Math 4320 : Introduction to Algebra

Prelim II (Chapter 2& 3)

Part I. Group theory

1. (2.88) Show that a finite group G generated by two elements of order 2 is isomorphic to a dihedral group D_{2n} for some n.

Proof. Let G be generated by c, b, where $c^2 = b^2 = 1$. Let a = cb be an element of order, say n. (The element a is of finite order since G is finite.) G is clearly generated by a, b, since c = cbb = ab is generated by a, b. Note that $a^{-1} = bc$ since bca = bccb = 1. Therefore $bab = bcbb = bc = a^{-1}$. Therefore we can find a homomorphism ϕ from G to D_{2n} sending a to a and b to b. Since all the relations of D_{2n} are also relations in G, ker $\phi = \{1\}$, i.e. ϕ is injective.

To show that ϕ is surjective, it is enough to show that G has exactly 2n elements. Using the relation $ba = a^{-1}b$ (which tells us how to exchange the order of elements a and b), we can express every element of G as $a^i b^j$ where $0 \le i < n$ and $0 \le j < 2$. Thus G has at most 2n elements. The group G contains two subgroups $H_1 = \langle a \rangle$ and $H_2 = \langle b \rangle$, of order n and 2, respectively. Note that $H_1 \cap H_2 = 1$ since $a \ne b$, and if $a^i = b$ for some $2 \le i \le n/2$, then $a^{i-1} = a^i bc = bbc = c$, which is a contradiction to the fact that a is of order n. (If $a^i = b$ for some i > n/2 then $a^{n-i} = a^{-i} = b$, which is a similar contradiction.) Therefore G contains the subgroup H_1H_2 which has 2n elements. Thus G has exactly 2n elements.

2. Let G be a group of order n, and let F be any field. Prove that G is isomorphic to a subgroup of $GL_n(F)$.

Proof. By Cayley theorem, G is isomorphic to a subgroup of S_n . By mapping $\sigma \in S_n$ to a permutation matrix (permuting rows according to σ), S_n is isomorphic to a subgroup of $GL_n(F)$.

3. Rule out as many of the followings as possible as Class Equations for a group of order 10:

3+2+5, 1+2+2+5, 1+2+3+4, 2+2+2+2+2

Proof. The first and the third expressions is ruled out because 3 does not divide 10.

2+2+2+2+2 is ruled out (5pts) : from the first term of the expression, the center (which is a group) has order 2, so there is an element *a* of order 2 in the center. There is an element *b* of order 5 in the group by Cauchy theorem. Since they are of order coprime, they generate a group of order 10, thus the whole

group. Since b commutes with b and with a (since a is in the center), b is in the center. Thus the center contains the group generated by b, thus has order at least 5, a contradiction.

4. Determine the class equation for each of the following groups.

(3) D_{2n} (5 pts)

Answer: For n odd, the conjugacy classes are $\{1\}, \{a^i, a^{-i}\}(i \le (n-1)/2)$ and $\{a^ib\}$. The class equation is $1+2+\cdots+2+n$ (there are (n-1)/2 two's). For n even, the conjugacy classes are $\{1\}, \{a^{n/2}\}, \{a^i, a^{-i}\}(i < n/2), \{a^{2i+1}b\},$ and $\{a^{2i}b\}$. The class equation is $2+2+\cdots+2+n/2+n/2$ (there are n/2 two's).

(4) the group of upper triangular matrices in $GL_2(\mathbb{F}_3)$ (5 pts)

Answer: The elements of $GL_2(\mathbb{F}_3)$ can be written as $\begin{pmatrix} \pm 1 & \pm 1 \\ 0 & \pm 1 \end{pmatrix}$ and $\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$. Thus the group is of order 12. Note that $C = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ both have order 2 and B, C generate the whole group. By problem 1, $GL_2(\mathbb{F}_3)$ is isomorphic to a dihedral group D_{2n} . Since |G| = 12, n = 6. Thus the class equation is 2 + 2 + 2 + 3 + 3 by part (3).

5. Show that A_n is a simple group for all $n \ge 5$ by showing Exercise **2.127**.

Proof. Any product of two transposition is a product of 3-cycles (proof of Lemma 2.155). Any two 3-cycles are conjugate in S_n (Prop. 2.33), but the point here is to show that they are conjugate in A_n . This is achieved by showing that any 3-cycle (ijk) is conjugate to (123) by $(1i)(2j)(3k) \in S_n$. Thus any (ijk), (i'j'k') are cojugate by (1i)(2j)(3k)(st).

6. Determine all finite groups which contain at most three conjugacy classes. *Proof*: Divide according to the number c of conjugacy classes. Let |G| = n. c = 1: trivial group, as $\{1\}$ is always one conjugacy class. c = 2: n = 1 + (n - 1), n - 1|n thus n = 2, and $G = \mathbb{I}_2$. c = 3: n = 1 + a + b, say $a \le b$. Since a|n and b|n, thus a|(b+1) and b|(a+1). It follows that $\{(a, b)\} = \{(1, 1), (1, 2), (2, 3)\}$.

- 1. If n = 1 + 1 + 1, then G is abelian (since G = Z(G)), thus \mathbb{I}_3 .
- 2. If n = 1 + 1 + 2, then G is a group of order 4 which is not abelian. There is no such group (Prop. 2.134).
- 3. If n = 1 + 2 + 3, then G is a group of order 6, thus isomorphic to \mathbb{I}_6 or S_3 . Since it is not abelian, it is isomorphic to S_3 . We've already seen in

Problem 4 that 1 + 2 + 3 is the class equation of D_3 which is isomorphic to S_3 , thus S_3 indeed has 3 conjugacy classes.

Answer : {1}, $\mathbb{I}_2, \mathbb{I}_3$ and S_3 .

Part II. Rings and fields

- 7. Let $F = \{a + b\sqrt{-19} : a, b \in \mathbb{Q}\} \subset \mathbb{C}$.
- (a) Show that R is a ring, $R \subset F$ and F is a field. Conclude that R is an integral domain. Show that F is the field of fractions of R.
- (b) Define $N(a + b\sqrt{-19}) = a^2 + 19b^2$. Prove that $N(\alpha) > 0$ for $\alpha \in F \{0\}$, and that N is multiplicative, i.e. $N(\alpha\beta) = N(\alpha)N(\beta)$. Also prove that $N(\alpha)$ is a positive integer for every $\alpha \in R$.
- (c) Prove that ± 1 are the only units in R.

Proof. (a) $R \subset F$, and R is contains 1, a-b, ab if $a, b \in R$, thus it is a subring of F which is a field. Thus R is an integral domain. By definition, $Frac(R) \subset F$. If $a + b\sqrt{-19} \in F$, then by using the common denominator, we can express it as a quotient α/β where $\alpha \in R$, and $b \in \mathbb{Z} \subset R$. Thus $F \subset Frac(R)$. (b) $N(\alpha) > 0$ since it is sum of squares of real numbers. $N(\alpha\beta) = |\alpha\beta|^2 =$ $|\alpha|^2 |\beta|^2 = N(\alpha)N(\beta)$. $N(a + b\theta) = a^2 + ab + 5b^2 \in \mathbb{Z}$. (c) If u is a unit, say uv = 1, then from $N(u) \ge 1$, $N(v) \ge 1$, and N(u)N(v) =N(uv) = 1, it follows that N(u) = 1. Let $u = a + b\theta$ so that $a^2 + ab + 5b^2 = 1$. Since a, b are integers, the only solutions are $(a, b) = (\pm 1, 0)$, i.e. $u = \pm 1$.

8, 9, 10 Proof. Just follow the hint.