
INTERPRETING HASSON’S EXAMPLE

CHARLES K. SMART

Abstract. We generalize Ziegler’s fusion result [8] by relaxing the definabil-

ity of degree requirement. As an application, we show that an example pro-

posed by Assaf Hasson [3] has a rank and degree preserving interpretation in
a strongly minimal set.

1. Introduction

Assaf Hasson [3] proved that any theory with finite Morley rank and the definable
multiplicity property (DMP) has a rank and degree preserving interpretation in a
strongly minimal set. He also proved a partial converse, showing that any theory
admitting a rank preserving interpretation in a strongly minimal set has finite
Morley rank and the weak definable multiplicity property (wDMP). As a test case,
Hasson constructed an example with the wDMP but no rank-preserving expansion
with the DMP.

Here we will prove that Hasson’s example has a rank and degree preserving
interpretation in a strongly minimal set. We will do this by relaxing the definable
degree requirement in Ziegler’s fusion [8] using an idea from [6]. Specifically, we
will prove the following theorem.

Theorem 1.1. Suppose T1 and T2 are countable complete theories with finite Mor-
ley rank, the same degree, disjoint languages, and nice codes. If K, v1, v2 are inte-
gers so that K = v1RM(T1) = v2RM(T2) then there is a countable complete theory
T ⊇ T1 ∪ T2 with Morley rank K, nice codes, and

RMT (φ(x; a)) = viRMTi(φ(x; a)) and dMT (φ(x; a)) = dMTi(φ(x; a))

for all φ(x; y) ∈ L(T eqi ) and i = 1, 2.

We defer the definition of nice codes until later, when we discuss Hasson’s ex-
ample in more detail.

We should note that the amalgamation construction Hasson described in [6] does
not quite work. For his purposes it does not matter, since he was able to obtain
the same structure by alternative means in his thesis [4]. The proof of the theorem
below contains the details required to repair his construction.

We are going to borrow most of the notation and conventions from Ziegler’s
paper [8].

2. Codes

Hrushovski’s fusion machinery relies on a special notion of normal formula, called
a code. In this section we will repeat the code construction of [2] and make a few
minor adjustments.
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Recall that an ω-stable theory T has the weak definable multiplicity property
(wDMP) if rank is definable and degree is uniformly bounded in T ; i.e., for every
formula φ(x; y) ∈ L(T eq) and consistent instance φ(x; a) there is a θ(y) ∈ tp(a) and
D ∈ N such that

|= θ(a′) implies RM(φ(x; a′)) = RM(φ(x; a)) and dM(φ(x; a′)) ≤ D.
We fix a theory T with finite rank and the wDMP for the rest of this section.

A code c is a parameter-free formula φc(x; y) with the following properties.
(1) x is a tuple of real variables, |x| = nc, and y ∈ T eq.
(2) Consistent φc(x; a) have rank kc and degree at most Dc. If b |= φc(x; a)

then the elements of b are distinct and for each S ( {1, ..., nc}
RM(b/abS) ≤ kc,S

with equality for generic b. If a is generic in ∃xφc(x; y) then φc(x; a) has
degree 1. Lastly, kc,{i} < kc for all i.

(3) If RM(φc(x; a) ∧ φc(x; a′)) = kc then a = a′.
(4) There is a Gc ≤ Sym(nc) such that for each consistent φc(x; a) and σ ∈

Sym(nc),
(a) σ ∈ Gc implies φc(x; a) ≡ φc(xσ; a).
(b) σ /∈ Gc implies RM(φc(x; a) ∧ φc(xσ; a′)) < kc for all a′.

This definition of codes differs from the DMP case in one critical way. The degree
of consistent instances φc(x; a) is not always 1. In fact, if Dc = 1, then the two
definitions coincide.

A formula ψ(x; d) is simple if it has degree 1, the components of its realizations
are distinct, and the components of any generic realization lie outside acl(d). For
any two formulas ψ1(x; d1) and ψ2(x; d2) with the same free variables, we write

ψ1(x; d1) ∼ ψ2(x; d2)

when
RM(ψ1(x; d1)4ψ2(x; d2)) < RM(ψ1(x; d1)) = RM(ψ2(x; d2)).

If ψ(x; d) is simple and φc(x; a) ∼ ψ(x; d), then we say that c encodes ψ(x; d). If
ψ(x; d) is simple and RM(φc(x; a)∧ψ(x; d)) = kc = RM(ψ(x; d)), then we say that
c covers ψ(x; d).

Lemma 2.1. Every simple ψ(x; d) is encoded by some code c.

Proof. Let a be the canonical base of the global type isolated by ψ(x; d) and let
φc(x; y) be parameter-free so that φc(x; a) ∼ ψ(x; d). We will strengthen φc(x; y)
to meet the requirements above.

Let b be a generic realization of φc(x; a). Let kc,S = RM(b/abS) for S (
{1, ..., nc}. Strengthening φc(x; y), we may assume

RM(φc(x; a) ∧ xS = bS) = kc,S

for all S. Let θ(y) isolate tp(a) in its rank. Replace φc(x; y) with

φc(x; y) ∧ θ(y) ∧
∧
S

RMz(φc(z; y) ∧ zS = xS) = kc,S .

Now, the wDMP implies the existence of Dc, the choice of θ(y) forces φc(x; a′) to
have degree 1 for any a′ generic in ∃xφc(x; y), and kc,{i} < kc follows from the
simplicity of ψ(x; d). Thus we have (2).
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Let p(y) = tp(a) and note that since a is a canonical base,

p(y) ∧ p(y′) ∧ RMx(φc(x; y) ∧ φc(x; y′)) = kc → y = y′.

By compactness there is some θ(y) ∈ p(y) which works in place of p(y) above. If
we replace φc(x; y) with φc(x; y) ∧ θ(y) we get (3).

To achieve (4), first note that the collection of all σ ∈ Sym(nc) such that
φc(x; a) ∼ φc(xσ; aσ) for some aσ ≡ a forms a subgroup Gc ≤ Sym(nc). Replacing
φ(x; y) with ∧

σ∈Gc

φc(xσ; y) ∧ RMx

( ∧
σ∈Gc

φc(xσ; y)

)
= kc,

we have (4a). Since, for σ ∈ Sym(nc) \Gc,

p(y) ∧ p(y′)→ RMx(φ(x; y) ∧ φc(xσ; y′)) < kc,

there is (by compactness) a θ(y) ∈ p(y) such that

φc(x; y) ∧ θ(y)

satisfies (4b) as well. �

Lemma 2.2. There exists a set of codes C such that

(1) Every simple formula is covered by a unique c ∈ C.
(2) If c ∈ C and σ ∈ Sym(nc) there is a unique cσ ∈ C with φc(xσ; y) ≡

φcσ (x; y).

Proof. We will build C as a limit of finite sets, starting with C = ∅ and inductively
maintaining (1)’ and (2), where

(1)’ Every simple formula is covered by at most one c ∈ C.
Suppose ψ(x; d) is a simple formula not covered by some code in C. Choose c

which encodes ψ(x; d). Replace φc(x; y) with

φc(x; y) ∧
∧
c′∈C′

∀y′ RMx(φc′(x; y′) ∧ φc(x; y)) < kc,

where C′ := {c′ ∈ C : nc = nc′ and kc = kc′}, and note that this is still a code.
Choose representatives σ1, ..., σm of the right cosets of Gc and define, for σ ∈

Sym(nc), cσ to be the code with φcσ (x; y) := φc(xσ; y). Now C ∪ {cσ1 , ..., cσm}
satisfies (1)’ and (2) and covers ψ(x; d). �

We call a collection of codes C satisfying the conclusion of the lemma above a
system of codes for T .

Lemma 2.3. For every code c there is a constant mc and a ∅-definable partial
function fc so that if b1, ...,bmc are independent realizations of φc(x; a), then a =
fc(b1, ...,bmc).

Proof. This is a standard stability fact. �
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3. Free Fusion

Assumption 3.1. The countable complete theories T1 and T2 have finite, definable
Morley rank, degree 1, and quantifier elimination in relational languages L1 and L2.
The languages are disjoint; i.e., L1 ∩ L2 = ∅.

In this section, we will describe the free fusion of T1 and T2 as laid out in [5, 8].
Since those papers only required definable rank to develop their theories of the free
fusion, we will not give proofs of things stated there.

Let K, v1, v2 be integers so that

K = v1RM(T1) = v2RM(T2).

For A ⊆ B |= T ∀1 ∪ T ∀2 with B \A finite, we define

δ(B/A) := v1RMT1(B/A) + v2RMT2(B/A)−K|B \A|.
Using δ, we define

K∞ := {A |= T ∀1 ∪ T ∀2 : δ(B) ≥ 0 for all finite B ⊆ A}.

Notation 3.2. The letters A,B,C will always denote elements of K∞.

We say A is a strong substructure of B and write A ≤s B whenever A ⊆ B and
δ(A ∪ C/A) ≥ 0 for all finite C ⊆ B.

Because rank is definable in Ti, it is also additive. It follows that δ is additive
and submodular; i.e.,

δ(C/A) = δ(C/B) + δ(B/A) whenever A ⊆ B ⊆ C,
and

δ(A/A ∩B) ≥ δ(A ∪B/B) whenever A,B ⊆ C.
Many interesting properties of ≤s follow from these two properties of δ. For

example,
A ≤s B ≤s C implies A ≤s C,

and
A,B ≤s C implies A ∩B ≤s C.

In turn, these two properties of ≤s suffice to prove

clB(A) :=
⋂
{A′ ≤s B : A′ ⊇ A} ≤s B

is monotone, finite-character, and continuous as a function on the subsets of some
fixed B.

We say that A ≤s B is minimal if there is no C with A �s C �s B.

Lemma 3.3. If A ≤s B is minimal, then B \ A is finite and one of the following
holds.

(1) A ≤s B is algebraic: δ(B/A) = 0, B = A ∪ {b}, and for some i = 1, 2,
tpTi(b/A) is algebraic and tpT2−i

(b/A) generic.
(2) A ≤s B is prealgebraic: δ(B/A) = 0 and tpTi(b/A) is not algebraic for any

b ∈ B \A and i = 1, 2.
(3) A ≤s B is transcendental: N ≥ δ(B/A) > 0 and tpTi(b/A) is not algebraic

for any b ∈ B \A and i = 1, 2.

We will to need a finer version of closure. We write A ≤s,m B if A ⊆ B and
δ(A ∪ C/A) ≥ 0 for all C ⊆ B with |C| < m.
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Lemma 3.4. If A ⊆ B, then there is a clB,m(A) ≤s,m B such that A ⊆ clB,m(A)
and clB,m ⊆ C whenever A ⊆ C ≤s,m B.

Proof. Call A′ ⊆ A′′ an m-step if |A′′ \ A| < m, δ(A′′/A′) < 0, and δ(A∗/A′) ≥ 0
whenever A′ ⊆ A∗ ( A′′. Choose some maximal chain A = A0 ( A1 ( · · · ( An of
m-steps. Set clB,m(A) := An and note that clB,m ≤s,m B.

Now, suppose A ⊆ C ≤s,m B and clB,m * C. Let i < n be least so that
Ai+1 * C. Then 0 > δ(Ai+1/C ∩ Ai) ≥ δ(Ai+1 ∪ C/C), which contradicts our
assumption that C ≤s,m B. �

For convenience, we extend δ and ≤s,m to imaginary elements. Define

acleq(A) := acleqT1(A)× acleqT2(A)

and include A ⊆ acleq(A) via a 7→ (a, a). If Σ is the home sort shared by T1 and
T2 then for X ⊆ Y ⊆ acleq(C) define

δ(Y/X) := v1RMT1(π1(Y )/π1(X)) + v2RMT2(π2(Y )/π2(X))−N |(Y \X) ∩ Σ|.

For A ⊆ B and X ⊆ acleq(B), write X ≤s,m A if X ∩ Σ ⊆ A and δ(X ∪ C/X) ≥ 0
whenever C ⊆ X and |C| < m.

Lemma 3.5. If A ⊆ B and X ⊆ acleq(B), then there is a clA,m(X) ⊆ A such that
X ∪ clA,m(X) ≤s,m A and clA,m(X) ⊆ C whenever C ⊆ A and X ∪ C ≤s,m A.

Proof. Like the previous lemma. �

4. Prealgebraic Codes

Fix a system of codes Ci for each Ti. A prealgebraic code is a pair c = (c1, c2) ∈
C1 × C2 so that

• nc1 = nc2 ,
• v1kc1 + v2kc2 −Knc = 0,
• and v1kc1,S + v2kc2,S −K(nc − |S|) < 0 for ∅ ( S ( {1, ..., nc}.

To each prealgebraic code c we associate the additional data
• nc := nc1(= nc2).
• φc(x; y) := φc1(x; y1) ∧ φc2(x; y2),
• Dc := Dc1 ·Dc2 ,
• and Gc := Gc1 ∩Gc2 .

We say a prealgebraic code instance φc(x; a) is over A if a ∈ acleq(A); i.e., if
a = (a1, a2) ∈ acleqT1

(A)× acleqT2
(A).

Suppose φc(x; a) is over A and B,b ⊆ A. We say that b |= φc(x; a) is a B-generic
if RMTi(b/Bai) = kci for i = 1, 2. Thus a sequence of realizations b1, ...,bN of
φc(x; a) is independent if and only if it is independent over ai in each Ti.

Lemma 4.1. If A ≤s A ∪ {b} is prealgebraic there is a unique prealgebraic code c
and parameter a ∈ acleq(A) such that b is an A-generic realization of φc(x; a).

On the other hand, if b * A, a ∈ acleq(A), and b |= φc(x; a) then δ(b/A) ≤ 0.
Moreover δ(b/A) = 0 if and only if A ≤s A∪ {b} is prealgebraic if and only if b is
an A-generic realization of φc(x; a).

Proof. This is proved in [2], but we include a proof here because it helps explain
the purpose of prealgebraic codes.
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Suppose A ≤s A∪{b} is prealgebraic. Since tpTi(b/A) is not algebraic, there is
a simple ψi(x; di) ∈ Li such that di ∈ acleqTi(A) and b is an A generic realization
of ψi(x; di). Now choose ci ∈ Ci and ai ∈ acleqTi(A) such that

RMTi(ψi(x; di) ∧ φci(x; a)) = RMTi(ψi(x; di)) = kc.

Because A ≤s A ∪ {b} is prealgebraic, δ(b/A) = 0 and δ(b/Abs) < 0 whenever
∅ ( S ( {1, ..., nc}. It follows that v1kc1 + v2kc2 −Knc = 0 and v1kc1,S + v2kc2,S −
K(nc − |S|) < 0 whenever ∅ ( S ( {1, ..., nc}. Thus c = (c1, c2) is a prealgebraic
code and b is an A-generic realization of φc(x; a) where a = (a1, a2) ∈ acleq(A).

For the second part, note that if A∩{b} 6= ∅, then δ(b/A) ≤ v1kc1,S + v2kc2,S −
K(nc − |S|) < 0, where S = {i | bi ∈ A}. Furthermore, if A ∩ {b} = ∅, then
δ(b/A) ≤ v1kc1 + v2kc2 −Knc = 0. �

Lemma 4.2. For each prealgebraic code c we can find an integer mc ≥ nc so that if
A ≤s,mc B, a ∈ acleq(B), and a /∈ dcleq(A), then fewer than mc distinct realizations
of φc(x; a) intersect A. Moreover, for any distinct b1, ..,bmc there is at most one
parameter a such that bi |= φc(x; a) for all i ≤ mc.

Proof. It suffices to prove the lemma for set-wise distinct realizations.
Suppose b1, ...,bm |= φc(x; a) and bi *

⋃
j<i bj for all i < m. By the additivity

of δ,
δ(b1...bm) ≤ δ(a) +

∑
i≤m

δ(bi/ab1...bi−1).

By Lemma 4.1, bi is a non-generic realization of φc(x; a) over ab1...bi−1 if and only
if δ(bi/ab1...bi−1) < 0. Since δ(b1...bN ) ≥ 0, bi must be ab1...bi−1-generic for all
but at most δ(a) of the i < m. Moreover, δ(a) is bounded uniformly in c.

The above paragraph shows that given a sufficiently long sequences b1, ...,bm
of set-wise distinct realizations of φc(x; a), more than half of the length mci (i =
1, 2) subsequences are independent. Thus given a sufficiently long sequence, ai is
the consensus value of fci on the length mci subsequences. Hence a is uniquely
determined.

Suppose A ≤s,mc B, a ∈ acleq(B), and a /∈ dcl(A). Since |clB,2nc(a)| < 2ncδ(a)
there is a finite bound Mc on the number of b |= φc(x; a) with b ⊆ A or b ⊆
clB,2nc(a). By Lemma 4.1, any two set-wise distinct realizations of φc(x; a) which
are not contained in clB,2nc(a) are disjoint. Thus if b1, ...,bm are set-wise distinct
realizations of φc(x; a) with bi ∩A 6= ∅, then

0 ≤ δ(b1...bka/A) ≤ δ(a/A)− (m−Mc).

Thus we can increase m to the desired mc. �

We say that a prealgebraic code instance φc(x; a) is strongly based on a set A if
A contains at least mc distinct realizations of φc(x; a).

Choose an injective function c 7→ sc on the prealgebraic codes such that

sc > (mcnc + 1)! + 2mcδ(a)

for all consistent φc(x; a).
We say a prealgebraic code instance φc(x; a) over A is long in A if and there

are more than sc distinct realizations of φc(x; a) in A. If b1, ...,bN are distinct
realizations of some φc(x; a) and N > sc, then we say that {bi} is a long sequence
in φc(x; a).
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Lemma 4.3. (Decomposition) Suppose A ≤s B and B \A is finite. We can find

A ≤s X ( B

such that if

Z := {b ⊆ B | b * X is an element of a long sequence strongly based on X},

then

(1) δ(bb′/X) = 0 for all b,b′ ∈ Z.
(2) For every long φc(x; a) either

(a) φc(x; a) is strongly based on X and clB,mc(a) ⊆ X,
or (b) there is a b ∈ Z such that X ∪ {b} contains every realization of

φc(x; a).

Proof. We will build X in stages starting with X = A and inductively maintaining
the following conditions.

• δ(bb′/X) = 0 for all b,b′ ∈ Z.
• If (2) fails for φc(x; a), then

– X ≤s,mc B,
– X ∪ {b} ≤s,mc B for all b ∈ Z,
– and ||Z|| > 2mcδ(X/A) where ||Z|| is the number of set-wise distinct

elements in Z.

Choose a φc(x; a) that witnesses the failure of (2). Since X ≤s,mc B, it can not
be the case that φc(x; a) is strongly based on X. In fact, fewer than mc realizations
of φc(x; a) intersect X by Lemma 4.2. Since c 7→ sc is injective, we may choose
φc(x; a) which maximizes mc.

If there is a b ∈ Z with φc(x; a) is strongly based on X ∪ {b}, then set X̃ :=
X ∪ {b}. Otherwise, choose b1, ...,bmc |= φc(x; a) and set X̃ := X ∪

⋃
i{bi}. By

the proof of Lemma 4.2, we can select the bi which include all the realizations
of φc(x; a) which intersect X. Moreover, we can select the bi such that set-wise
distinct realizations of φc(x; a) not contained in X̃ are pairwise disjoint.

Define

Ỹ := {b ∈ Z̃ | b ∈ Z or b |= φc(x; a)}

and note that ||Ỹ || > 2mcδ(X̃/A), because sc > (mcnc + 1)! + 2mcδ(a).
Now, close X̃ under the following three operations.

• If X̃ �s,mc B then set X̃ := clB,mc(X̃).
• If X̃ ∪ {b} �s,mc B for some b ∈ Z̃ then set X̃ := clB,mc(X̃ ∪ {b}).
• If there are b,b′ ∈ Z̃ with δ(bb′/X) < 0 then set X̃ := X̃ ∪ {b,b′}.

By the maximality of mc and induction, each closure step reduces ||Ỹ || by at
most 2mc and reduces δ(X̃/A) by at least 1. It follows that after closing, we have

||Z̃|| ≥ ||Ỹ || > 2mcδ(X̃/A)

and the rest of the induction hypothesis. Moreover, φc(x; a) no longer witnesses
the failure of (2).

Iteration of this process must stop because B \A is finite. Once finished, (1) and
(2) must hold and ||Z|| > 0 implies X ( B. �
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5. Weak Closure

Given prealgebraic code instance φc(x; a) over some A, we are going to define a
first-order approximation wclA(φc(x; a)) ⊆ clA(a).

For each prealgebraic code c, define

Φc(x1, ...,xmc+1) :=
∧
i<j

xi 6= xj ∧
∧
i

φc(xi; y),

and
Γc := {Φc′ : sc > sc′}.

Lemma 5.1. We may assume that if φc(x; a) is over A and b,b′ |= φc(x; a) are
A-generic, then qftpΓc(b/A) = qftpΓc(b

′/A).

Proof. The easiest way to obtain this is to redo the code constructions in each Ti.
Make sure that the lemma is true in Ti for Γci := {Φc′i : nci > mc′i

· nc′i}. Now,
since sc > sc′ implies nci > mc′i

· nc′i for i = 1, 2, the lemma follows. �

Lemma 5.2. For any prealgebraic code instance φc(x; a) over A, there is a unique
minimal subset W ⊆ A with the following properties.

(1) Suppose for some A-generic b |= φc(x; a) there is a φc′(x′; a′) with a long
sequence in b. If

Y := {b′ ⊆ A ∪ {b} | b′ |= φc′(x′; a′)},
then A ∩

⋃
Y ⊆W .

(2) If b ⊆ A, b |= φc(x; a), and qftpΓc(b/W ) is not generic, then b ⊆W .
Moreover, W is contained in clA,nc(a), and first-order definable.

Proof. First we show clA,nc(a) satisfies (1) and (2).
Condition (2) is easy, because if qftpΓc(b/clA,nc(a)) fails to be generic, then

δ(b/clA,nc(a)) < 0. This contradicts the assumption clA,nc(a) ≤s,nc A.
For condition (1), suppose b |= φc(x; a), φc′(x′; a′) is long in b, b′ ⊆ A ∪ {b},

b′ * b, and b′ |= φc′(x′; a′). Since A ∩ {b′} ↓Tia a′ and a′ /∈ acleq(a), we have
b′ ⊆ clA,nc(a) by Lemma 4.1.

The class of sets satisfying (1) and (2) is closed under intersection. Thus unique-
ness and containment in clA,nc(a) follows from the fact that clA,nc(a) is finite (recall
|clA,nc(a)| < ncδ(a)).

Since checking condition (1) and (2) is first-order for a set of fixed size and we
have a bound on the size of W , W is first-order definable. �

With W as in the lemma above, we define

wclA(φc(x; a)) := W,

and call it the weak closure of φc(x; a) in A.

Lemma 5.3. If φc(x; a) is over A, b |= φc(x; a) is A-generic and φc′(x′; a′) is long
in b, then wclA∪{b}(φc′(x′; a′)) ⊆ wclA(φc(x; a)) ∪ {b}.

Proof. Note that by Lemma 5.1, we can restrict condition (1) above to a single
generic realization.

Because φc′(x′; a′) is long in b, there is a b′ ⊆ b such that b′ |= φc′(x′; a′) is
wclA∪{b}(φc′(x′; a′))-generic. Since Γc′ ⊆ Γc, wclA(φc(x; a)) ∪ {b} satisfies condi-
tions (1) and (2) for wclA∪{b}(φc′(x′; a′)). �
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6. Nice Codes

In this section, we temporarily move back to the context of a single theory T
with the wDMP. We need to make additional assumptions about the codes in T
in order to progress further. We find these assumptions by looking more closely at
our intended application.

Hasson’s example [3] is rank and degree preserving biinterpretable with a theory
T that has an equivalence relation E such that:

(1) T/E is strongly minimal with the DMP.
(2) The structure of each E-class has rank 1, degree ≤ D, and the DMP,
(3) Distinct E-classes are orthogonal.
(4) Generic E-classes are pure sets.

For the rest of this section, fix such a theory T . We write [a] for the equivalence
class coded by an imaginary a ∈ T/E. Thus, we write Th([a]) for the induced
structure on the equivalence class a represents. We assume acleq(∅) = dcleq(∅).

Let {an} enumerate dcleq(∅) ∩ (T/E). For each n let dn := dM([an]) and add
predicates {Pn,k : k ≤ dn} which partition [an] into strongly minimal sets.

Lemma 6.1. There is a system of codes C with the following two properties.

(1) If b |= φc(x; a) is generic, bi ∈ Pn,k, and φc(x; a) 6|= Pn,k(xi), then
φc(x; a) |=

∨
j≤dn Pn,j(xi) and for any j ≤ dn we can change bi so that

bi ∈ Pn,j while maintaining b |= φc(x; a) generic.
(2) If ψ(x; d) is simple and covered by c, there is a parameter a and a conjuction

θ(x) of atoms Pn,k(xi) such that ψ(x; d) ∼ φc(x; a) ∧ θ(x).

Proof. Suppose we are building a code for the simple formula ψ(x; d). Since ψ(x; d)
is simple, we may assume it implies a complete atomic E-type ξ(x). Let S1 ∪ · · · ∪
Sm = {1, ..., |x|} be a partition such that ξ(x) implies xiExj if and only if i, j ∈ Sk
for some k. By the orthogonality condition (3),

ψ(x; d) ∼
∧
k

∃x{1,...,|x|}\Skψ(x; d).

If we choose codes ck which encode ∃x{1,...,|x|}\Skψ(x; d), then

φc(x; y) := ξ(x) ∧
∧
k

φck(xSk ; yk)

is a code which encodes ψ(x; d). Thus we may assume ψ(x; d)→
∧
i<j xiExj .

Case 1: If b1/E is generic over d for generic b |= ψ(x; d), then, since generic
E-classes are pure sets, we must have ψ(x; d) ∼

∧
i<j xiExj . In this case, φc(x) :=∧

i<j xiExj ∧ xi 6= xj is a code which encodes ψ(x; d). Since φc(x) has degree 1,
properties (1) and (2) are trivial.

Case 2: If b1/E ∈ acl(d) for generic b |= ψ(x; d), then we can strengthen ψ(x; d)
such that ψ(x; d)→ x ⊆ [a] for some a ∈ (T/E) ∩ acl(d).

Case 2a: If RM(a) = 0, then we may assume a ∈ dcl(∅) and choose a Th([a])-
code φc(x; y) which encodes ψ(x; d). Since Th([a]) has the DMP, all instances of
φc have degree 1. Thus (1) and (2) are again trivial.

Case 2b: If RM(a) = 1, then [a] is a pure set and ψ(x; d) ∼ x ⊆ [a]. Thus the
code φc(x; y) ≡ x ⊆ [y]∧

∧
i<j xi 6= xj works. Note that dM(φc(x; a)) = dM([a])nc .
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In particular, φc(x; an) is partitioned into (dn)nc degree 1 sets by the formulas

{φc(x; an) ∧
∧
i≤nc

Pn,ki(xi) : k ∈ {1, ..., dn}nc}.

From this (1) and (2) follow. �

If C is a system of codes and there are disjoint predicates {Pn,k | k ≤ dn} which
make the above lemma true, we say that C is a nice system of codes. Note that any
system of codes for a DMP theory is nice via dn = 1 and Pn,1 = ∅.

Suppose C is a nice system of codes. Write Σn for the set of complete {Pm,k :
m < n, k ≤ dn}-formulas. Given a code c ∈ C and θ(x) ∈ Σn with |x| = nc, let
c ∧ θ be the code with

φc∧θ(x; y) ≡ φc(x; y) ∧ θ(x) ∧ RMx(φc(x; y) ∧ θ(x)) = kc.

We will call c ∧ θ a Σn-specialization of c. Note that by Lemma 6.1, c ∧ θ ∈ C if
and only if φc(x; y) |= θ(x) already.

7. The Class Kµ
Assumption 7.1. Each theory Ti has a nice system of code Ci via the predicates
{P in,k : n ∈ N and k ≤ din}.

We write Σn := Σ1
n × Σ2

n. For a prealgebraic code c and a θ ∈ Σn, write c ∧ θ
for the Σn-specialized prealgebraic code (c1 ∧ θ1, c2 ∧ θ2). Note that specializations
c ∧ θ still code prealgebraic extensions in the sense of Lemma 4.1.

We are going to define a class Kµ ⊆ K∞ by saying that A ∈ Kµ when

dimA(φc∧θ(x; a)) ≤ µA(φc∧θ(x; a))

for all specialized prealgebraic codes c∧θ and a ∈ acleq(A). Of course, we still need
to define dimA and µA.

If φc∧θ(x; a)) a specialized prealgebraic instance overA, then let dimA(φc∧θ(x; a))
be the cardinality of the set

{b ⊆ A : b * wclA(φc(x; a)) and b |= φc∧θ(x; a)};

i.e., the number of realizations outside of the weak closure.
For unspecialized prealgebraic codes c, let

µA(φc(x; a)) = (Dc!)Dc · (sc +mc + 1).

For Σn-specializations c∧ θ, we will simultaneously define µA(φc∧θ(x; a)) and first-
order approximations Kc,n ⊆ K∞ to the final Kµ.

Suppose c ∧ θ is a Σn-specialization of c. We inductively assume µA has been
defined for instances of specialized prealgebraic codes c′ ∧ θ′ whenever sc′ < sc or
θ′ ∈ Σn−1. Using the induction hypothesis, let Kc,n be the class of all A ∈ K∞
such that

dimA(φc′∧θ′(x′; a′)) ≤ µA(φc′∧θ′(x′; a′))

for φc′∧θ′(x′; a′) over A with sc′ < sc and θ′ ∈ Σn. If A ∈ Kc,n and φc∧θ(x; a)
is over A, we say that φc∧θ(x; a) extendible over A when there is an A-generic
b |= φc∧θ(x; a) so that A ∪ {b} ∈ Kc,n. For A-extendible φc∧θ(x; a) define

µA(φc∧θ(x; a)) := µA(φc∧θ−(x; a))/D,
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where θ− ∈ Σn−1, θ → θ−, and D is the number of θ′ ∈ Σn with θ′ → θ− and
φc∧θ′(x; a) extendible over A. For non-A-extendible φc∧θ(x; a) define

µA(φc∧θ(x; a)) := 0.

Lemma 7.2. If A ∈ Kc,n and φc∧θ(x; a) is A-extendible, then µA(φc∧θ(x; a)) >
sc +mc.

Proof. The degree of any prealgebraic code instance φc(x; a) is bounded by Dc.
Thus each time we divide by D in the definition of µA, we have D ≤ Dc. Moreover,
we divide by a number greater than 1 at most Dc times. �

Lemma 7.3. If A ∈ Kc,n, φc∧θ(x; a) is over A, and θ ∈ Σn then µA(φc∧θ(x; a))
depends only on qftpΣn∪Γc(wclA(φc(x; a)) ∪ {b}) for A-generic b |= φc∧θ(x; a).

Proof. The quantifier-free type above is uniquely determined by Lemma 5.1.
Suppose b |= φc∧θ(x; a) is A-generic and φc′∧θ′(x′; a′) witnesses A∪ {b} /∈ Kc,n.

Note that all of the realizations of φc′∧θ′(x′; a′) are contained in wclA(φc(x; a)) ∪
{b}. By induction, we know that µA∪{b}(φc′∧θ′(x′; a′)) is completely determined
by qftpΣn∪Γc(wclA∪{b}(φc′(x′; a′)) ∪ {b′}) for some (any) A ∪ {b}-generic b′ |=
φc′∧θ′(x′; a′).

Note that wclA∪{b}(φc′(x′; a′)) ⊆ wclA(φc(x; a)) ∪ {b}, every realization of
φc′∧θ′(x′; a′) is contained in wclA(φc(x; a)) ∪ {b}, and wclA(φc(x; a)) ∪ {b} com-
putes the same value for µc′∧θ′(x′; a′)) as A ∪ {b}. It follows that the failure
A ∪ {b} /∈ Kc,n is encoded in qftpΣn∪Γc(wclA(φc(x; a)) ∪ {b}) and that φc∧θ(x; a)
is not A-extendible.

Thus the A-extendibility of φc∧θ(x; a) is encoded in qftpΣn∪Γc(wclA(φc(x; a)) ∪
{b}). Unrolling the definition of µA(φc∧θ(x; a)) we see that it too is encoded. �

Lemma 7.4. If A ∈ Kc,n, θ ∈ Σn, b ⊆ A, b |= φc∧θ(x; a), and b * wclA(φc(x; a))
then φc∧θ(x; a) is extendible over A.

Proof. Note that b has the same quantifier-free Σn ∪ Γc type over wclA(φc(x; a))
as any A-generic b′ |= φc∧θ(x; a). Since wclA(φc(x; a)) ∪ {b} ⊆ A ∈ Kc,n we can
apply the proof of the previous lemma to get A ∪ {b′} ∈ Kc,n. �

Lemma 7.5. For all prealgebraic codes c and n ∈ N, Kc,n+1 ⊆ Kc,n.

Proof. This an easy consequence of the previous lemma and the definition of µA. �

In the following lemma we use the Decomposition Lemma and nice code assump-
tion to show that our first order approximations Kc,n ⊇ Kµ are well-behaved.

Lemma 7.6. Suppose A ∈ Kc,n+1, φc∧θ(x; a) is A-extendible, and θ ∈ Σn. There
is a θ∗ ∈ Σn+1 such that θ∗ → θ and φc∧θ∗(x; a) is A-extendible.

Proof. We induct on S ⊆ {1, ..., nc} to prove the following claim.

Claim. There exists an A-generic b |= φc∧θ(x; a) such that A ∪ {bS} ∈ Kc,n+1.

Suppose b |= φc∧θ(x; a) is A-generic and S ⊆ {1, ..., nc}. Applying the Decom-
position Lemma to A ≤s B = A ∪ {bS}, we get A ≤s X ( B and Z at stated
there. Since b |= φc(x; a) being A-generic completely determines qftpΓc(b/A) and
the values of δ on subsets of A∪{b}, the decomposition is the same for all A-generic
b |= φc∧θ(x; a). Thus we may assume that X ∈ Kc,n+1 by induction.
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If b′ ∈ Z, then b′ is an X-generic realization of some Σn-specialized prealgebraic
code instance φc′∧θ′(x′; a′) strongly based on X. Since X ∈ Kc,n+1 and X ∪{b′} ∈
Kc,n, we know that φc′∧θ′(x′; a′) is extendible over X. Because sc′ < sc we can
use this lemma to find a θ′′ ∈ Σn+1 so that θ′′ → θ and φc′∧θ′′(x′; a′) is X-
extendible. By Lemma 6.1, we may assume that b′ |= φc′∧θ′′(x′; a′). Because
wclB(φc′(x; a′)) ⊆ X and b′ is X-generic we have X ∪ {b′} ∈ Kc,n+1.

Since the set-wise distinct elements of Z are pairwise disjoint, we can do this for
all b′ ∈ Z simultaneously.

Now, if B /∈ Kc,n+1 it must be because some Σn-specialized prealgebraic code
instance φc′∧θ′(x′; a′) has a further Σn+1-specialization with too many realizations.
By the above, we must have φc′∧θ′(x′; a′) strongly based on X.

Let c′∧θ1, ..., c
′∧θD enumerate the X-extendible Σn+1-specializations of c′ which

further specialize c′ ∧ θ′. We may assume

dimB(φc′∧θ1(x′; a′)) > µB(φc′∧θ1(x′; a′)) = µX(φc′∧θ1(x′; a′)).

Since φc′∧θ′(x′; a′) doesn’t have too many realizations in B, we may assume that

dimB(φc′∧θ2(x′; a′)) < µB(φc′∧θ2(x′; a′)) = µX(φc′∧θ2(x′; a′)).

Since X ∈ Kc,n+1, there is a b′ ∈ Z realizing φc′∧θ1(x′; a′). Using Lemma 6.1
we can change b′ into a realization of φc′∧θ2(x′; a′).

If φc′′∧θ′′(x′′; a′′) is any other Σn+1-specialized prealgebraic code instance over
X, then its dimension is unchanged by this operation unless

φc′′∧θ′′(x′; a′′) ≡ φc′∧θi((x′)σ; a′)

for some σ ∈ Sym(nc) and i = 1, 2. If this latter condition holds, then |x′′| = |x′|
and

µX(φc′′∧θ′′(x′; a′′)) = µX(φc′∧θi(x
′; a′)).

Thus the net effect of changing b′ is to reduce the total number of violations to
the multiplicity rules. Iterating this process, we eventually get B ∈ Kc,n+1. �

Lemma 7.7. Suppose A ∈ Kµ, φc∧θ(x; a) is A-extendible, and dimA(φc∧θ(x; a)) <
µA(φc∧θ(x; a)). There is an A-generic b |= φc∧θ(x; a) such that A ∪ {b} ∈ Kµ.

Proof. Suppose θ ∈ Σn. By the previous lemma, there is at least one θ∗ ∈ Σn+1 so
that θ∗ → θ and φc∧θ∗(x; a) is A-extendible. Since µA(φc∧θ(x; a)) is divided evenly
amongst these θ∗, we can choose θ∗ such that dimA(φc∧θ∗(x; a)) < µA(φc∧θ∗(x; a)).
Iterating this process, we can find an A-generic b |= φc∧θ(x; a) so that A ∪ {b} ∈
Kc,n′ for all n′ > n.

If A ∪ {b} /∈ Kµ, then it must be the case that

dimA∪{b}(φc∧θ∗(x; a)) > µA∪{b}(φc∧θ∗(x; a))

for some θ∗ ∈ Σn′ with n′ > n and b |= φc∧θ∗(x; a). But µA∪{b}(φc∧θ∗(x; a)) =
µA(φc∧θ∗(x; a)) and we constructed b so that µA(φc∧θ∗(x; a)) > dimA(φc∧θ∗(x; a)).
Thus dimA(φc∧θ∗(x; a)) = µA(φc∧θ∗(x; a)), a contradiction. �

8. The Theory Tµ

Lemma 8.1. If A ≤s A ∪ {b} is algebraic or transcendental, then A ∈ Kµ implies
A ∪ {b} ∈ Kµ.
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Proof. Suppose b1, ...,bN |= φc∧θ(x; a) witnesses A∪{b} /∈ Kµ. Since a ∈ acleq(A),
A and A ∪ {b} compute the same value for µ(φc∧θ(x; a)). Thus it can not be the
case that bi ⊆ A for all i ≤ N , so we may assume b ∈ b1. This contradicts Lemma
4.1 and the assumption that A ≤s A ∪ {b} is not prealgebraic. �

Lemma 8.2. The class Kµ has the amalgamation property with respect to ≤s.
Proof. Suppose A ≤s B,C ∈ Kµ. We need to find a D ∈ Kµ with A ≤s C ≤s D
and a B′ ≤s D such that B′ ≡A B. By induction, we may assume that both
A ≤s B and A ≤s C are minimal.

Suppose A ≤s B is algebraic, say because B = A∪{b} and tpT1
(b/A) is algebraic.

If tpT1
(b/A) is realized by c ∈ C \ A, then B ≡A C. Otherwise, we may assume

tpT1
(b/C) is some extension of tpT1

(b/C) which implies b /∈ C and tpT2
(b/C) is

generic. It is then easy to check C ≤s C ∪ {b}, so D = C ∪ {b} works by the
previous lemma.

Thus we may assume neither A ≤s B nor A ≤s C are algebraic. We compute
the free fusion of B and C over A by assuming tpTi(B/C) is some non-forking
extension of tpTi(B/A) and letting D = B∪C. By the submodularity of δ, we have
B,C ≤s D.

Suppose D /∈ Kµ is witnessed by distinct b1, ...,bN |= φc∧θ(x; a) with N too
large. We may assume φc∧θ(x; a) has degree 1.

By Lemma 4.2, we may assume that a ∈ acleq(B) and thus clD(a) ⊆ B. It
follows that B and D compute the same value for µ(φc∧θ(x; a)). Since B ∈ Kµ, we
may assume b1 * B. By Lemma 4.1, C = A ∪ {b1}. Since B ↓TiA C, we must have
a ∈ acleq(A) and thus clD(a) ⊆ A. By repeating the argument just given, we may
assume B = A ∪ {b2}.

Since b1 and b2 are both A-generic realizations of a degree 1 prealgebraic code
instance over A, we must have b1 ≡A b2. Thus B ≡A C. �

We call an M ∈ Kµ rich if for all finite A ≤s M and finite A ≤s B ∈ Kµ there is
a C ≤s M with B ≡A C. The amalgamation property shows that for every A ∈ Kµ
we can find a rich M ∈ Kµ with A ≤s M .

Assumption 8.3. If K > 1, then RM(T1) ≤ RM(T2), in T1 every element is
interalgebraic with infinitely many elements, and in T2 there are infinitely many
disjoint unary predicates of rank RM(T2)− 1.

Let Tµ be the theory which says, for M |= Tµ, that
(1) M ∈ Kµ,
(2) M � Li |= Ti for i = 1, 2,
(3) there is no prealgebraic extension M ≤s N ∈ Kµ.

Note that axiom (3) is first order by Lemma 7.7.

Theorem 8.4. The theory Tµ is consistent, complete, and the ω-saturated models
of Tµ are exactly the rich structures on Kµ. Moreover, Tµ has rank K, nice codes,
and

RMT (φ(x; a)) = viRMTi(φ(x; a)) and dMT (φ(x; a)) = dMTi(φ(x; a))

for all φ(x; y) ∈ L(T eqi ) and i = 1, 2.

Proof. We have set up the machinery required to run the proof of the corresponding
theorem in [8]. The only thing that needs mention is that the pairs of predicates
P 1
n,k ∧ P 2

n′,k′ provide nice codes for Tµ. �
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9. Wrap-up

Proof of Theorem 1.1. This has the same proof as the corresponding theorem in
[8]. The main point is that if we are willing to expand the language, i.e., L(T ) )
L(T1) ∪ L(T2), then we can obtain assumption 8.3 and apply Theorem 8.4. �

Corollary 9.1. Theories with nice codes have rank and degree preserving intepre-
tations in a strongly minimal sets.

Proof. Same as Corollary 1.3 in [8]. �

I can currently do a little better than the above results. In particular, I can write
down weaker versions of nice codes which are still sufficient for the main theorem.
However, I still can not prove (or disprove) that any two finite rank, degree 1,
wDMP theories have a fusion.
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