
Math 4320 : Introduction to Algebra

Prelim II (Chapter 2& 3)

Part I. Group theory

1. (2.88) Show that a finite group G generated by two elements of order 2 is
isomorphic to a dihedral group D2n for some n.

Proof. Let G be generated by c, b, where c2 = b2 = 1. Let a = cb be an element
of order, say n. (The element a is of finite order since G is finite.) G is clearly
generated by a, b, since c = cbb = ab is generated by a, b. Note that a−1 = bc
since bca = bccb = 1. Therefore bab = bcbb = bc = a−1. Therefore we can find
a homomorphism φ from G to D2n sending a to a and b to b. Since all the
relations of D2n are also relations in G, kerφ = {1}, i.e. φ is injective.

To show that φ is surjective, it is enough to show that G has exactly 2n
elements. Using the relation ba = a−1b (which tells us how to exchange the
order of elements a and b), we can express every element of G as aibj where
0 ≤ i < n and 0 ≤ j < 2. Thus G has at most 2n elements. The group G
contains two subgroups H1 = 〈a〉 and H2 = 〈b〉, of order n and 2, respectively.
Note that H1 ∩ H2 = 1 since a 6= b, and if ai = b for some 2 ≤ i ≤ n/2, then
ai−1 = aibc = bbc = c, which is a contradiction to the fact that a is of order n.
(If ai = b for some i > n/2 then an−i = a−i = b, which is a similar contradic-
tion.) Therefore G contains the subgroup H1H2 which has 2n elements.Thus G
has exactly 2n elements.

2. Let G be a group of order n, and let F be any field. Prove that G is isomor-
phic to a subgroup of GLn(F ).

Proof. By Cayley theorem, G is isomorphic to a subgroup of Sn. By mapping
σ ∈ Sn to a permutation matrix (permuting rows according to σ), Sn is isomor-
phic to a subgroup of GLn(F ).

3. Rule out as many of the followings as possible as Class Equations for a group
of order 10:

3 + 2 + 5, 1 + 2 + 2 + 5, 1 + 2 + 3 + 4, 2 + 2 + 2 + 2 + 2.

Proof. The first and the third expressions is ruled out because 3 does not divide
10.
2 + 2 + 2 + 2 + 2 is ruled out (5pts) : from the first term of the expression, the
center (which is a group) has order 2, so there is an element a of order 2 in the
center. There is an element b of order 5 in the group by Cauchy theorem. Since
they are of order coprime, they generate a group of order 10, thus the whole
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group. Since b commutes with b and with a (since a is in the center), b is in the
center. Thus the center contains the group generated by b, thus has order at
least 5, a contradiction.

4. Determine the class equation for each of the following groups.

(3) D2n (5 pts)

Answer : For n odd, the conjugacy classes are {1}, {ai, a−i}(i ≤ (n− 1)/2) and
{aib}. The class equation is 1 + 2 + · · ·+ 2 + n (there are (n− 1)/2 two’s).
For n even, the conjugacy classes are {1}, {an/2}, {ai, a−i}(i < n/2), {a2i+1b},
and {a2ib}. The class equation is 2+2+· · ·+2+n/2+n/2 (there are n/2 two’s).

(4) the group of upper triangular matrices in GL2(F3) (5 pts)

Answer : The elements ofGL2(F3) can be written as
(
±1 ±1
0 ±1

)
and

(
±1 0
0 ±1

)
.

Thus the group is of order 12. Note that C =
(

1 −1
0 −1

)
and B =

(
1 0
0 −1

)
both have order 2 and B,C generate the whole group. By problem 1, GL2(F3)
is isomorphic to a dihedral group D2n. Since |G| = 12, n = 6. Thus the class
equation is 2 + 2 + 2 + 3 + 3 by part (3).

5. Show that An is a simple group for all n ≥ 5 by showing Exercise 2.127.

Proof. Any product of two transposition is a product of 3-cycles (proof of Lemma
2.155). Any two 3-cycles are conjugate in Sn (Prop. 2.33), but the point here
is to show that they are conjugate in An. This is achieved by showing that any
3-cycle (ijk) is conjugate to (123) by (1i)(2j)(3k) ∈ Sn. Thus any (ijk), (i′j′k′)
are cojugate by (1i)(2j)(3k)(st).

6. Determine all finite groups which contain at most three conjugacy classes.
Proof : Divide according to the number c of conjugacy classes. Let |G| = n.
c = 1 : trivial group, as {1} is always one conjugacy class.
c = 2 : n = 1 + (n− 1), n− 1|n thus n = 2, and G = I2.
c = 3 : n = 1 + a+ b, say a ≤ b. Since a|n and b|n, thus a|(b+ 1) and b|(a+ 1).
It follows that {(a, b)} = {(1, 1), (1, 2), (2, 3)}.

1. If n = 1 + 1 + 1, then G is abelian (since G = Z(G)), thus I3.

2. If n = 1 + 1 + 2, then G is a group of order 4 which is not abelian. There
is no such group (Prop. 2.134).

3. If n = 1 + 2 + 3, then G is a group of order 6, thus isomorphic to I6 or
S3. Since it is not abelian, it is isomorphic to S3. We’ve already seen in
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Problem 4 that 1 + 2 + 3 is the class equation of D3 which is isomorphic
to S3, thus S3 indeed has 3 conjugacy classes.

Answer :{1}, I2, I3 and S3.

Part II. Rings and fields

7. Let F = {a+ b
√
−19 : a, b ∈ Q} ⊂ C.

(a) Show that R is a ring, R ⊂ F and F is a field. Conclude that R is an
integral domain. Show that F is the field of fractions of R.

(b) Define N(a+ b
√
−19) = a2 + 19b2. Prove that N(α) > 0 for α ∈ F − {0},

and that N is multiplicative, i.e. N(αβ) = N(α)N(β). Also prove that
N(α) is a positive integer for every α ∈ R.

(c) Prove that ±1 are the only units in R.

Proof. (a) R ⊂ F , and R is contains 1, a−b, ab if a, b ∈ R, thus it is a subring
of F which is a field. Thus R is an integral domain. By definition, Frac(R) ⊂ F .
If a + b

√
−19 ∈ F , then by using the common denominator, we can express it

as a quotient α/β where α ∈ R, and b ∈ Z ⊂ R. Thus F ⊂ Frac(R).
(b) N(α) > 0 since it is sum of squares of real numbers. N(αβ) = |αβ|2 =
|α|2|β|2 = N(α)N(β). N(a+ bθ) = a2 + ab+ 5b2 ∈ Z.
(c) If u is a unit, say uv = 1, then from N(u) ≥ 1, N(v) ≥ 1, and N(u)N(v) =
N(uv) = 1, it follows that N(u) = 1. Let u = a+ bθ so that a2 + ab+ 5b2 = 1.
Since a, b are integers, the only solutions are (a, b) = (±1, 0), i.e. u = ±1.

8, 9, 10 Proof. Just follow the hint.
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