξg)]

= π∗[(ω0)(H)(π∗Ξf̄ , π∗Ξḡ)]

= π∗
(
(ω0)(H)

)
(Ξf̄ , Ξḡ)

= ω(Ξf̄ , Ξḡ) = {f̄ , ḡ}M .

2

Having defined a bracket, we now come to the question of defining Hamil-
tonian flows on the reduced space. Given a Hamiltonian h ∈ C∞(M0), an
integral curve of h through a point m0 is a (generalized) smooth curve γ(t)
with γ(0) = m0, such that for all functions f ∈ C∞(M0)

d

dt
f(γ(t)) = {f, h}M0(γ(t)). (7)

(Hamilton’s equation on the reduced space.) Since the reduced space M0 is
not a manifold, (7) cannot be reduced to a system of ordinary differential
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equations. For this reason we need to give an argument proving the existence
and uniqueness of integral curves.

To show the existence, we pick a smooth G-invariant function h̄ on M
with h̄|Z = π∗h. The Hamiltonian flow Φ̄t of h̄ is G-equivariant and leaves
the level set Z invariant. It therefore descends to a smooth flow Φt on the
reduced space M0. Let m be a point in the zero level set with π(m) = m0

and f a smooth function on M0. Pick f̄ ∈ C∞(M) with f̄ |Z = π∗f . Then
f(Φt(m0)) = f̄(Φ̄t(m)). The definition of the bracket on M0 now implies
that

d

dt
f(Φt(m0)) =

d

dt
f̄(Φ̄t(m)) = {f̄ , h̄}M(Φ̄t(m)) = {f, h}M0(Φt(m0)). (8)

Next we prove the uniqueness of integral curves. Let γ(t) be an integral
curve of h starting at m0. We would like to show that γ(t) = Φt(m0), or,
equivalently, that

Φ−t(γ(t)) = m0

for all t.
Using integration over G one can easily show the existence of a G-invariant

partition of unity on M subordinate to a cover of G-invariant open sets. This
implies that smooth functions on the reduced space separate points, i.e., if
f(x) = f(y) for all f ∈ C∞(M0), then x = y. Therefore it suffices to show
that for all t and for all f ∈ C∞(M0)

f(Φ−t(γ(t))) = f(m0).

Put ft = f ◦Φ−t. Equation (8) together with the fact that h is preserved by
its flow Φt implies that

dft

dt
= {h, ft}M0 . (9)

Combining (7) and (9) we get

d

dt
f(Φ−t(γ(t))) = {h, f}M0(γ(t)) + {f, h}M0(γ(t)) = 0.

This proves that an integral curve of h through m0 is unique.
Because of G-equivariance, the lift Φ̄t of the flow Φt preserves the orbit

type stratification of M . As an immediate consequence, we have the following
lemma.
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3.2. Lemma. The Hamiltonian flows of the functions in C∞(M0) preserve
the symplectic pieces of M0. The restriction of the Hamiltonian flow of a
function h ∈ C∞(M0) to a piece (M0)(H) equals the Hamiltonian flow of the
function h|(M0)(H)

.

Using the definition of the bracket on C∞(M0) one can easily show that
the Hamiltonian flows sweep out the symplectic pieces (more precisely their
connected components). Consequently the smooth symplectic manifolds de-
fined by Gonçalves [10] are exactly the connected components of the strata
(M0)(H). It also follows from this observation that

3.3. Proposition. The decomposition of the reduced space is determined
by the Poisson algebra of smooth functions.

Note also that since the pieces are smooth manifolds the integral curves are
smooth in the usual sense.

We will now consider a finer decomposition of the manifold M . For a
subgroup H of G define

MH = {m ∈M : stabilizer of m is exactly H},

the manifold of symmetry H. This manifold is symplectic (see for example
[17, Proposition 27.5]), and the symplectic form ωH is simply the restriction
of the symplectic form on M , ωH = ω|MH

. Since the Hamiltonian vector field
of an invariant function h̄ is tangent to MH , it coincides with the Hamiltonian
vector field (with respect to the form ωH) of the restriction h̄|MH

. In other
words, the decomposition of M into symmetry components,

M =
⊔

H<G

MH ,

is also a decomposition of the Hamiltonian system (M, h̄):

(M, h̄) =
⊔

H<G

(MH , h̄|MH
).

The rest of the section is devoted to showing that the intersection of the
zero level set Z with the manifold of symmetry H is a coisotropic manifold
fibring over the reduced piece (M0)(H), and to explaining the connection
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between the fibration Z∩MH → (M0)(H) and the regular Marsden–Weinstein
reduction.

The action of G does not preserve the manifold MH ; in fact, under the
action MH sweeps out M(H). To see this, observe that if a point p lies in
M(H) then the stabilizer of p is g−1Hg for some g ∈ G, so g−1p is in MH .

This argument shows that the composition of the inclusion MH ↪→M(H)

with the orbit map M(H) →M(H)/G is surjective. Moreover, MH →M(H)/G
is a principal fibration with the structure group L = NG(H)/H, where
NG(H) denotes the normalizer of H in G.

We can now reinterpret the embedding MH ↪→ M(H) as a map of fibre
bundles. Both manifolds MH and M(H) fibre over M(H)/G with typical fibres
NG(H)/H and G/H respectively; they are both associated to the princi-
pal fibration L → MH → M(H)/G. The natural embedding of the fibres
NG(H)/H ↪→ G/H induces an embedding of the fibre bundles:

MH = MH ×L (NG(H)/H)→MH ×L (G/H) = M(H).

The piece (M0)(H) of orbit type H is a submanifold of the base M(H)/G
and the fibration M(H)∩Z → (M0)(H) is a restriction of the fibration M(H) →
M(H)/G to the submanifold (M0)(H) (cf. Theorem 2.1). We claim that the
intersection of Z with MH is a restriction to (M0)(H) of the fibration MH →
M(H)/G. Indeed,

MH |(M0)(H)
= MH ∩

(
M(H)|(M0)(H)

)
= MH ∩ (M(H) ∩ Z) = MH ∩ Z.

The preceding discussion can now be summarized in a lemma.

3.4. Lemma. The manifold MH of points with symmetry H intersects the
zero level set Z of the moment map J : M → g∗ in a manifold which fibres
over the piece (M0)(H) of orbit type H with typical fibre NG(H)/H.

We are now going to relate the fibration MH∩Z → (M0)(H) to the regular
Marsden–Weinstein reduction procedure.

Let M ′
H denote the union of the components of MH which intersect Z

nontrivially. The action of the group NG(H) on M is Hamiltonian and, as a
result, the action of NG(H) on M ′

H is Hamiltonian as well (although it is not
effective). It follows that the action of L = NG(H)/H on M ′

H is Hamiltonian.
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Indeed, let us show that the restriction J ′ of the moment map J to M ′
H

can be interpreted as a moment map for the action of L on M ′
H . For any

a ∈ H and p ∈M ′
H we have

J(p) = J(a · p) = Ad∗(a)J(p).

So the image of M ′
H under J ′ is contained in (g∗)h, the subspace of g∗ in-

finitesimally fixed by H. On the other hand, since H fixes the points of M ′
H ,

for any ξ ∈ h the function 〈ξ, J〉 is locally constant on M ′
H . It follows from

the fact that Z ∩M ′
H 6= ∅ that 〈ξ, J〉 is actually zero on M ′

H , that is, the
image J ′(M ′

H) is contained in anng∗ h, the annihilator of h in g∗. The vector
space l∗, the dual of the Lie algebra of L, can be identified with annn∗ h, the
annihilator of h in n∗. It is not hard to show that the natural map

(g∗)h ∩ anng∗ h→ l∗,

given by restriction of functionals, is an isomorphism. This allows us to
identify the vector spaces (g∗)h ∩ anng∗ h and l∗.

3.5. Theorem. Zero is a regular value of the moment map J ′ : M ′
H → l∗.

Consequently the piece (M0)(H) of the reduced space M0 of type (H) is the
regular Marsden–Weinstein reduced space (J ′)−1(0)/L.

Proof. Since L acts freely on M ′
H , zero is a regular value of J ′. We have

shown that (J ′)−1(0) = Z ∩ MH . On the other hand, by Lemma 3.4,
(MH ∩ Z)/L = (M0)(H). It remains to show that the symplectic forms on
(J ′)−1(0)/L and (M0)(H) coincide. This is easy and is left to the reader. 2

This theorem provides us with a simple recipe for lifting integral curves of
a reduced Hamiltonian flow on the reduced space M0 to the level set Z.
Namely, let h̄ be an invariant smooth function on the manifold M , and let
h be the smooth function on the reduced space induced by h̄. Let Φ̄t, resp.
Φt, denote the Hamiltonian flow of h̄, resp. h. If γ(t) is an integral curve
of the function h, then it lies inside some symplectic piece (M0)(H), and the
classical recipe for lifting a reduced flow (see e.g. [1]) can be used to lift γ(t)
to an integral curve of the Hamiltonian h̄, lying in the manifold MH .

As another application of Theorem 3.5 we give a generalization of Smale’s
criterion for relative equilibria of Hamiltonian systems.
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3.6. Definition. A point p ∈ Z is called a relative equilibrium (with respect
to the G-action) of the Hamiltonian vector field Ξh̄ on M if the trajectory
Φ̄t(p) through p is contained in the orbit G · p.

In terms of reduction, relative equilibria can be characterized as follows.

3.7. Lemma. Let p be a point in Z ∩MH . Then the following statements
are equivalent.

1. The point p is a relative equilibrium of the Hamiltonian vector field Ξh̄.

2. The image p0 of p under the orbit map π : Z → M0 is fixed under the
flow Φt of the reduced Hamiltonian h on M0.

3. The point p0 is an equilibrium point of the Hamiltonian vector field Ξh

on the symplectic piece (M0)(H).

4. There is a one-parameter subgroup {gt} of G such that

Φ̄t(p) = gt · p.

Proof. The implications 1 ⇒ 2 and 4 ⇒ 1 are immediate from Defini-
tion 3.6, and 2⇔ 3 is obvious from Lemma 3.2.

We use Theorem 3.5 to show 3 ⇒ 4. Suppose that p0 ∈ (M0)H is an
equilibrium point for Ξh, i.e., Φt(p0) = p0 for all time t. Since the projection
Z∩MH → (M0)(H) is a principal NG(H)/H-bundle, there are unique elements
ǧt ∈ NG(H)/H such that Φ̄t(p) = ǧt · p. It is easy to see that there exists
a one-parameter subgroup {gt} of NG(H) < G which projects down to {ǧt}
under the map NG(H)→ NG(H)/H and satisfies Φ̄t(p) = gt · p. 2

In particular, if the symplectic piece of p0 consists of one single point, the
point p is automatically a relative equilibrium.

If p is a regular point of the momentum map J , it is a relative equilibrium
if and only if it is a critical point of the energy-momentum map J × h̄ :
M → g∗ ×R. This is Smale’s criterion for relative equilibria; see Marsden
and Weinstein [25] for a proof and references. Using Theorem 3.5 we can
give a more general criterion from which the regularity assumption has been
removed.
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3.8. Theorem. A point in Z ∩MH is a relative equilibrium of the Hamil-
tonian vector field of the G-invariant function h̄ if and only if it is a critical
point of the map J ′ × (h̄|MH

) : MH → l∗.

Proof. By Lemma 3.7, p ∈ Z ∩MH is a relative equilibrium of Ξh̄ if and
only if p0 is a critical point of the map h|(M0)(H)

. By Theorem 3.5, this is

equivalent to p being a critical point of h̄|Z∩MH
. This in turn is equivalent to

p being a critical point of the product map J ′ × (h̄|MH
). 2

3.9. Remark. Suppose that the manifold M is compact. Then the pieces
of the reduced space all have finite Liouville volume. This can be seen as
follows. The set MH of points fixed by H is defined by

MH = {m ∈M : H is a subgroup of the stabilizer of m}.

Note that MH = MH ∩ M(H). Also, the fixed point set MH is a closed
symplectic submanifold of M , and the manifold MH of symmetry H is open
in MH . Since the space M was assumed to be compact, the Liouville volume
of MH has to be finite. This implies that the volume of MH is finite, and
hence, the volume of the piece (M0)(H) = (Z ∩MH)/NG(H) is also finite.

4 Reduction in Stages

In this section we show that the reduction procedure of Section 2 can be
carried out in stages in complete analogy with the regular Marsden–Weinstein
reduction procedure. The results of this section will be used later on to
show that the decomposition of M0 is actually a stratification in the sense of
Definition 1.7.

Let us start by recalling the reduction-in-stages procedure under all the
assumptions of regularity. The set-up is as follows. Let G1 and G2 be
two groups acting on (M, ω) in a Hamiltonian fashion with corresponding
equivariant moment maps J1 : M → g∗1 and J2 : M → g∗2. Assume that
the actions commute, i.e., that we have an action of the product group
G1 × G2. The corresponding moment map J : M → g∗1 × g∗2 is a prod-
uct: J(m) = (J1(m), J2(m)). The equivariance of J is equivalent to J1 being
G2-invariant and J2 being G1-invariant. So after averaging J1 over the group
G2 and J2 over G1 we may assume that J is equivariant.
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If zero is a regular value of J1 and the action of G1 on J−1
1 (0) is free then

X1 = J−1
1 (0)/G1

is a symplectic manifold. The G2-invariance of J1 implies that the action of
G2 preserves the level set J−1

1 (0). Since the actions of G1 and G2 commute,
we get an action of G2 on X1. This action is Hamiltonian. To compute the
corresponding moment map J ′2 : X1 → g∗2 note that the restriction of J2 to
the level set J−1

1 (0) is G2-invariant and so descends to a smooth map from
X1 to g∗2. It is easy to check that this is a moment map for the action of G2

on X1.
If zero is a regular value of J ′2 and G2 acts freely on the zero level set in

question then we can reduce one more time and obtain the space

X12 = (J ′2)
−1(0)/G2.

On the other hand, the reduction may be carried out in reverse order.
That is, first one obtains a Hamiltonian G1-space X2 = J−1

2 (0)/G2 with
G1-moment map J ′1 : X2 → g∗1 and then the space

X21 = (J ′1)
−1(0)/G1.

The reduction-in-stages theorem asserts that the two spaces are isomor-
phic as symplectic manifolds. The proof is essentially an observation that
either space can be obtained by reducing M at (0, 0) ∈ g∗1 × g∗2 with respect
to the action of the product G1 ×G2:

X12 = (J1 × J2)
−1(0, 0)/G1 ×G2 = X21.

We claim that the assumptions of regularity can be removed. Let us look
at what is involved in the proof of this claim. The space X1 = J−1

1 (0)/G1

is no longer neccessarily a manifold. However, a simple check of definitions
shows that the induced action of G2 on the space is smooth, that is, it
preserves C∞(X1). Moreover, the action is decomposition-preserving. The
reason is fairly simple: an orbit type stratum M(H), H < G1, is preserved by
the action of G2. Since G2 preserves the Poisson bracket on M , it preserves
the reduced bracket on X1.

Alternatively, Theorem 3.5 implies that the action of G2 on each piece of
X1 is symplectic. In fact, the action of G2 on a piece (X1)(H) is Hamiltonian.
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The corresponding moment map is computed as in the regular case: the
map J2|MH

is a moment map for the action of G2 on MH , the manifold of
symmetry H; it is invariant under the action of NG(H)/H and so descends
to a moment map on the piece (X1)(H). These moment maps on the pieces
fit together to form a map J ′2 : X1 → g∗2. This map is also defined by the
fact that its pullback to the zero level set J−1

1 (0) equals the restriction of J2,

J2|J−1
1 (0) = π∗1(J ′2),

where π1 : J−1
1 (0) → X1 is the orbit map. Therefore the map J ′2 is smooth

and it makes sense to define this map to be the moment map corresponding to
the action of G2 on the space X1. We would like to repeat that the restriction
of J ′2 to each piece is a momentum map in the usual sense.

Proceeding by analogy we define the reduced space at zero corresponding
to the action of G2 on X1 to be

X12 = (J ′2)
−1(0)/G2.

We now describe the smooth structure (i.e., the space of smooth functions)
and the Poisson bracket on X12. A continuous function f : X12 → R is
smooth if there exists a function f ′ ∈ C∞(X1)

G2 such that

f ′|(J ′2)−1(0) = π∗12f,

where π12 : (J ′2)
−1(0)→ X12 is the orbit map. Similarly, for any two functions

f, g ∈ C∞(X12) we define their Poisson bracket at x ∈ X12 by

{f, g}X12(x) = {f ′, g′}X1(x
′),

where f ′ and g′ are the corresponding functions in C∞(X1)
G2 and x′ ∈

(J ′2)
−1(0) satisfies π12(x

′) = x.
One can check, by adapting the arguments given earlier, that the bracket

in C∞(X12) is well-defined and that X12 decomposes into a union of sym-
plectic spaces. For example, the decomposition of X12 can be obtained by
first stratifying the pieces of X1 by the G2-orbit types and then looking at
the intersections of these strata with the level set (J ′2)

−1(0). We will shortly
see that such direct computations can be avoided.
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Indeed, as a topological space X12 can also be obtained by reducing the
M at the origin with respect to the action of the product G1 ×G2. That is,
X12 is homeomorphic to

M0 = (J1 × J2)
−1(0, 0)/G1 ×G2.

The reader may wish to keep in mind the diagram below.

J−1
1 (0) −→ M ←− (J1 × J2)

−1(0, 0)
↓ π1

X1 ←− (J ′2)
−1(0)

?

π

↓ π12

X12 ←→ M0

We want to show that C∞(M0) and C∞(X12) are isomorphic as Poisson
algebras. This will prove that reduction in stages holds without any assump-
tions of regularity and, as a byproduct, it will also show that X12 can be
decomposed as a union of symplectic manifolds.

By definition, a function f : M0 → R is smooth if there exists a function
f̄ ∈ C∞(M)G1×G2 with

f̄ |(J1×J2)−1(0,0) = π∗f,

where π : (J1 × J2)
−1(0, 0)→M0 is the orbit map.

The restriction f̄ |J−1
1 (0) is G1-invariant and so there exists a function f ′ ∈

C∞(X1) with π∗1f
′ = f̄ |J−1

1 (0). Clearly f ′ is G2-invariant and further satisfies

f ′|(J ′2)−1(0) = π∗12f.

Therefore f is also a smooth function on X12. Consequently we have an
inclusion

C∞(M0) ↪→ C∞(X12).

We need to show that the reverse inclusion also holds. So let f : X12 → R
be smooth. Then there exists a smooth G2-invariant function f ′ : X1 → R
such that

f ′|(J ′2)−1(0) = π∗12f.

In turn there exists a smooth function f̃ ∈ C∞(M)G1 with f̃ |J−1
1 (0) = π∗1f

′.

Unfortunately f̃ need not be G2-invariant. Let f̄ be the average of f̃ with
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respect to the action of G2,

f̄(p) =
∫

G2

f̃(g · p) dg.

Then f̄ ∈ C∞(M)G1×G2 . Since the projection π1 is G2-equivariant, the re-
striction of f̄ to the set J−1

1 (0) equals the pullback by π1 of the G2-average
of f ′. But f ′ is G2-invariant, so

f̄ |J−1
1 (0) = π∗1f

′.

It follows that
f̄ |(J1×J2)−1(0,0) = π∗f,

i.e., that f ∈ C∞(M0). The same argument shows that the brackets on
C∞(M0) and C∞(X12) coincide. To summarize, we have proved

4.1. Theorem. The reduction procedure described in Section 2 can be car-
ried out in stages.

4.2. Remark. The discussion above shows that there is a natural way of
defining Hamiltonian group actions and momentum maps on stratified sym-
plectic spaces. The reduced spaces would again, presumably, be stratified
symplectic spaces.

The rest of the section is concerned with generalizing the theorem of
reduction in stages to extensions of groups. These results will not be used in
the rest of the of the paper. Let

1→ A→ B → B/A→ 1

be an exact sequence of compact Lie groups with the group B acting in a
Hamiltonian fashion on a symplectic manifold (M, ω). Let JB : M → b∗ de-
note a corresponding moment map. Then the action of A is also Hamiltonian
and the moment map JA is given by

JA = i∗ ◦ JB,

where i∗ : b∗ → a∗ is the transpose of the inclusion map i : a→ b. We would
like to show that the reduction of M at zero with respect to the action of B
can be carried out in stages. That is to say, one can first reduce M at zero
with respect to the action of A, the resulting space is a Hamiltonian B/A
space and further reduction at zero with respect to the action of B/A gives
one J−1

B (0)/B.
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4.3. Remark. We would like to remind the reader that if a discrete group
Γ acts symplectically on a manifold (M,ω), then we consider such an action
to be Hamiltonian with momentum map being identically zero. We take the
reduced space to be the quotient M/Γ. Clearly it is a stratified symplectic
space.

It is easy to show that the set ZA = J−1
A (0) is B-invariant and that the image

of ZA under the moment map JB is contained in annb∗ a, the annihilator of
a in b∗, which is isomorphic to (b/a)∗. Also, by an averaging argument
similar to the one given in the proof of Theorem 4.1, for any function f ∈
C∞(ZA/A)B/A there exists a function f̂ ∈ C∞(M)B with

f̂ |ZA
= π∗Af,

where πA : ZA → ZA/A is the orbit map.
The difficulty lies in showing the induced action of B/A on ZA/A is

Hamiltonian in a reasonable sense of the word and that the moment map
for this action is compatible with JB. In other words, one would like to
show that JB|ZA

descends to a map from the quotient to (b/a)∗. Since JB is
equivariant, a sufficient condition for this to be possible is that the action of
A on annb∗ a be trivial.

4.4. Theorem. Let M be a symplectic manifold and B a compact Lie group
acting on M in a Hamiltonian fashion with corresponding moment map JB :
M → b∗. Let 1 → A → B → C → 1 be an exact sequence of Lie groups.
Suppose that either

1. A is the connected component of the identity of B, or

2. B is connected.

Then one can reduce M first with respect to the action of A and obtain a
Hamiltonian C-space. The result of the C-reduction of this space is isomor-
phic to the reduction of M with respect to the action of B.

Proof. If A is the connected component of the identity of B, then (b/a)∗ =
0. So by the discussion preceding the statement of the theorem the reduction
can be carried out in stages.
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Consider now the case where B is connected. Again it suffices to show
that the action of A on annb∗ a is trivial. Since A is compact, b carries an
Ad(A)-invariant inner product, which allows us to identify annb∗ a with

a⊥ = {x ∈ b : x⊥a}.
Since a⊥ is A-invariant, [a, a⊥] is contained in a⊥. On the other hand, since
A is normal in B, a is an ideal in b and so [a, a⊥] is contained in a. It follows
that [a, a⊥] = 0. Thus the identity component A0 of A acts trivially on a⊥.

Consider the map φ : B×A0 → B, φ(b, a) = bab−1. Since, by assumption,
A is normal in B and B × A0 is connected, the image is contained in a
connected component of A. Since φ(1, 1) = 1, the image is actually A0.
Therefore A0 is normal in B and B/A0 is a group. Now the group A/A0,
which is finite, is normal in the group B/A0, which is connected, and an
argument similar to the preceding one shows that it is central. It follows
that the adjoint action of A/A0 on Lie(B/A0) ' a⊥ is trivial. We conclude
that the adjoint action of A on a⊥ is trivial. 2

5 The Local Structure of the Decomposition

Reduction in stages allows us to construct a simple model for a neighbour-
hood of a point in a reduced space. Let (M,ω) be a Hamiltonian G-space
with momentum map J : M → g∗, and let Z = J−1(0) be the zero level set.

5.1. Theorem. Let x be a point in the reduced space M0 = Z/G and p a
point in the zero level set mapping to x under the orbit map Z →M0. Let H
be the stabilizer of p, V = Tp(G · p)ω/Tp(G · p) the fibre at p of the symplectic
normal bundle of the orbit through p and ωV the symplectic form on V . Let
ΦV : V → h∗ be the momentum map corresponding to the linear action of H.
Let 0̄ denote the image of the origin in the reduced space Φ−1

V (0)/H. Then
a neighbourhood U1 of x in M0 is isomorphic to a neighbourhood U2 of 0̄ in
Φ−1

V (0)/H. More precisely, there exists a homeomorphism ϕ : U1 → U2 that
induces an isomorphism

ϕ∗ : C∞(U2)→ C∞(U1)

of Poisson algebras. In particular, ϕ carries the symplectic pieces of U1 onto
symplectic pieces of U2.
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Proof. Recall that a neighbourhood of p in M is modelled by a space Y
obtained by reducing the product T ∗G×V at zero with respect to the action
of H (Proposition 2.5), and that if the modelled space Y is reduced further
with respect to the action of G the result is a model Y0 for a neighbourhood
of x in M0. By Theorem 4.1 the order in which these two reductions are
carried out can be reversed.

Let us reverse the order of the two reductions. The reduction of T ∗G×V
with respect to the action of G gives a symplectic vector space (V, ωV ) with
the group H acting linearly. The second reduction gives Φ−1

V (0)/H. There-
fore we may identify the model space Y0 with Φ−1

V (0)/H and the theorem is
proved. 2

Let us now describe the topology and the symplectic structure of the space
Φ−1

V (0)/H in more detail. Let VH be the space of H-fixed vectors in V and
W the symplectic perpendicular of VH , as in the proof of Theorem 2.1. It
follows from (4) that

Φ−1
V (0)/H = Φ−1

W (0)/H × VH , (10)

where ΦW is the corresponding H-momentum map on W .
Without loss of generality we may assume that W carries an H-invariant

complex structure compatible with the symplectic form ωW = ωV |W . This
allows us to identify (W,ωW ) with (Cn, Ω), n = 1/2 dim W , with coordinates
z1, . . . , zn and symplectic form

Ω =
√−1

∑

j

dzj ∧ dz̄j.

We may assume that H is a subgroup of U(n) (if not, replace H by its image
under the homomorphism H → U(n)). Let T ∼= S1 denote the central circle
subgroup of U(n). The action of eiθ ∈ T is given by eiθ · (z1, . . . , zn) =
(eiθz1, . . . , e

iθzn). The momentum map Φ for the action of T on Cn is simply

Φ(z) = ‖z‖2.

Consequently, if T is a subgroup of H, the zero level set of ΦW consists of the
origin only, and the reduced space Φ−1

V (0)/H is the symplectic vector space
VH .
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Now assume that T is not a subgroup of H. Then the Lie algebra h
of H intersects the Lie algebra of T trivially. Since the momentum map
ΦW is homogeneously quadratic, the level set Φ−1

W (0) is invariant under the
multiplication by positive scalars. It follows that, for a subgroup K of H,
the manifold W(K) ∩ Φ−1

W (0) intersects the unit sphere S2n−1 = {z ∈ Cn :
‖z‖2 = 1} transversely. Thus the set

L = Φ−1
W (0) ∩ S2n−1

decomposes into a disjoint union of smooth manifolds,

L =
⊔

K<H

L(K),

where
L(K) = Φ−1

W (0) ∩ S2n−1 ∩W(K).

Also, the map

ρ : L× (0,∞)→ Φ−1
W (0) \ {0}, ρ(z, t) =

√
t z

is a decomposition-preserving H-equivariant homeomorphism. Consequently,
the reduced space (Φ−1

W (0)\{0})/H is homeomorphic to (L/H)×(0,∞). This
homeomorphism extends to a homeomorphism

C̊(L/H)
∼−→ Φ−1(0)/H, (11)

which preserves the decompositions and which is a diffeomorphism on each
piece. From Theorem 5.1 and (11) we can now read off that there exist an
open neighbourhood U of the point x in M0, an open ball B in VH and a
decomposition-preserving homeomorphism

U
∼−→ C̊(L/H)×B. (12)

5.2. Remark. The space L/H is a link of the point x (cf. Definition 1.7).
This will be proved in the next section.

The fact that the space (Φ−1
W (0) \ {0})/H is conical is also reflected in its

symplectic structure. Indeed, let us start by writing W \ {0} as a cylinder
over S2n−1 and by rewriting the symplectic form in these new coordinates.
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Note first that the circle group T in the centre of U(n) acts freely on the
sphere S2n−1, that the quotient S2n−1/T is the projective space CP n−1 and
that the principal fibration T → S2n−1 → CP n−1 is the Hopf fibration. The
form

A = −1/2
√−1

∑

j

(z̄j dzj − zj dz̄j)|S2n−1

is a U(n)-invariant connection one-form on this fibration. It is easy to check
that ρ∗Ω = d(tA), where ρ : S2n−1 × (0,∞) → Cn \ {0} is the map defined
by ρ(z, t) =

√
t z. Thus, if the group H is trivial, then L = S2n−1 and

(Φ−1
W (0) \ {0})/H = S2n−1 × (0,∞),

while the reduced form is the exact form d(tA). We are going to show that
each piece of the reduced space (Φ−1

W (0) \ {0})/H carries a connection one-
form, Areduced, and that the reduced symplectic structure can be written as

ωreduced = d(tAreduced).

5.3. Theorem. Let K be a closed subgroup of H.

i. The connection one-form A descends to a one-form A(K) on L(K)/H
and the reduced symplectic form on

(W(K) ∩ Φ−1
W (0))/H = L(K)/H × (0,∞)

is the exact form d(tA(K)).

ii. The induced action of T on the manifold L(K)/H is fixed point free.

iii. If the T -action on L(K)/H is free, A(K) is a connection one-form on
the principal T -bundle L(K)/H → L(K)/(H × T ).

Proof. For ξ ∈ h and z ∈ Cn let ξ · z denote the value at z of the vector
field corresponding to the infinitesimal action of ξ. Since the form tA is H-
invariant, one easily sees that the momentum map ΦW in the new coordinates
is given by

〈ξ, ΦW (z, t)〉 = −tA(ξ · z).

Therefore the intersecion Φ−1
W (0) ∩ S2n−1 is the set

L = {z ∈ S2n−1 : A(ξ · z) = 0 for all ξ ∈ h}. (13)
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It follows that the restriction of the one-form A to the manifold L(K) vanishes
along the directions of the H-orbits. Since A is H-invariant, it descends to a
one-form A(K) on L(K)/H. It is easy to see that the reduced symplectic form
on L(K)/H × (0,∞) is simply d(tA(K)). This proves the first statement.

To prove that the action of T on L(K)/H is fixed point free, it suffices
to show that for each point z ∈ L(K) the T -orbit through z intersects the
H-orbit discretely or, equivalently, that the corresponding tangent spaces
intersect trivially,

Tz(T · z) ∩ Tz(H · z) = 0. (14)

But condition (13) says that the H-orbit is tangent to the horizontal distribu-
tion on S2n−1 defined by A. On the other hand, the T -orbit is tangent to the
vertical distribution. This implies (14), which proves the second statement.

If the T -action on L(K)/H is actually free, it follows from the preceding
paragraph that A(K) is a connection one-form for the principal T -fibration
L(K)/H → L(K)/(H × T ). This proves the last statement. 2

5.4. Remark. If the T -action on L(K) is not free, the map

L(K)/H → L(K)/(H × T )

is a V -bundle, the quotient L(K)/(H × T ) is a symplectic V -manifold, also
called a symplectic orbifold, and the form A(K) is a connection one-form in
a generalized sense. (See Satake [29], Baily [4] and Schwarz [30].) Heuris-
tically, the collection of V -bundles {L(K)/H → L(K)/(H × T )}K<H may be
considered as a single fibration of the stratified spaces

L/H → L/(H × T )

and the collection of one-forms {A(K)} as a kind of connection structure for
this fibration.

Note that the set L = Φ−1
W (0)∩S2n−1 is exactly the zero level set of the map

F : W → h∗ ×R given by

F (w) = (ΦW (w), ‖w‖2 − 1), (15)

which is a momentum map for the action of H × T on W .
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5.5. Definition. The stratified symplectic space Σ = L/(H × T ) obtained
by reducing the vector space W at the zero level with respect to the H × T -
action will be called a symplectic link of the point 0̄ ∈ Φ−1

V (0)/H (and of the
corresponding point in the reduced space M0.)

By the reduction-in-stages theorem, Theorem 4.1, the symplectic link Σ can
also be seen as the reduction at 0 ∈ h∗ of the smooth Hamiltonian H-
space CP n−1 or, alternatively, as the reduction at 0 ∈ R of the singular
Hamiltonian S1-space Φ−1

W (0)/H.

5.6. Remark. The decomposition of Σ considered as a reduced symplectic
space is finer than the decomposition Σ =

⊔
K<H L(K)/(H × T ) since, in

general, the pieces L(K)/(H×T ) are V -manifolds and need to be decomposed
further. This can be seen in the following example.

5.7. Example. Let W be C3 and let H be the circle {eiφ : φ ∈ R} acting
by

eiφ · (z1, z2, z3) = (eiφz1, e
−iφz2, e

−2iφz3).

(The (1,−1,−2) resonance.) In this case the set L is given by
{
|z1|2 − |z2|2 − 2|z3|2 = 0
|z1|2 + |z2|2 + |z3|2 = 1

.

The set L is smooth and the H-action on L is free. The H × T -action on L,
however, is not free. There are three H × T -strata on L, namely

{z : |z1|2 = |z2|2 = 1/2; z3 = 0},
where the stabilizer is isomorphic to Z2,

{z : |z1|2 = 2/3; |z3|2 = 1/3; z2 = 0},
where the stabilizer is isomorphic to Z3, and the open stratum, where the
action is free. Thus L/H is a manifold, Σ is an orbifold with two isolated
singular points, and the T -quotient map L/H → Σ is not a circle bundle.

5.8. Remark. Kirwan has proved in [20, Remark 3.1] and [19, Remark 9.1]
that the zero level set of a proper momentum map is connected. Obviously,
the momentum map F in (15) is proper. Consequently the symplectic link
of each point in M0 is connected.
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Using Kirwan’s result, we show that the decomposition of the reduced space
M0 has the following remarkable property.

5.9. Theorem. Assume that the momentum map J : M → g∗ is proper.
Then there is a unique piece (M0)(H) which is open in the reduced space. It
is connected and dense.

Proof. Let us first refine the decomposition of M0 so that all the pieces are
connected. Similarly, without saying so explicitly, given the symplectic link
of a point of M0, its decomposition into manifolds will be refined so that all
the pieces are connected.

Let M̂0 denote the union of all the open pieces of M0. We will prove by
induction on the dimension of M0 that M̂0 is dense in M0. Let x be a point
in M0. Let

U ' C̊(L/H)×B

be a model neighbourhood of x as in (12), and let π : L/H → Σx be the
T -quotient map from the link to the symplectic link of x. We see from this
model that, if the symplectic link of x is empty, x lies in M̂0 (and hence in its
closure). If Σx is nonempty, we may assume by induction on the dimension
of M0 that Σ̂x, defined analogously to M̂0, consists of a single open dense
piece of Σx. The map π : L/H → Σx is continuous and furthermore has
the property that a preimage of a piece of Σ is a submanifold of a piece
of L/H. Consequently π−1(Σ̂x) is an open subset of some piece L(K)/H
of L/H. Therefore L(K)/H is open in L/H and so the intersection of the

neighbourhood U of x with M̂0 is of the form

M̂0 ∩ U ' B × (L(K)/H)× (0, r).

with the point x being identified with the vertex of the cone on L(K)/H. So

x lies in the closure of M̂0. Since x is arbitrary, this proves that M̂0 is dense.
We now prove that M̂0 is connected. Suppose not. Then M̂0 is a disjoint

union of two nonempty open sets U1 and U2. Then, since M̂0 is dense, the
union of the closures of U1 and of U2 is the whole of M0, i.e. Ū1 ∪ Ū2 = M0.
The space M0 is connected by Kirwan’s theorem (op. cit.), so the intersection
Ū1 ∩ Ū2 is nonempty. Let x be a point in the intersection. This point cannot
lie in M̂0, so the symplectic link Σx is nonempty. Let C1 and C2 be two
(connected) pieces of M0 with C1 ⊂ U1 and C2 ⊂ U2. To these two pieces
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there correspond two disjoint open pieces B1 and B2 of the link L/H. The
quotient map π is open, so π(B1) and π(B2) are two disjoint open subsets of
Σx. In fact, π(B1) is a symplectic V -manifold and so is a union of symplectic
manifolds. Each of these manifolds is a piece in the decomposition of Σx.
Therefore π(B1) contains an open piece of Σx. Similarly, π(B2) contains an
open piece of Σx. But this contradicts the inductive assumption that Σ̂x is
connected. We conclude that M̂0 is connected. Thus we have proved that
there exists a unique piece (M0)(H) of the reduced space such that one of its
connected components is open and dense. Clearly this implies that (M0)(H)

can only have one component. 2

5.10. Remark. If the momentum map is not proper, the reduced space is
not necessarily connected. However, in this case it is obvious from the proof
of Theorem 5.9 that each component C of M0 has a unique open stratum,
which is connected and dense in C.

As an immediate corollary to Theorem 5.9 and the preceding remark we have
the following basic property of the Poisson algebra C∞(M0), first shown by
Arms et al. [2].

5.11. Corollary. The Poisson algebra of the reduced space is nondegen-
erate, i.e., its centre consists of the locally constant functions only.

6 A Whitney Embedding of a Reduced Phase Space

The object of this section is to show that the symplectic decomposition of a
reduced phase space is a stratification in the sense of Definition 1.7. We will
actually prove a slightly stronger result, namely that a reduced space can be
embedded into a Euclidean space as a Whitney stratified set. The idea that
reduced spaces should be embeddable into Euclidean space is due to Richard
Cushman [7] (cf. also [2]).

First we shall discuss embeddings and Whitney’s condition B and prove
an embedding result for reduced spaces. Then we shall indicate how this
implies that the decomposition of M0 into symplectic pieces is a stratification.
For background material on Whitney stratifications and semialgebraic sets
see Whitney [37], ÃLojasiewicz [23], Mather [26], Gibson [9] and Goresky and
MacPherson [12]. For embedding results concerning orbit spaces see Schwarz
[31], Mather [28] and Bierstone [5].
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6.1. Definition. Let X be a space with a smooth structure C∞(X). For
each point x ∈ X the ideal mx of x is the set of all smooth functions van-
ishing at x. The (Zariski) tangent space TxX of X at x is the vector space
(mx/m

2
x)∗. If Y is another space with a smooth structure and f a smooth

map from X to Y , then the derivative dfx : TxX → Tf(x)Y of f at a point x
is the dual of the map f ∗ : mf(x)/m

2
f(x) →mx/m

2
x.

If there exist smooth partitions of unity with respect to an arbitrary open
cover of the space X, then the ideal of a point is a maximal ideal in C∞(X).

6.2. Example. If V is a finite-dimensional representation space of a com-
pact Lie group H, then by a result of Hilbert the algebra of invariant poly-
nomials P (V )H is finitely generated. Let 0̄ denote the image of the origin
in the orbit space V/H. The Zariski tangent space of the orbit space V/H
at the point 0̄ is finite-dimensional; its dimension is equal to the number of
elements in a minimal set of homogeneous generators of P (V )H . (For a proof
of this fact, see e.g. Mather [28].)

6.3. Definition. Let X be a space with a smooth structure C∞(X) and let
Y be a manifold. A proper embedding of X into Y is a smooth, proper and
injective map f such that the transpose f ∗ : C∞(Y )→ C∞(X) is surjective.

If f : X → Y is a proper embedding, then for each x ∈ X the derivative dfx

is injective. This follows from the fact that f ∗ : mf(x)/m
2
f(x) → mx/m

2
x is

surjective. If X is equipped with a decomposition into smooth manifolds, one
can show, under some mild additional assumptions on the smooth structure
on X, that for each piece S in X the restriction of f is an embedding of S
into Y . For example, it suffices to assume that the restriction map C∞(X)→
C∞(S) has dense image.

6.4. Example. We continue Example 6.2. Let us choose a finite set of
homogeneous generators (σ1, . . . , σk) of the algebra of invariant polynomials
on V . We define the corresponding Hilbert map σ : V → Rk by

σ(v) = (σ1(v), . . . , σk(v)).

The Hilbert map descends to an injective map

σ̃ : V/H → Rk.
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A fundamental result of Schwarz [31] states that this map is a proper em-
bedding of the orbit space V/H. Consequently, its derivative at the orbit
0̄ ∈ V/H is injective. If the set of generators (σ1, . . . , σk) is minimal, the tan-
gent space to V/H is k-dimensional, so dσ̃0̄ is even an isomorphism. Since the
Hilbert map is polynomial, its image is by the Tarski–Seidenberg Theorem a
semialgebraic subset of Rk. Bierstone [5] has proved that the images of the
strata of V/H are also semialgebraic in Rk.

6.5. Example. Suppose that the representation space V of the previous
example is actually symplectic. The reduced space Φ−1

V (0)/H can be regarded
in a natural way as a subset of the whole orbit space V/H. We claim that the
restriction of the map σ̃ is a proper embedding of Φ−1

V (0)/H into Rk. Indeed,
it is proper and injective, and by the previous example and the definition of
C∞(Φ−1

V (0)/H), the transpose map

C∞(Rk)→ C∞(Φ−1
V (0)/H)

is surjective. We can say a little more about this embedding. Choose a finite
set of generators (ρ1, . . . , ρl) of the algebra P (h∗)H of Ad∗(H)-invariant poly-
nomials on h∗, and by the corresponding Hilbert map ρ embed the quotient
h∗/H into Rl. The momentum map ΦV : V → h∗, being quadratic and
H-equivariant, induces a map Φ∗

V : P (h∗)H → P (V )H . It follows that we
can find l polynomials φi in k variables such that

Φ∗
V (ρi) = φi ◦ σ.

Define the polynomial map Φ̃V : Rk → Rl by

Φ̃V = (φ1, . . . , φl).

Then the following diagram commutes:

V
ΦV−→ h∗

σ ↓ ↓ ρ

Rk Φ̃V−→ Rl.

It follows that

σ̃(Φ−1
V (0)/H) = σ(Φ−1

V (0)) = Φ̃−1
V (0) ∩ σ(V ).
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The fact that the images of the strata in the orbit space V/H are semialge-
braic and the fact that Φ̃V is a polynomial map now imply that the images
of the symplectic pieces in Φ−1

V (0)/H are semialgebraic.

6.6. Example. Let G be a compact Lie group. As pointed out by Schwarz
[31], any G-manifold M of finite type has the property that its orbit space
can be properly embedded. In effect, by the Mostow–Palais Theorem (see
e.g. [6]) there exists a proper G-equivariant embedding i of M into some
representation space RN for G. The map i∗ : C∞(RN) → C∞(M)G is
surjective (use invariant integration to see this). The equivariant map i
descends to a proper injective map M/G → RN/G. Embed the quotient
RN/G into some Rn as in Example 6.4. Then the composition

M/G→ RN/G→ Rn

is an embedding of M/G into Rn.
Now suppose M is a Hamiltonian G-space. It is then an easy matter to

construct an embedding of the reduced space M0 into Rn. First embed M/G
into a Euclidean space Rn via a map i; the restriction of i to M0 is then an
embedding of M0. Example 6.5 is a special case of this construction, where
the image of the embedding is semialgebraic.

6.7. Theorem. Let i : M0 → Rn be the embedding constructed in Exam-
ple 6.6. Then the images of the symplectic pieces constitute a Whitney strat-
ification of the subset i(M0) of Rn.

Let us first explain what we mean by this statement.

6.8. Definition. Let X be a subspace of Rn. A decomposition of X is
called a Whitney stratification if the pieces of X are smooth submanifolds of
Rn and if for each pair of pieces P, Q with P ≤ Q the following condition of
Whitney holds:

Whitney’s Condition B: Let p be an arbitrary point in P and let {pi}
and {qi} be sequences in P , resp. Q, both converging to p. Assume that
the lines li joining pi and qi converge (in the projective space RP n−1) to a
line l, and that the tangent planes Tqi

Q converge (in the Grassmannian of
(dim Q)-planes in Rn) to a plane τ . Then l is contained in τ .

39



6.9. Remark. If X is a Whitney stratified subset of Rn and O an open
subset of Rm, then X ×O ⊂ Rn×Rm is Whitney stratified by the products
of O with strata in X.

6.10. Remark. If Whitney’s condition B holds for a pair of submanifolds
P,Q ⊂ Rr, and f is an embedding Rr → Rs, then Whitney’s condition B
holds for the pair f(P ), f(Q) ⊂ Rs.

Proof of Theorem 6.7. Let P, Q be an arbitrary pair of pieces in i(M0)
with P ≤ Q. We have to check the Whitney condition for P and Q. First
we treat a very special case and then indicate how this implies the general
case. Assume that we are in the situation of Example 6.5. We use the
notation of that example. Suppose that the set of generators (σ1, . . . , σk) is
minimal. Assume that P is σ̃(VH), the image of the piece containing the point
0̄ ∈ Φ−1

V (0)/H, and that Q is any other piece in σ̃(Φ−1
V (0)/H). (As before, 0̄

denotes the image of the orgin in Φ−1
V (0)/H.) If VH = 0, then P is a point,

and the Whitney condition for P and Q is then a real algebraic version of
a property first proved by Whitney [37] in the complex case; namely that
a smooth semialgebraic variety is B-regular over any point in its closure.
See Proposition 3 of ÃLojasiewicz [23, page 103] and also Gibson [9] for a
discussion and further references.

If VH 6= 0, then we know from formula (10) that

Φ−1
V (0)/H = Φ−1

W (0)/H × VH ,

where W is the symplectic perpendicular of VH . The minimality of the set
of generators (σ1, . . . , σk) implies that σ̃(VH) is a linear subspace of Rk, and
that

σ̃(Φ−1
V (0)/H) = σ̃(Φ−1

W (0)/H)× σ̃(VH).

The Whitney condition for P and Q now follows from the preceding case and
Remark 6.9.

We are now ready to tackle the general case. Let x be an arbitrary point
in P ⊂ i(M0). Pick a point p in M lying over the point in M0 corresponding
to x. Let H be the stabilizer and V the symplectic slice of p. Choose a
minimal set of homogeneous generators (σ1, . . . , σk) and embed V/H into
Rk as before. We are going to show that there exists an embedding F̃ of a
neighbourhood O of the origin in Rk into Rn with the following properties:
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i. F̃ (0) = x;

ii. (F̃ ◦ σ̃)(Φ−1
V (0)/H) is an open neighbourhood of x inside i(M0);

iii. the restriction of F̃ to σ̃(Φ−1
V (0)/H) carries symplectic pieces in

Φ−1
V (0)/H to symplectic pieces in i(M0).

By Remark 6.10 the theorem will then follow from the special case treated
above.

The local model in Proposition 2.5 provides us with an H-equivariant
embedding F : U →M , sending the origin in V to p, such that

J ◦ F = ΦV |U. (16)

Here[216z U is a ball of radius ε about the origin in the vector space V with
respect to a norm ‖·‖ given by some H-invariant inner product. After taking
quotients we get a map

F̄ : U/H →M/G.

The fact that dF0 is injective implies that dF̄0̄ is injective. Hence the com-
position i ◦ F̄ : U/H → Rn has injective differential at 0̄ ∈ U/H.

Now consider the restriction of the map σ̃ : V/H → Rk to U/H. The
restriction map C∞(V/H) → C∞(U/H) is not surjective, because U is not
closed in V . However, its image is certainly dense in C∞(V/H). We claim
there exist a neighbourhood O of σ̃(U/H) ⊂ Rk such that σ̃ : U/H → O is a
proper embedding, and a smooth map F̃ : O → Rn fitting into a commutative
diagram:

V/H ←↩ U/H
F̄−→ M/G

σ̃ ↓ σ̃ ↓ ↓ i

Rk ←↩ O
F̃−→ Rn.

It will then automatically follow that dF̃0 is injective, since dσ̃0̄ is an isomor-
phism (by the minimality of the basis of P (V )H) and d(i ◦ F̄ )0̄ is injective.
Moreover, by (16), the map F̃ will carry pieces in Φ−1

V (0)/H to pieces in
i(M0), and this will complete the proof.

We construct the neighbourhood O and the map F̃ as follows. Because
of the invariance of the inner product on V there exists a polynomial g in k
variables with ‖v‖2 = g(σ(v)) for all v ∈ V . Define

O = {x ∈ Rk : g(x) < ε}.
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Then σ maps U into O, and σ̃ : U/H → O is a proper map. It now fol-
lows from Mather [28, Theorems 2 and 3] that σ̃∗ : C∞(O) → C∞(U/H)
is surjective. Let ξl be the l-th coordinate function on Rn. The functions
i ◦ F̄ ◦ (ξl − xl) are smooth on U/H, and can therefore be lifted to functions
fl : O → Rn. Put F̃ = (f1, . . . , fn). Then F̃ (0) = x and F̃ ◦ σ̃ = i ◦ F̄ , as
required. 2

Notice that the symplectic structure of the reduced space doesn’t play a role
in the proof of this theorem. Roughly speaking, the proof uses only the fact
that the symplectic pieces are semialgebraic in suitable local coordinates and
that the reduced space is locally a product of a ball with a lower-dimensional
stratified space. So the method of the proof can also be used to show that
the image i(M/G) of the whole orbit space is a Whitney stratified subset of
Rn.

It follows from Mather’s theory of control data (see [26]) that a Whitney
stratified subset of Euclidean space is a stratified space in the sense of our
Definition 1.7. An outline of the argument can be found in [12, page 40]. If
Z is a Whitney stratified subset of Rn and p is a point in Z, one constructs
a link Lp of p in Z as follows: Let S be the stratum of p. Choose a manifold
N such that N ∩S = {p} and N is transverse to all strata of Z. Then N ∩Z
is Whitney stratified by the intersections of N with strata in Z (cf. Gibson
[9, Section 1.3]). (Here we may have to subdivide the intersections into their
connected components in order not to violate the frontier condition.) Let
∂B be the sphere bounding a small ball in Rn round p. Set

Lp = N ∩ Z ∩ ∂B.

By Whitney’s condition B, the sphere ∂B will intersect the strata of N ∩ Z
transversely. Therefore Lp is again a Whitney stratified space. Furthermore,
by Mather’s tubular neighbourhood theorem (loc. cit.), S has an open neigh-
bourhood TS in Z with a topologically locally trivial fibration π : TS → S
such that π−1(p) is homeomorphic to the open cone over Lp.

Thus we obtain from Theorem 6.7 the following

6.11. Theorem. The symplectic decomposition of the reduced space is a
stratification.

In fact, for a point in a reduced space one can make a very particular choice
of a link and a conelike decomposition of a neighbourhood. At a point x
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in M0 we use the model space Φ−1
V (0)/H of Theorem 5.1 and we embed

it as in Example 6.5. We assume for simplicity that VH = 0. Let S2p−1,
p = 1/2 dim V , be the unit sphere in V with respect to some H-invariant
Hermitian structure on V . Let di be the degree of the polynomial σi, i =
1, . . . , k. We may assume that σ1 is the distance squared to the origin in V .
Then d1 = 2 and all di’s are ≥ 2. Define an action of R+ on Rk by

t · (x1, . . . , xk) = (td1x1, . . . , t
dkxk),

for t > 0 and (x1, . . . , xk) in Rk. For each symplectic piece S in Φ−1
V (0)/H,

the image σ̃(S) ⊂ Rk is quasihomogeneous, i.e. invariant under the R+-
action.

On the other hand, the image under σ of the set L = S2p−1 ∩ Φ−1
V (0)

is the intersection of Φ−1
V (0)/H with the hyperplane given by x1 = 1. It is

easy to see from the quasihomogeneity that the manifolds σ̃(S) intersect the
hyperplane x1 = 1 transversely. It follows that the manifolds σ̃(S)∩{x1 = 1}
make up a Whitney stratification of σ̃(L/H). The upshot of this discussion
is:

6.12. Corollary. The set σ̃(L/H) is a Whitney stratified subset of Rk

and σ̃(Φ−1
V (0)/H) is the quasihomogeneous cone

R+ · σ̃(L/H) ∪ {0}
over σ̃(L/H). It follows that σ̃(L/H) is a link of the vertex of σ̃(Φ−1

V (0)/H).

6.13. Remark. From the recipe described in the discussion preceding The-
orem 6.11 it follows that the set Sk−1∩σ̃(Φ−1

V (0)/H) is also a link of the vertex
in σ̃(Φ−1

V (0)/H). The reader might wonder what is the relation between this
set and σ̃(L/H). It is not hard to show that it can be homeomorphically
mapped onto σ̃(L/H) by a decomposition-preserving isotopy.

To conclude, we would like to call attention to the following conjecture,
raised by Cushman (cf. also [2]).

6.14. Conjecture (Cushman, strong version). There exists a Pois-
son structure on Rn that restricts to the Poisson structure on M0. In other
words, the bracket {·, ·}M0 can be lifted to a bracket on C∞(Rn) via the sur-
jection

i∗ : C∞(Rn)→ C∞(M0).
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If the conjecture were true, the symplectic strata in M0 would be symplectic
leaves of the Poisson manifold Rn, and Hamiltonian mechanics on M0 could
be studied by using coordinates on Rn. In some cases, one might try to sim-
plify the conjecture by finding a G-equivariant embedding of the Hamiltonian
G-space M into a symplectic representation space for G. Quite possibly, the
symplectic embedding theorems of Gromov and Tischler (cf. [14]) could be
relevant in this context. The linear case of Cushman’s Conjecture seems to
us to deserve special mention.

6.15. Conjecture (Cushman, weak version). Let V be a symplectic
representation space for a compact Lie group H with quadratic momentum
map ΦV . Choose a set of generators of the algebra of invariant polynomials
and embed the reduced space Φ−1

V (0)/H into Rk by means of the Hilbert map.
Then the Poisson bracket on Φ−1

V (0)/H can be lifted to a Poisson bracket on
Rk.

6.16. Example. In this example we prove Conjecture 6.15 in the case where
the algebra P (V )H has a set of generators (σ1, . . . , σk) of degrees ≤ 2. We
may assume that this set is minimal.

First we treat the special case where all the generators have degree exactly
two. For any pair f, g of homogeneous polynomials in P (V ) one has either

deg{f, g}V = deg f + deg g − 2

or {f, g}V = 0. In particular, for each pair σi, σj of generators one has
deg{σi, σj}V = 2 or {σi, σj}V = 0. It follows that the set of all quadratic H-
invariant polynomials, which is the linear span of the σi’s, is a k-dimensional
Lie subalgebra of C∞(V ). This Lie subalgebra has structure constants cij

l

defined by
{σi, σj}V =

∑

l

cij
l σl.

We define a Poisson bracket on C∞(Rk) by putting

{f, g} =
∑

ij

∂f

∂xi

∂g

∂xj

wij,

where wij(x) =
∑

l c
ij
l xl. By construction, the embedding σ̃ : Φ−1(0)/H →

Rk is a Poisson map. The Hilbert map σ has a nice interpretation. The
Hamiltonian vector fields

Ξσ1 , . . . , Ξσk
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are linear and linearly independent, and their span is a Lie subalgebra s of
sp(V ). The Poisson manifold Rk can be identified with the dual of s, and
the Hilbert map σ : V → Rk is precisely the momentum map for the action
of s on V . If some of the generators in the basis, say σ1, . . . , σr, are linear,
then the Hilbert map splits into a product of two maps,

(σ1, . . . , σr) : VH
∼−→ Rr, (σr+1, . . . , σk) : W → Rk−r,

where W is the skew complement of VH . Note that r has to be even. In order
to turn the Hilbert map into a Poisson map, we can put a Poisson structure on
Rk−r by means of the procedure described above, and a symplectic structure
on Rr.

7 A Symplectic Tubular Neighbourhood of a Stratum

The purpose of this section is to describe a normal form for a reduced space
M0 in the neighbourhood of a stratum (M0)(H). We were led to the con-
struction of this ‘semiglobal’ normal form by the following observation. We
have seen in Section 5 that a point x in the reduced space has a small neigh-
bourhood U which is the cartesian product, U = C × B, of a ball B round
the point inside its stratum with a cone C, obtained from reducing a certain
linear Hamiltonian space at the zero level. The cartesian projection

U = C ×B → B

retracts the neighbourhood U onto a small neighbourhood of x in its stra-
tum. We are going to show that this trivial fibration is roughly speaking the
restriction of a fibre bundle defined globally over the stratum of the point x.
More precisely, we want to show that a neighbourhood of (M0)(H) in M0 is
a symplectic fibre bundle over (M0)(H) with typical fibre being a symplectic
stratified space, a cone over the link of a point in (M0)(H). The stratum
(M0)(H) will be the ‘vertex section’ of this bundle.

The proof is in two stages. First we will show that a neighbourhood in
M of Z(H) := Z ∩M(H) is a symplectic fibre bundle over (M0)(H). At the
second stage we will show that this bundle can be reduced fibre by fibre.

We start by reinterpreting the constant rank embedding theorem, Theo-
rem 2.2, as a theorem about symplectic fibrations. Let us suppose first that
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Z(H) is coisotropic. Let V∗ be the dual of the vertical bundle of the fibration
Z(H) → (M0)(H). (The vertical bundle is, by Theorem 2.1, the null foliation
of Z(H).) Then V∗ is also a fibre bundle over (M0)(H) with typical fibre be-
ing the cotangent bundle of the orbit T ∗(G/H). The existence part of the
coisotropic embedding theorem asserts that there exists a closed two-form µ
on V∗ which restricts to the canonical symplectic form on the fibre T ∗(G/H)
and is nondegenerate in a neighbourhood of Z(H), where Z(H) embeds into
V∗ as the zero section. Consequently,

T ∗(G/H)→ (V∗, µ)→ (M0)(H)

is a symplectic fibration. The uniqueness part of the embedding theorem
guarantees the existence of an equivariant symplectic diffeomorphism be-
tween neighbourhoods of Z(H) in (V∗, µ) and in (M,ω).

In general, if Z(H) is not coisotropic, one must also use the symplectic
normal bundle N of Z(H) in order to reconstruct a neighbourhood of Z(H)

in M . Note that for a point p ∈ Z(H) the fibre Np is the symplectic slice
to the orbit through p modulo the space of the H-fixed vectors, which is
the symplectic vector space W occurring in the proof of Theorem 2.1. In
the existence part of the proof of the constant rank embedding theorem we
constructed a closed two-form σ on the space N#, the pullback of the bundle
N → Z(H) along the projection V∗ → Z(H). The space N# can also be
considered a vector bundle over Z(H) and so Z(H) embeds into N# as the
zero section.

Let us now describe the fibres of N# considered as a bundle over (M0)(H).
A typical fibre of the fibration N → (M0)(H) is the the total space of the
associated bundle G ×H W → G/H. The pullback of this bundle along the
projection T ∗(G/H) → G/H is a bundle F = G ×H ((g/h)∗ ×W ) (cf. the
local model Y of Proposition 2.5). The total space of F is a typical fibre of
the fibration N# → (M0)(H).

Observe that the space F is symplectic. Indeed, the reduction at zero of
the Hamiltonian H-space

T ∗G×W

gives precisely F . We leave it to the reader to check that this symplec-
tic structure on F agrees with the restriction of the form σ on N# to F ,
considered as a fibre of N# → (M0)(H).

We sum up these results in a lemma.
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7.1. Lemma. There exists a neighbourhood of the submanifold Z(H) = Z ∩
M(H) of M that is symplectically and G-equivariantly diffeomorphic to a
neighbourhood of the zero section of the vector bundle N# → Z(H). The
space N# is a symplectic fibre bundle over the stratum (M0)(H),

F → N# → (M0)(H), (17)

with fibre F given by

F = G×H ((g/h)∗ ×W ).

The group G acts on the fibration (17) by bundle automorphisms covering
the identity map on the base. We would like to deduce that the reduction of
N# can be carried out fibre by fibre.

Since the fibration (17) is symplectic, it possesses a canonically defined
connection. The corresponding horizontal distribution H is simply obtained
by taking the perpendiculars to the vertical with respect to the presymplectic
form σ. The connection is G-invariant and it is easy to see that the G-moment
map J : M → g∗ is parallel. Indeed, let p be a point in N#, v a horizontal
vector at p and ξ an element of g. Then

〈ξ, dJp(v)〉 = σ(ξN#(p), v) = 0,

since ξN# is tangent to the fibres of (17). Thus for any v ∈ H, v ·J = 0. The
parallel transport corresponding to the connection, if it exists, allows us to
identify the intersections of the zero level set of J with the fibres of N# in a
G-equivariant fashion, thereby leading us to conclude that the reduced space
J−1(0)/G is a fibration over (M0)(H) with typical fibre being the singular
space (J−1(0) ∩ F )/G. However, the fibres of (17) are not compact so it
is not a priori clear that the connection integrates to a parallel transport.
We will overcome this difficulty by showing that the structure group of the
bundle (17) is a compact Lie group G, in other words, that it is a bundle
associated to a certain principal bundle G → Q→ (M0)(H).

Here is the construction of the bundle Q. Consider the symplectic normal
bundle of Z(H),

W → N → Z(H).

We may assume that the vector bundle N has a G-invariant Hermitian struc-
ture such that the imaginary part of the metric is the original symplectic form
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on the fibres (cf. the Appendix, Example 8.6). Let U = U(W ) be the cor-
responding unitary group of the fibre W and U → Fr → Z(H) the bundle
of unitary frames of N . Note that since the group G acts on the bundle N ,
it also acts on the bundle of frames by bundle automorphisms and so the
actions of G and U on Fr commute.

Composing the two projections maps we can realize Fr as a fibre bundle
over (M0)(H). The typical fibre of this bundle is the homogeneous space
(G × U)/H = G ×H U . (Note that since the group H acts on the fibre W
and preserves the Hermitian inner product, there exists a homomorphism
H → U .)

7.2. Lemma. Suppose a compact Lie group L acts on a fibre bundle C →
A

p→ B by bundle automorphisms covering the identity, that is, the action of
L maps each fibre C into itself. Assume further that this action is transitive,
i.e., C ' L/K for some K < L. Then the transition maps of the bundle
A can be chosen so that they take their values in K′ = NL(K)/K, where
NL(K) denotes the normalizer of K in L. Consequently A is a bundle asso-
ciated to some principal K′-bundle E, and the group L acts on E by bundle
automorphisms.

Proof. Since L is compact, there exists on A an L-invariant metric. This
metric defines a connection on the bundle p : A → B. Since the fibres of
the bundle are compact, a curve γ : [0, 1] → B defines a parallel transport
Pγ : p−1(γ(0))→ p−1(γ(1)). Since the connection is L-invariant, the parallel
transport is L-equivariant. Thus we get a map from the space of loops
based at b ∈ B into the space of L-equivariant diffeomorphisms of the fibre
p−1(b) ' L/K, the space Diff (L/K)L, which is isomorphic to NL(K)/K. 2

The lemma implies that there exists a principal G-bundle Q over (M0)(H),
where G = NG×U(H)/H, such that Fr → (M0)(H) is a bundle associated to
Q,

Fr = Q×G (G×H U).

Now, by definition of the frame bundle, the manifold Z(H) is the orbit space
Fr/U , so

Z(H) = Q×G ((G× U)/H) /U = Q×G (G/H).

It follows that the dual of the vertical bundle of Z(H) → (M0)(H) satisfies

V∗(Z(H)) = Q×G (T ∗(G/H)) = Q×G (G×H (g/h)∗) .
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Also by definition,

N = Fr ×U W = [Q×G (((G× U)/H)×W )]/U
= Q×G ((G× U ×W )/(H × U))
= Q×G (G×H W ).

Consequently the push-out N#,

N# −→ N
↓ ↓

V∗(Z(H)) −→ Z(H)

considered as a bundle over the stratum (M0)(H) is the associated bundle

N# = Q×G [G×H ((g/h)∗ ×W )].

Indeed, the diagram

G×H ((g/h)∗ ×W ) −→ G×H W
↓ ↓

G×H (g/h)∗ −→ G/H

commutes. This discussion results in the following lemma.

7.3. Lemma. The structure group of the fibration F → N# → (M0)(H) is
the compact Lie group G.

By Remark 8.5 a choice of a connection one-form on the principal bundle

G → Q→ (M0)(H)

gives rise to a closed two-form on N# which is nondegenerate near

Q×G [G×H ({0} × {0})] ' Z(H).

The uniqueness part of the constant rank embedding theorem furnishes us
with a symplectic diffeomorphism between a neighbourhood of Z(H) in N#

and a neighbourhood in the manifold M , that is, we may consider the em-
bedding Z(H) ↪→ N# as a model for the embedding of Z(H) into M .
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On the other hand, the fibre F = G×H ((g/h)∗ ×W ) of the bundle (17)
is a Hamiltonian G-space, and this action of G commutes with the action of
G. By Theorem 8.7 the bundle N# is a Hamiltonian G-space and reduction
at zero gives a bundle over the stratum (M0)(H) with typical fibre being F0,
the reduction of the fibre F . A computation similar to the one in the proof
of Theorem 5.1 shows that F0 is simply the vector space W reduced at 0 with
respect to the action of H,

F0 = Φ−1
W (0)/H,

in the notation of (10). This proves the main assertion of the section — a
tubular neighbourhood theorem for a stratum of the reduced space M0.

7.4. Theorem. Given a stratum (M0)(H) of the reduced space M0, there
exists a symplectic fibre bundle over (M0)(H) with typical fibre being a conical
stratified symplectic space such that a neighbourhood of the vertex section of
this bundle is symplectically diffeomorphic to a neighbourhood of the stratum
inside the reduced space.

We conclude this section with the following observation. Using the tubu-
lar neighbourhood theorem, one can show that the symplectic links of the
points in a stratum (M0)(H) fit together to form a locally trivial bundle

⊔

x∈(M0)(H)

Σx = Σ(H) −→ (M0)(H),

called the symplectic link bundle of the stratum. Here is a sketch of the proof.
Multiplication by complex numbers of norm 1 defines an S1-action on the

Hermitian vector space W commuting with the actions of both H and U . It
is the action generated by the Hamiltonian w 7→ ‖w‖2 − 1. Going through
all the steps of the proof of Theorem 7.4 one checks that this circle action
defines uniquely a fibre-preserving Hamiltonian circle action on the bundle
(N#)0 → (M0)(H). We define the bundle Σ(H)as the S1-reduction of (N#)0

at the zero level. Applying Theorem 8.7 we find that Σ(H) is a symplectic
fibre bundle over (M0)(H), whose fibre is the space obtained by reduction of
F0 = Φ−1

W (0)/H with respect to the circle action. Using reduction-in-stages
we see that a typical fibre of Σ(H) is the symplectic link of a point in the
stratum (M0)(H).
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8 Appendix: Minimal Coupling of Sternberg and Wein-

stein

We briefly review minimal coupling, which was discovered by Sternberg [33],
in the form due to Weinstein [35].

Let K → P
π→ B be a principal K-bundle over a symplectic base (B, ω).

Let θ be a connection one-form on P and let 〈·, ·〉 denote the pairing between
k∗ and k. (Here k∗ denotes the dual of the Lie algebra k of K.) Then 〈pr2, θ〉
is a real-valued K-invariant one-form on P ×k∗. The corresponding minimal
coupling form σθ is defined to be

σθ = π∗ω − d〈pr2, θ〉.

8.1. Theorem. The minimal coupling form σθ defines a presymplectic
structure on the manifold P × k∗ which is nondegenerate near P × {0}.
Moreover, the action of K on P × k∗ given by

a · (p, η) = (pa−1, Ad∗(a)η)

is Hamiltonian with the corresponding momentum map being minus the pro-
jection on the second factor,

−pr2 : P × k∗ → k∗.

If the base B is compact, then there exists a neighbourhood U of zero in k∗

such that P × U is a symplectic manifold.

Sketch of Proof. Let σ = σθ. Clearly σ is closed and K-invariant. To
show the nondegeneracy of σ at a point of the form (p, 0) one writes first

σ(p,0) = (π∗ω)p − 〈d pr2 ∧ θ〉(p,0) − 〈pr2, dθ〉(p,0)

= (π∗ω)p − 〈d pr2 ∧ θp〉.

Now, if we use the connection to split the tangent space to P at p into horizon-
tal and vertical spaces, TpP = Hp ⊕Vp, we see that (π∗ω)p is nondegenerate
on Hp and that 〈d pr2 ∧ θp〉 is nondegenerate on Vp ⊕ k∗ ' k⊕ k∗.

Given an action of K on a manifold X and a vector ξ ∈ k, let ξX denote
the corresponding induced vector field on X.
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The K-invariance of 〈pr2, θ〉 implies that for ξ ∈ k

−ι(ξP + ξk∗) d〈pr2, θ〉 = d ι(ξP + ξk∗)〈pr2, θ〉
= d〈pr2, θ(ξP )〉 = −〈pr2, ξ〉.

It follows that −pr2 is a momentum map for the action of K on P × k∗. 2

8.2. Remark. If θ1 and θ2 are two different connection one-forms on P ,
then the two corresponding minimal coupling forms σ1 and σ2 coincide at the
points of P×{0}. Consequently, by the Darboux–Moser–Weinstein Theorem,
the forms σ1 and σ2 are equivalent on a neighbourhood of P × {0}. If the
base B is compact then this neighbourhood may be taken to be of the form

P × U
for some open subset U of k∗.

8.3. Example. Suppose K → Q → X is a principal K-bundle over an
arbitrary manifold X. Let Q# be the pullback of the bundle along the
projection T ∗X → X. A connection on Q pulls back to a connection on
Q# and minimal coupling then defines a closed two-form on Q# × k∗ which
is nondegenerate everywhere. Indeed, a choice of a connection on Q allows
one to identify Q# × k∗ with the cotangent bundle T ∗Q with its canonical
symplectic form.

8.4. Theorem. Let K → P
π→ (B, ω) be a principal fibre bundle over a

symplectic base, θ a connection one-form on P and σ = σθ the corresponding
minimal coupling form. Suppose that there exists an open set W ⊂ k∗ such
that the form σ is nondegenerate on P ×W. Let (F, ωF ) be a Hamiltonian
K-space with momentum map J : F → k∗ and suppose that the image of F
under J is contained in W,

J(F ) ⊂ W .

Then the associated fibre bundle P×KF is symplectic and the map (F, ωF ) ↪→
P ×K F is a symplectic embedding.

Sketch of Proof. The diagonal action of K on (P ×W) × F is Hamil-
tonian with moment map Φ given by

Φ(p, η, f) = J(f)− η.
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Therefore, the product P × F is diffeomorphic to the zero level set of Φ by
the K-equivariant diffeomorphism given by

P × F 3 (p, f) 7→ (p, J(f), f) ∈ P ×W × F.

So the associated bundle P ×K F is just the reduced space of P ×W ×F at
the zero level. 2

8.5. Remark. What happens if no such set W exists? Clearly, the asso-
ciated bundle P ×K F still carries a closed two-form which restricts to the
symplectic form on each fibre. Also, the set

{(p, f) ∈ P × F : σθ is nondegenerate at (p, J(f))}

is an open K-invariant subset of P ×F containing P ×J−1(0). Consequently,
the presymplectic form on P × F is nondegenerate in a neighbourhood of
P ×K J−1(0).

8.6. Example. Let V → E
π→ B be a symplectic vector bundle over a

symplectic base (B, ω0). We may assume that the bundle E is complex
and that the linear symplectic form on the fibre is the imaginary part of a
Hermitian form (see [34]). Let Fr(E)→ B be the bundle of unitary frames
of E and let U denote the corresponding unitary group, the structure group
of Fr(E). Then E is an associated bundle,

E = Fr(E)×U V.

Since the symplectic action of U on (V, ωV ) is linear, it is Hamiltonian. In-
deed, the map ΦV : V → u∗ given by

〈ξ, ΦV (v)〉 = 1/2 ωV (ξV · v, v)

for ξ ∈ u = Lie(U) is a momentum map. A choice of a connection one-
form on Fr(E) defines on E a closed two-form which, by Remark 8.5, is
nondegenerate near the zero section of E. Given a different choice of a
connection, the corresponding symplectic form on E is equivalent to the old
form in a neighbourhood of the zero section.

53



8.7. Theorem. Let K → P
π→ (B, ω), J : F → k∗ etc. be as in The-

orem 8.4. Assume that there exists on F a Hamiltonian action of another
group H with momentum map ΦF : F → h∗, and that the actions of K and H
commute. Assume further that the reduction of F at zero with respect to the
action of H makes sense. (For example, if the group H is compact, the reduc-
tion is well-defined by Theorem 2.1.) Then the associated bundle P ×K F is a
Hamiltonian H-space, the corresponding momentum map Φ : P ×K F → h∗

sends the class of (p, f) ∈ P×F to ΦF (f) and the H-reduced space Φ−1(0)/H
is the associated bundle

Φ−1(0)/H = P ×K

(
Φ−1

F (0)/H
)
.

In other words, the H-reduction can be carried out on the bundle P ×K F
fibre by fibre.

Sketch of Proof. Use Theorem 8.4 and reduction in stages (see Sec-
tion 4). 2
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