Math 4320 : Introduction to Algebra

Prelim II (Chapter 2\& 3)

(due April 17 , 2009, 1:25pm)
You are not allowed to discuss your answers with others. Books, lecture notes and calculators are allowed.

Part I. Group theory

1. (2.88) Show that a finite group G generated by two elements of order 2 is isomorphic to a dihedral group $D_{2 n}$ for some n.
2. Let G be a group of order n, and let F be any field. Prove that G is isomorphic to a subgroup of $G L_{n}(F)$.
3. Rule out as many of the followings as possible as Class Equations for a group of order 10:

$$
3+2+5,1+2+2+5,1+2+3+4,2+2+2+2+2
$$

(Note that the first term in each expression corresponds to the center $Z(G)$ in $\left.|G|=|Z(G)|+\sum\left[G: C_{G}(x)\right].\right)$
4. Determine the class equation for each of the following groups.
(1) D_{6},
(2) D_{10},
(3) $D_{2 n}$
(4) the group of upper triangular matrices in $G L_{2}\left(\mathbb{F}_{3}\right)$
(You may choose not to write down part (1) and part (2) if you know part (3).)
5. Show that A_{n} is a simple group for all $n \geq 5$ by showing Exercise $\mathbf{2 . 1 2 7}$.
6. Determine all finite groups which contain at most three conjugacy classes.

Part II. Rings and fields

The following set of problems is to show that the ring

$$
R=\mathbb{Z}[\theta]=\{a+b \theta: a, b \in \mathbb{Z}\}
$$

where $\theta=\frac{1+\sqrt{-19}}{2}$, is a principal ideal domain (PID) that is not a Euclidean domain (ED) (a result of Motzkin).
7. Let $F=\{a+b \sqrt{-19}: a, b \in \mathbb{Q}\} \subset \mathbb{C}$.
(a) Show that R is a ring, $R \subset F$ and F is a field. Conclude that R is an integral domain. Show that F is the field of fractions of R.
(b) Define $N(a+b \sqrt{-19})=a^{2}+19 b^{2}$. Prove that $N(\alpha)>0$ for $\alpha \in F-\{0\}$, and that N is multiplicative, i.e. $N(\alpha \beta)=N(\alpha) N(\beta)$. Also prove that $N(\alpha)$ is a positive integer for every $\alpha \in R$.
(c) Prove that ± 1 are the only units in R.
8. (Criterion of Dedekind and Hasse) Let S be an integral domain and let N denote any function from S to \mathbb{Z} which satisfies $N(\alpha)>0$ for $\alpha \neq 0$. Suppose that for ever $\alpha, \beta \in S$ with $N(\alpha) \geq N(\beta)$, either β divides α in S, or there exist $s, t \in S$ with

$$
\begin{equation*}
0<N(s \alpha-t \beta)<N(\beta) \tag{*}
\end{equation*}
$$

Show that S is a PID. (Hint : Let I be a nonzero idea in S and let β be a nonzero element of I with $N(\beta)$ minimal. If $\alpha \in I$, then $s \alpha-t \beta$ is also in I for all $s, t \in S$. Use minimality of β.)
9. (R is a PID) Show that the ring R, with the function N defined in problem 7 satisfies the criterion of Dedekind and Hasse. (Hint : Since N is multiplicative, the condition $(*)$ is equivalent to

$$
0<N\left(\frac{\alpha}{\beta} s-t\right)<1 .
$$

Suppose $\beta \nmid \alpha$. Write $\frac{\alpha}{\beta}=\frac{a+b \sqrt{-19}}{c}$ in F with integers a, b, c having no common divisor and with $c>1$. Divide into four cases, $c \geq 5$ and $c=2,3,4$.)
10. (R is not a ED) Let D be an integral domain. Recall that a non-zero nonunit element $u \in D$ is called a universal side divisor if for every $x \in D$, there is some unit $z \in D$ such that u divides $x-z$ in D. Prove that the ring R above has no universal side divisors, hence is not a ED. (Hint : Use part (c) of problem 7. Use first $x=2$, then $x=\theta$. What are the divisors of 2,3 in R ?)

