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Abstract. In this paper we consider the restriction of a unitary
irreducible representation of type Aq(λ) of GL(4,R) to reductive
subgroups H which are the fixpoint sets of an involution. We
obtain a formula for the restriction to the symplectic group and
to GL(2,C), and as an application we construct in the last section
some representations in the cuspidal spectrum of the symplectic
and the complex general linear group.

Introduction

Understanding a unitary representation π of a Lie groups G often in-
volves understanding its restriction to suitable subgroups H. This is in
physics referred to as breaking the symmetry, and often means exhibit-
ing a nice basis of the representation space of π. Similarly, decompos-
ing a tensor product of two representations of G is also an important
branching problem, namely the restriction to the diagonal in G × G.
Generally speaking, the more branching laws we know for a given rep-
resentation, the more we know the structure of this representation. For
example, when G is semisimple and K a maximal compact subgroup,
knowing the K-spectrum, i.e. the collection of K-types and their mul-
tiplicities, of π is an important invariant which serves to describe a
good deal of its structure. It is also important to give good models
of both π and its explicit K-types. There has been much progress in
recent years (and of course a large number of more classical works, see
for example [20], [3], [4], [5]), both for abstract theory as in [8], [9],
[11], [10], and concrete examples of branching laws in [18], [19], [12],
[1], [21].
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In this paper, we shall study in a special case a generalization of
the method applied in [13] and again in [5]; this is a method of Tay-
lor expansion of sections of a vector bundle along directions normal to
a submanifold. This works nicely when the original representation is
a holomorphic discrete series for G, and the subgroup H also admits
holomorphic discrete series and is embedded in a suitable way in G.
The branching law is a discrete sum decomposition, even with finite
multiplicities, so-called admissibility of the restriction to H; and the
summands are themselves holomorphic discrete series representations
for H. Since holomorphic discrete series representations are cohomolog-
ically induced representations in degree zero, it is natural to attempt a
generalization to other unitary representations of similar type, namely
cohomologically induced representations in higher degree. We shall fo-
cus on the line bundle case, i.e. the Aq(λ) representations. In this case
T. Kobayashi [10] obtained necessary and sufficient conditions that the
restriction is discrete and that each representation appears with finite
multiplicity. Using explicit resolutions and filtrations associated with
the imbedding of H in G, we analyze the derived functor modules and
obtain an explicit decomposition into irreducible representations. It
is perhaps not surprising, that with the appropriate conditions on the
imbedding of the subgroup, the class of (in our case derived functor)
modules is preserved in the restriction from H to G.

Let G be a semisimple linear connected Lie group with maximal com-
pact subgroup K and Cartan involution θ. Suppose that σ is another
involution so that σ · θ = θ · σ and let H be the fixpoint set of σ in G.
Suppose that L = Lx is the centralizer of an elliptic element x ∈ G∩H
and let q = l⊕ u, qH = q ∩ h be the corresponding θ–stable parabolic
subgroups. Here we use as usual gothic letters for complex Lie algebras
and subspaces thereof; a subscript will denote the real form, e.g. go.
We say that pairs of parabolic subalgebras q, qH which are constructed
this way are well aligned. For a unitary character λ of of L we define
following Vogan/Zuckerman the unitary representations Aq(λ).

In this paper we consider the example of the group G = SL(4,R).
There are 2 G-conjugacy classes of skew symmetric matrices with repre-

sentantsQ1 =

(
J 0
0 −J

)
andQ2 =

(
J 0
0 J

)
where J =

(
0 −1
1 0

)
.

Let H1 respectively H2 be the symplectic subgroups defined by these
matrices and H ′1, H

′
2 the centralizer of Q1, respectively Q2. All these

subgroups are fixpoint sets of involutions σi, i = 1, 2 and σ′i, i = 1, 2
respectively.
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The matrix Q2 has finite order, is contained in all subgroups Hi and
hence defines a θ stable parabolic subalgebra q of sl(4,C) and also θ–
stable parabolic subalgebras qh1 = q∩h1 of h1, respectively qh2 = q∩h2

of h2. Its centralizer L in SL(4,R) is isomorphic to GL(2,C) and the
parabolic subgroups q, qh1 as well as q, qh2 are well aligned.

We consider in this paper the unitary representation Aq of G corre-
sponding to trivial character λ. Its infinitesimal character is the same
as that of the trivial representation. The representation Aq was studied
from an analytic point of view by S. Sahi [15]. Since the Aq has non-
trivial (g, K)–cohomology and is isomorphic to a representation in the
residual spectrum, this representation is also interesting from the point
of view of automorphic forms. See for example [17]. We determine in
this paper the restriction of Aq to the 4 subgroups Hi and H ′i, (i = 1, 2).

After introducing all the notation in section 1 we prove in section
2 using a result of T. Kobayashi, that the restriction of Aq to H1 and
H ′1 is a direct sum of irreducible unitary representations, whereas the
restriction to H2 and H ′2 is a direct integral and doesn’t have any
discrete spectrum. This discrete/continuous alternative, see [9] is one
of the deep results that we invoke for symmetric subgroups.

In section 3 and 4 we determine the representations ofH1 respectively
of H ′1 that appear in the restriction of Aq to H1 respectively H ′1 and
show that it is a direct sum of unitary representations of the form
Aq∩h1(µ) respectively Aq∩h′

1
(µ′), each appearing with multiplicity one.

The main point is here, that we find a natural model in which to do the
branching law, based on the existence results of T. Kobayashi; and also
following experience from some of his examples, where indeed derived
functor modules decompose as derived functor modules (for the smaller
group).

In section 5 we formulate a conjecture about the multiplicity of rep-
resentations in the restriction of representations Aq of semisimple Lie
groups G to subgroups H, which are centralizers of involutions. If the
restriction of Aq to H is a direct sum of irreducible representation of
H we expect that there is a θ-stable parabolic subalgebra qH of H
so that all representations which appear in the restriction are of the
form AqH (µ) and that a Blattner-type formula holds. See the precise
conjecture at the end of section 5, where we introduce a natural gener-
alization of previously known Blattner-type formulas for the maximal
compact subgroup.

In section 6 we these results are used to construct automorphic repre-
sentations of Sp(2,R) and GL(2,C) which are in the discrete spectrum
for some congruence subgroup. For Sp(2,R) these representations are
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in the residual spectrum, whereas for GL(2,C) these representations
are in the cuspidal spectrum. We expect that our methods extend
to other situations with similar applications to automorphic represen-
tations; and we hope the point of view introduced here will help to
understand in a more explicit way the branching laws for semisimple
Lie groups with respect to reductive subgroups.

We would like to than T. Kobayashi for helpful discussions during
a visit of the second author at RIMS and for the suggestion to also
include the restriction to GL(2,C). The second author would also
like to thank the University of Southern Denmark in Odense for its
hospitality during which part of the research was completed.

I. Notation and generalities

I.1 Let G be a connected linear semisimple Lie group. We fix a
maximal compact subgroup K and Cartan involution θ. Let H be
a θ – stable connected semisimple subgroup with maximal compact
subgroup KH = K ∩ H. We pick a fundamental Cartan subalgebra
CH = TH ·AH of H. It is contained in a fundamental Cartan subalgebra
C = T ·A of G so that TH = T ∩H and AH = A∩H. The complex Lie
algebra of a Lie group (as before) is denoted by small letters and its
real Lie algebra by a subscript o. We denote the Cartan decomposition
by go = ko ⊕ p.

Definition: Let q and qH be θ-stable parabolic subalgebras of g, re-
spectively h. We say that they are well aligned if qH = q ∩ h

We fix xo in TH . It defines well aligned θ-stable parabolic subalgebras
q = l⊕ u and qH = lH ⊕ uH = q ∩ h of g respectively h; for details see
page 274 in [7].

We write L and LH for the centralizer of x0 in G and in H respec-
tively. For a unitary character λ of L we write λH for the restriction

of λ to L̂H .

I.2 For later reference we recall the construction of the representations
Aq(V ), V an irreducible (q, L ∩K) module . We follow conventions of
the book by Vogan/Knapp [7] (where much more detail on these derived
functor modules is to be found) and will always consider representations
of L and not of the metaplectic cover of L as some other authors. We

consider U(g) as right U(q) module and write V ] = V ⊗∧topu. Let pL
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be a L ∩K -invariant complement of l ∩ k in l. We write rG = pL ⊕ u.
Consider the complex

0→ HomL∩K(U(g),Hom(∧0rG, V
]))K →

→ HomL∩K(U(g),Hom(∧1rG, V
]))K →

→ HomL∩K(U(g),Hom(∧2rG, V
]))K → . . .

Here the subscript K denotes the subspace of K-finite vectors. We
denote by T (x, U( · )) an element in HomL∩K(U(g),HomC(∧nrG, V ]))K .
The differential d is defined by

d T (x, U(X1 ∧X2 ∧ · · · ∧Xn))

=
n∑
i=1

(−1)iT (Xix, U(X1 ∧X2 ∧ · · · X̂i · · · ∧Xn))

+
n∑
i=1

(−1)i+1T (x,XiU(X1 ∧X2 ∧ · · · X̂i · · · ∧Xn))

+
∑
i<j

(−1)i+jT (x, U(PrG [Xi, Xj] ∧X1 ∧X2 ∧ · · · X̂i · · · X̂j · · · ∧Xn))

where x ∈ U(g), Xj ∈ rG and PrG is the projection onto rG. Let
s = dim(u ∩ k) and let χ be the infinitesimal character of V. If

2 < χ+ ρ(u), α >

|α|2
6∈ {0,−1,−2,−3 . . . } for α ∈ ∆(u)

then the cohomology is zero except in degree s and if V is irreducible
this defines an irreducible ((U(g), K)–module Aq(V ) in degree s (8.28
in [7]). By (5.23 [7]) the infinitesimal character of Aq(V ) is χ+ ρG.

If V is trivial the infinitesimal character of Aq(V ) is trivial and we
write simply Aq. Two representations Aq and Aq′ are equivalent if q
and q′ are conjugate under the compact Weyl group WK .

For an irreducible finite dimensional (qH , LH ∩K)–module V LH
we

define similarly the (U(h), KH)–modules AqH (V LH
) .

I.3 Let H be the fixpoint set of an involutive automorphism σ of G. We
write go = ho⊕ so for the induced decomposition of the Lie algebra. T.
Kobayashi proved [9] that the restriction of Aq to H decomposes as di-
rect sum of irreducible representations of H iff Aq is KH-admissible, i.e
if every KH-type has finite multiplicity. If Aq is discretely decompos-
able as an (ho, K∩H)–module we call an irreducible (ho, H∩K)–module
πH an H–type of Aq if

Hom(ho,KH)(π
H , Aq) 6= 0
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and the dimension of Hom(ho,KH)(π
H , Aq) its multiplicity.

We have l = lH ⊕ l∩ s. Put uH = u∩ h. The representation of lH on
u is reducible and as lH–module u = uH ⊕ (u∩ s). Let q = l⊕ u be the
opposite parabolic subgroup. Then h = kh⊕uH⊕uH and (u∩s)⊕u∩s
is a lH-module. As an lH-module g = h⊕ (u ∩ s)⊕ (l ∩ s)⊕ (u ∩ s).

I.4 Now let G = SL(4,R). The skew symmetric matrices

Q1 =

(
J 0
0 −J

)
and

Q2 =

(
J 0
0 J

)
with J =

(
0 −1
1 0

)
represent the conjugacy classes of skew symmet-

ric matrices. under G. They define symplectic forms also denoted by
Q1 and Q2.

Let H1, respectively H2, be the θ–stable symplectic subgroups de-
fined by Q1, respectively Q2. These subgroups are fixpoints of the
involutions

σi(g) = Qi · (g−1)tr ·Q−1
i ,

i = 1, 2. Since Q1 and Q2 are conjugate in GL(4,R), but not in
SL(4,R), the symplectic groupsH1 andH2 are not conjugate in SL(4,R).

Let H ′1 and H ′2 be the fixpoints of the involutions

σ′i(g) = Qi · g ·Q−1
i .

Both groups H ′1 and H ′2 are isomorphic to GL(2,C), but they are not
conjugate in SL(4,R).

I.5 We fix x0 = Q2. It has finite order and is contained in
⋂2
i=1Hi and

in
⋂2
i=1H

′
i. It defines a θ stable parabolic subalgebra q of sl(4,C) and

also θ–stable well aligned parabolic subalgebras qH of the subalgebras
h. Its centralizer L = Lx0 in SL(4,R), the Levi subgroup, is isomorphic
to GL(2,C) = H ′1. For a precise description of the parabolic see page
586 in [7]

Let Aq be the representation holomorphically induced from q which
has a trivial infinitesimal character. This representations is a subrep-
resentation of a degenerate series representation induced from a one
dimensional representation of the parabolic subgroup with Levi factor
S(GL(2,R)×GL(2,R)) and thus all its K–types have multiplicity one.
See [15] for details.
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The next proposition demonstrates how different imbeddings of the
same subgroup (symplectic res. general linear complex) gives radically
different branching laws; in essence it is contained, as a qualitative
result, in the criteria of T. Kobayashi, see [9].

Proposition I.1.

(1) The restriction of Aq to H1 and to H ′1 is a direct sum of irre-
ducible representation each appearing with finite multiplicity.

(2) The restriction of Aq to H2 and to H ′2 is a direct integral.

Proof: Since KH1 = KH′
1 and KH2 = KH′

2 it suffices by T.
Kobayashi’s theorem (characterizing admissibility, and the theorem of
the alternative discrete/continuous in the present situation) to show
that Aq is KH1 admissible but not KH2-admissible. This will be done
in the next section.

II. The restriction of Aq to K ∩Hi, i = 1, 2.

We use in this section the notation introduced on page 586-588 in
Knapp/Vogan [7].

II.1 The Cartan algebra to of so(4,R) consists of 2-by 2 blocks

(
0 θj
θj 0

)
down the diagonal. We have a θ–stable Cartan subalgebra ho = to⊕ ao

where ao consists of the 2-by 2 blocks

(
xj 0
0 xj

)
. We define ej ∈ h∗

by

ej

(
xj −iyj
iyj xj

)
= yj

and fj ∈ h∗ by

fj

(
xj −iyj
iyj xj

)
= xj.

Then the roots ∆(u) of (h, u) are

e1 + e2 + (f1 − f2), e1 + e2 − (f1 − f2), 2e1, 2e2

and a compatible set of positive roots ∆+(l) of (h, l) are

e1 − e2 + (f1 − f2), e1 − e2 − (f1 − f2)

The the roots α1 = e1 + e2, α2 = e1 − e2 are compatible positive roots
of the Lie algebra k with respect to t.
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The highest weight of the minimal K–type of Aq is Λ = 3(e1 + e2).
See page 588 in [7]. All other K–types are of the form

Λ +m1(e1 + e2) + 2m2 e1, m1,m2 ∈ N

.
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Figure 1

The positive root of KH2 = K∩L is α2 and so the restriction of each
K–type with highest weight (m + 3)α1 is sum of characters d α1 with
−(m+ 3) ≤ d ≤ (m+ 3). Hence Aq is not KH2–finite.

The groups H1 and H2 are conjugate under the outer automorphism
which changes the sign of e2. Hence the simple positive root of KH1

can be identified with α1. A K-type with highest weight Λ +m1(e1 +
e2)+2m2 e1 is a tensor product of a representation with highest weight
(3 + m1 + m2, 3 + m1 + m2) and a representation with highest weight
(m2,−m2). Its restriction to KH1 is a direct sum of representations
with highest weights (3+m1 +m2 + i, 3+m1 +m2− i), −m2 ≤ i ≤ m2.
Figure 2 shows the highest weights of the KH1-types for the restriction
of Aq to KH1 . Their multiplicities are indicated by a number.
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Thus Aq is KH1-finite. This completes the proof of proposition I.1.

II.2 A second series of representations is obtained if we define the par-
abolic subalgebra q2 using Q1. In this case we obtain an irreducible
representation Aq2 . The restriction of Aq2 to H1 is a direct integral and
the restriction to H2 is a direct sum of irreducible unitary representa-
tion.

The representation Aq of GL(4,R) obtained by inducing an repre-
sentation Aq and a trivial character of the positive scalar matrices is
irreducible and unitary. Its restriction to SL(4,R) is equal to Aq⊕Aq2 .
Hence the restriction ofAq to H1 has discrete and continuous spectrum.

T. Kobayashi showed that for a connected group G the restriction of
a representation to the fixed point set of an involution either has only
discrete spectrum or only continuous spectrum. So this example shows
that his theorem does not hold for disconnected groups G.
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III. The restriction of Aq to the symplectic group H1

In this section we determine H1–types of Aq. Our techniques are
based on homological algebra and the construction of an ”enlarged
complex” whose cohomology computes the restriction. We introduce it
in III.1 for semisimple connected Lie groups H and connected reductive
subgroups H. Then we will compute the restriction to H1 by restricting
Aq to a subgroup conjugate to H1. The motivation for this ”enlarged
complex” or ”branching complex” is the same as when one is restricting
holomorphic functions to a complex submanifold, and identifying the
functions with their normal derivatives along the submanifold. In our
case we are working with (formalizations of) differential forms satisfy-
ing a similar differential equation, so it is natural to try to identify them
with their ”normal derivatives”; this is what is formalized in our def-
inition. As it turns out, with the appropriate conditions (well aligned
parabolic subgroups, vanishing of the cohomology in many degrees, and
the non-vanishing of explicit classes corresponding to small K-types)
we can indeed make the calculation of the branching law effective, at
least in the examples at hand.

III.1 We define the ”enlarged complex” for semisimple connected Lie
groups H and connected reductive subgroups H which are invariant

under the Cartan involution. Let CλH
= λ⊗ ∧top(u ∩ s). Then

C]
λ = Cλ ⊗ ∧topu = CλH

⊗ ∧topuH = C]
λH
.

Consider the ”enlarged complex”

(3.1) (HomL∩K∩H(U(g),Hom(∧irH ,C]
λH

))K∩H , dH).

As a left U(lH)–module

U(g) = Q⊗ U(h)

where Q is S(s). (See [7] 2.56.) We have

HomL∩K∩H(U(g),Hom(∧irH ,C]
λH

))K∩H

= HomL∩K∩H(Q⊗ U(h),Hom(∧irH ,C]
λH

))K∩H

= HomL∩K∩H(U(h),Hom(∧irH , Q⊗ C]
λH

)K∩H)K∩H .

U(g) acts on the enlarged complex from the right and a quick check
shows that dH also commutes with this action and therefore we have
an action of U(g) on the cohomology of the complex.

We have rG = rH ⊕ (u ∩ s)⊕ (pL ∩ s), and so

∧irG = ⊕l+k=i ∧k rH ⊗ ∧l(u ∩ s⊕ pL ∩ s).
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The restriction map

resH : HomK∩L(U(g),Hom(∧irG,C]
λ))K

→ HomL∩K∩H(U(h),Hom(∧irH , Q⊗ C]
λH

)K∩H)K∩H

commutes with the right action of U(g) and induces a restriction map
resiH on cohomology.

III.2 For the rest of the section we assume that G = SL(4,R). We
will show that there exists a symplectic subgroup, which we denote
by Hw

1 conjugate to H1 by an element w , so that the restriction map
res1

Hw
1

is not zero. Since the restriction of Aq depends only on the
conjugacy class of H1 this determines the restriction.

Since
1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

Q1


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


By abuse of notation we will also write H1 and H ′1 for the groups
defined by the skew symmetric form

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 .

Thus

h1 =

(
A X
Y −Atr

)
for symmetric matrices X and Y.

Recall that q is defined by

Q2 =

(
J 0
0 J

)
and that g = h1 ⊕ s1. We need the fine structure of the parabolic rela-
tive to the symmetric subgroup, in order to compare the cohomologies
during the branching, as in the following lemmas.

Lemma III.1. Under the above assumptions
a.) lo ∩ (h1)o is isomorphic to sl(2,R)⊕ R and dim u ∩ h1 =3,
b.) the representation of L ∩ H1 acts by a nontrivial character µ1

with differential (e1 + e2) on the one dimensional space u ∩ s1,
c.) l∩ s1 is a direct sum of the trivial representation and the adjoint
representation of l ∩ h1.
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d.) u ∩ k = u ∩ k ∩ h1 has dimension 1.

Proof: We have

lo ∩ (h1)o =


a b x 0
−b a 0 x
y 0 −a b
0 y −b −a

 .

The nilradical of a parabolic subalgebra with this Levi subalgebra has
dimension 3.

The dimension of l∩ h1 ∩ k is 2. Hence the dimension of u∩ k∩ h1 is
1. On the other hand the dimension of l ∩ k is 4. So the dimension of
u ∩ k is 1. Since u ∩ k ∩ h1 ⊂ u ∩ k we have equality.

u∩ s1 is in the roots spaces for roots e1 + e2 + (f1− f2) and e1 + e2−
(f1 − f2). Hence l ∩ h1 ∩ k acts on u ∩ s1 by e1 + e2.

l∩ h1 acts on the 4 dimensional space l∩ s1 via the adjoint represen-
tation. 2

The representation of L∩H1 on the symmetric algebra S((u∩ s1)⊕
(u ∩ s1) ⊕ (l ∩ s1)) is isomorphic to a direct sum of representations
µn1

1 ⊗ µ−m1
1 ⊗ adr1 n1 ∈ N,m1 ∈ N, r1 ∈ N.

The parameter λH1 ⊗ µn1
1 , 0 ≤ n1 is in the good range [7] and thus

the representation on the cohomology in degree 1 = dim (u ∩ k ∩ h) of
the enlarged complex has composition factors isomorphic to

Aqh1
(λH1 ⊗ µn1

1 )

where 0 ≤ n1. In particular Aqh1
(λH1) is an (h1, K ∩ H1)-submodule

module of the cohomology of the ”enlarged” complex in degree 1.

Lemma III.2. The map resiH1
is injective in degree 1.

Proof: Note that 1 = dim u ∩ k = dim u ∩ k ∩ h1 is the degree de-
noted by s in [7]. It is the degree, in which the complexes defining the
representations Aq and Aq∩h1(λH1) have nontrivial cohomology.

Recall the definition of the K-module LKs (λ) from V.5.70 in [7]. We
have bottom layer maps of ko–modules.

LK1 (λ)→ Aq

and

LK∩H1
1 (λH1)→ Aq∩h1(λH1)

where λ0 is the trivial character of L∩K. See theorem V.5.80 of [7] The
minimal K–type, respectively KH1-type is in the image of this map.

We have the commutative diagram
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Aq∩h1(λH1)Aq
-

LK∩H1
1 (λH1)LK1 (λ)

-

6 6

res1
H1

res1
K∩H1

The minimal K-type of Aq has highest weight (3e1 +3e2). Its restric-
tion to H1 ∩ K is irreducible and equal to LK∩H1

s (λH1), the minimal
KH1–type of Aq∩h1(λH1). Thus ressH1

is nonzero on minimal K- type
and since Aq is irreducible it is also injective. 2

Theorem III.3. The representation Aq restricted to H1 is the direct
sum of the representations

Aq∩h1(µ
n1
1 ⊗ λH1),

n1 ∈ N, each occurring with multiplicity one.

Proof: By the proof of the lemma Aq∩h1(λH) is a submodule of the
restriction of Aq to the symplectic group H1. Its minimal KH1–type
is also a K–type of Aq, where occurs with multiplicity one. Hence
Aq∩h1(λH1) is a H1–type of Aq with multiplicity one.

The minimal KH1-type of Aq∩h1(λ) has highest weight λ + 3e1 +
3e2. The roots of u ∩ h1 ∩ p are 2e1, 2e2. Applying successively the
root vectors to the highest weight vector of the minimal KH1–type of
Aq∩h1(λ) we deduce that Aq∩h1(λ) contains the KH1–types with highest
weight ((3 + 2r1)e1 + (3 + 2r2)e1 + λ), r1, r2 ∈ N. Theorem 8.29 in [7]
show that all these KH1–types have muliplicity one. Figure 3 shows
the KH1- type multiplicities of Aq(λH1).

Note that we are here using quite a bit of a priori information about
the derived functor modules for the smaller group; on the other hand,
the branching problem has essentially been reduced to one for compact
groups, K-type by K-type.
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Figure 3

The Borel subalgebra of k∩ h1 acts on on the one dimensional space
u ∩ s1 by a character µ1 with differential (e1 + e2). Let Y 6= 0 be in
u∩ s1 and v 6= 0 a highest weight vector of the minimal K-types of Aq.
Then Y n · v 6= 0 is also the highest weight of an KH1-type of highest
weight (3 + n)e1 + (3 + n)e2 of Aq.

Let Xk 6= 0 be in u ∩ k. The linear map

T1 : U(g)→ ∧srG ⊗ C]
λ0

which maps 1 to Xk ⊗C]
λ0

is non–zero in cohomology and its class [Ts]
is the highest weight vector of the minimal K-type. But

Y [Ts] ∈ HomL∩K∩H1(s1 ⊗ U(h1),Hom(∧srH1 ,C
]
λH1

))

∈ HomL∩K∩H1(U(h1),Hom(∧irH1 , s1 ⊗ C]
λH1

)K∩H1)K∩H1 .

Hence [Ts] ∈ Aq∩h1(µ1 + λH1) and thus Aq∩h1(λH1 + χO) is a H1-type
of Aq. The same argument shows that Aq∩h1(λH1 + nµo), n ∈ N, is a
H1-type of Aq.

Now every K-type with highest weight (n, n) has multiplicity n − 2
and is contained in exactly n− 2 composition factors. The multiplicity
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computations in section 2 now show that every composition factor is
equal to Aq∩h1(λH1 + nχO) for some n. See Figure 4 2
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Figure 4

Using prop. 8.11 in [7] we deduce that

Corollary III.4. Let V be and irreducible (h1, K
H1)-module. Then

dim Homh1,K∩H1(V,Aq) =∑
i

dim Hom(l∩h1),KH1∩L(H1(u ∩ h1, V ), Si(u ∩ s1)⊗ C]
H1

)

III.3 The maximal abelian split subalgebra a1 in lo ∩ (h1)o are the
diagonal matrices. So parabolic subgroup of the Langlands parameter
of theH1–types of Aq is the socalled ”mirabolic” with abelian nilradical.
The other Langlands parameter can de determined using the algorithm
in [7].
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IV. Restriction of Aq to the complex general linear group H ′1

In this section we describe H ′1–types of Aq using the same techniques
as in the previous section.

III.1 As for H1 we consider the ”enlarged complex”

(4.2) (HomL∩K∩H′
1
(U(g),Hom(∧irh′

1
,C]

λH′
1

))K∩H′
1
, dH′

1
).

and the map

resH′
1

: HomK∩L(U(g),Hom(∧irG,C]
λ))K

→ HomL∩K∩H′
1
(U(h′1),Hom(∧irH′

1
, Q⊗ C]

λH
)K∩H′

1
)K∩H′

1

We write g = h′1 ⊕ s′1. The intersection u ∩ s′1 is 2-dimensional and
the representation of the group of L ∩ H ′1 on u ∩ s′1 is reducible and
thus a sum of 2 one dimensional representations χ1 ⊕ χ2. The weights
of these characters are 2e1 and 2e2. So S(u∩ s′1) is a direct sum of one
dimensional representations of L ∩H ′1 with weights 2m1e1 + 2m2e2.

In the cohomology in degree 1 of the enlarged complex we have com-
position factors

Aq∩h′
1
(λH′

1
⊗ χn1

1 ⊗ χn2
2 )

with 0 ≤ n1, n2. In particular Aq∩h′
1
(λH′

1
) is an (h′1, K∩H ′1)-submodule

module of the cohomology in degree 1.

Lemma IV.1. The map res1
H′

1
: is injective.

Proof: The maximal compact subgroups of H1 and H ′1 are identical.
Thus dim u ∩ k ∩ h1 = dim u ∩ k ∩ h1 = 1 and the minimal K–type
is irreducible under restriction to KH′

1 . Now the same argument as in
lemma III.1 completes the proof. 2

Theorem IV.2. The restriction of Aq to H ′1 is a direct sum of irre-

ducible representations Aq∩h′
1
(λH′

1
⊗χn1

1 ⊗χ
n2)
2 , n1, n2 ∈ N. Their mini-

mal K∩H ′1 -types have highest weights (3+m1+m2+i, 3+m1+m2−i),
−m2 ≤ i ≤ m2. Each representation occurs with multiplicity one.

Proof: As in the previous section where we proved that the represen-
tations Aq∩h′

1
(λH′

1
⊗ χn1

1 ⊗ χn2
2 ), n1, n2 ∈ N appear in the restriction of

the Aq to H ′1
The K ∩ H ′1 -types of all unitary representations of GL(2,C) have

multiplicity one. If the minimal K∩H ′1 -type has highest weight l1e1 +
l2e2 − 2, then the highest weights of the other K ∩ H1” -types are
(l1 + j)e1 + (l2 + j)e2. Multiplicity considerations of K ∩H ′1-types of
Aq conclude the proof. 2
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Figure 5 shows the decomposition into irreducible representations.
The highest weights of the K ∩ H ′1–types of a composition factors lie
on the lines. For each highest weight there is exactly one composition
factor which has a K ∩H ′1–type with this weight as a minimal K ∩H ′1-
type.
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Figure 5

Corollary IV.3. Let V be an irreducible (h′1, (K ∩H ′1))–module. then

dim Homh′
1,K∩H′

1
(V,Aq) =∑

i

dim Hom(l∩h′
1),K∩H′

1∩L(H1(u ∩ h′1, V ), Si(u ∩ s′1)⊗ C]
H′

1
)

IV.2 All the H ′1-types Aq∩h′
1
(λH′

1
⊗χn1

1 ⊗χn2
2 ) of Aq are simply unitarily

induced principal series representations of GL(2,C).
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V. A conjecture

V.1 The examples in the previous section and the calculations in [11]
support the following conjecture: Let H be the connected fixpoint set
of an involution σ. We write again g = h ⊕ s. Let Aq(λ) be a rep-
resentation, which satisfies Kobayashi’s criterion and thus decomposes
discretely, when restricted to H. Suppose q, qh are defined by xo ∈ TH .
Since Aq = Ap if q and p are conjugate under the compact Weyl group
WK we use the following

Definition: Let yo ∈ TH and let p, pH be well aligned parabolic sub-
algebras defined by yo. We call the well aligned parabolic subalgebras
p, pH related to q, qH , if xo and yo are conjugate by an element in the
compact Weyl group WK of K with respect to T.

If xo and yo are not conjugate by an element in the Weyl group
WK∩H of (KH , TH) then the parabolic subalgebras qH , pH of H are not
conjugate in H and thus we have up to conjugacy at most WK/WH∩K
different pairs of well aligned pairs of θ - stable invariant parabolic
subalgebras which are related to q, qH . If G = SL(4,R), H = H1 and
(q, q ∩ h1) is the pair of well aligned parabolic subalgebras defined by
x0 = Q2, there there are at most 2 related pairs of well aligned parabolic
subalgebras.

We expect the following Blattner-type formula to hold for the re-
striction to H:

Conjecture There exists a pair p, pH of well aligned θ–stable para-
bolic subgroups related to q, qH so that every H-type V of Aq is of the

form ApH (µ) for a character µ of L̂H and that

dim Homh,KH (V,Ap) =∑
i

∑
j

(−1)s−jdim HomL∩H(Hj(u ∩ h, V ), Si(u ∩ s)⊗ CλH
)

Some of the characters µ in this formula may be out of the fair range
as defined in [7], but that nevertheless the examples discussed in [?]
show that there may still be unitary representationis so defined.

VI. An application to automorphic representations

We use here our results to give different construction of some au-
tomorphic representations of Sp(2,R) and GL(2,C). We first explain
the ideas in VI.1 in a more general setting. Again we may consider
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restrictions, this time in the obvious way of restricting functions on
locally symmetric spaces to subspaces.

VI.1 Assume first that G is a semisimple matrix group and Γ an arith-
metic subgroup, H a semisimple subgroup of G. Then ΓH = Γ ∩ H
is an arithmetic subgroup of H. Let Vπ ⊂ L2(G/Γ) be an irreducible
(g, K)-submodule of L2(G/Γ). If f ∈ Vπ then f is a C∞- function and
so we define fH as the restriction of f to H/ΓH .

Lemma VI.1. The map

RESH : Vπ → C∞(H/ΓH)

f → fH

is an (h, K ∩H)–map.

Proof: Let h, ho ∈ H . Then

ρ(h)f(ho) = f(h−1h0) = fH(h−1h0) = ρ(h)fH(ho).

2

Suppose that the irreducible unitary (g, K)- module π is a submodule
of L2(G/Γ) and that its restriction to H is a direct sum of unitary
irreducible representations.

Proposition VI.2. Under the above assumptions RESH(π) is nonzero
and its image is contained in the automorphic functions on H/ΓH .

�Proof: Let fH be a function in RESH(π). Then by section 1 it is
K ∩ H–finite and we may assume that it is an eigenfunction of the
center of U(h).

Let ||g||2 = tr(g∗g). Since supg∈G|F (g)| ||g||−r < ∞, the same is
true for fH and so fH is an automorphic function on H/ΓH .

The functions in the (g, K)- module π ⊂ L2(G/Γ) are eigenfunctions
of the center of the enveloping algebra U(g) and are K-finite, hence
analytic. Thus if f ∈ π ⊂ L2(G/Γ) then there exists W ∈ U(g) so that
Wf(e) 6= 0. Hence RESH(Wf) 6= 0. 2

VI.2 Now we assume that G′ = GL(4,R) and that Γ ⊂ GL(4,Z)
is a congruence subgroup. The groups Γ1 = Γ ∩H1 and Γ′1 = Γ ∩H ′1
are arithmetic subgroups of Sp(4,R), respectively GL(2,C). Recall
the definition of the (g′, K)- module Aq from II.1. It is a submodule
of L2(Z\G/Γ) for Γ small enough where Z the connected component
of the center of GL(4,R). We will for the remainder of this sections
consider it as an automorphic representation in the residual spectrum
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[17]. Then RESH1(Aq) and RESH′
1
(Aq) are nonzero. Its discrete

summands are contained in the space of automorphic forms.

Theorem VI.3. The discrete summands of the representation RESH1(Aq)
respectively RESH′

1
(Aq) are subrepresentations of the discrete spectrum

of L2(H1/ΓH1), respectively L2(H ′1/Γ
′
H1

).

Proof: All the functions in Aq decay rapidly at the cusps. Since the
cusps of H1/ΓH1 are contained in the cusps of G′/Γ this is true for the
functions in RESH1(Aq). Thus they are also contained in the discrete
spectrum. 2

For Sp(2,R) the representations constructed in the previous theorem
were first described by H. Kim, see [6]; see also [16]. For GL(2,C) we
obtain the stronger result

Theorem VI.4. The representations in the discrete spectrum of RESH′
1
(Aq)

are in the cuspidal spectrum of L2(H ′1/ΓH′
1
).

Proof: By IV.2 the representations in the discrete spectrum of RESH′
1
(Aq)

are unitarily induced principal series representations and so by a result
of Wallach they are in fact cuspidal representations. 2

The embedding of H ′1 = GL(2,C) into SL(4,R) is defined as follows:
Write g = A+ iB with real matrices A,B. Then

g →
(

A B
−B A

)
.

Thus ΓH′
1

is isomorphic to a congruence subgroup of GL(2, Z[i]).
Since all the representations in the discrete spectrum of the restric-

tion of Aq do have nontrivial (h, Kh)− cohomology with respect to some
irreducible finite dimensional nontrivial representation F we obtained
the well known result [2], [14]

Corollary VI.5. There exists a congruence subgroup Γ ⊂ GL(2, Z[i])
and a finite dimensional non-trivial representation F of GL(2, Z[i]) so
that

H i(Γ, F ) 6= 0 for i = 1,2
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