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Introduction.

Let Γ be a torsion free arithmetic subgroup of a semi simple Lie group G(R), K
a maximal compact subgroup, and X = G(R)/K the corresponding symmetric
space. Denote by Γ\X the associated locally symmetric space. The group
cohomology H∗(Γ,C) of the arithmetic group Γ coincides with the cohomology
H∗(Γ\X,C) of the topological space Γ\X . In this paper we use a geometric
approach to H∗(Γ\X,C) via modular symbols.

Suppose H ⊂ G is a Q–rational reductive subgroup such that K ∩H(R)
is maximal compact in H(R). Then the inclusion

H(R)/H(R) ∩K = XH → X

induces a map
j : Γ ∩XH\ −→ Γ\X.

∗Supported by NSF grant DMS-0090561
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Assume that Γ∩H\XH is a compact and oriented manifold. If a closed d–form
ω represents [ω] ∈ Hd(Γ\X∞,C), d = dimXH , then∫

Γ∩H\XH
j∗ω

is defined. This means that Γ ∩H\XH determines a map

Hd(Γ\X,C)→ C,

which is called the modular symbol attached to H . We drop the assumption
that H ∩ Γ\XH is compact and let [ϕ] be an element in the i–th cohomology
with compact supports Hi

c(Γ∩H\XH ,C) . Suppose that [ϕ] is represented by
a closed compactly supported i–form ϕ and that i + k = dimXH . Then [ϕ]
determines a map

Hk(Γ\X,C)→ C

by

[ω]→
∫

Γ∩H\XH
ϕ ∧ j∗ω

We call this map the modular symbol attached to ([ϕ], H) . If now Γ\X is
oriented we use Poincaré duality and identify the modular symbol ([ϕ], H) with
an element in H∗c (Γ\X,C). If we can find an ω such that ([ϕ], H)([ω]) 6= 0
then ([ϕ], H) is a nontrivial modular symbol.

It is as difficult to construct classes in H∗c (Γ\X,C) as it is to find classes in
H∗(Γ\X,C). However, if P is a proper Q–rational parabolic subgroup of G and
if we know a compactly supported i–form ϕ on Γ∩P\X the pseudo–Eisenstein
form

EP (ϕ) :=
∑

γ∈Γ/P∩Γ

(γ−1)∗ϕ

defines a class [EP (ϕ)] ∈ Hi
c(Γ\X,C) . We denote the map

Hi
c(Γ ∩ P\X,C)→ Hi

c(Γ\X,C)

induced from
ϕ 7−→ E(ϕ)

by corP . We view the class [E(ϕ)] ∈ Hi
c(Γ\X,C) by Poincaré–duality as a

linear map from HdimX−i(Γ\X,C) to C . We denote the map by (G, [EP (ϕ)])
and call it also a modular symbol.

In 2.2 we show that corP is the adjoint of the restriction map resP with
respect to Poincaré duality. Here resP is the map given by the covering j :
Γ ∩ P\X −→ Γ\X . Then 2.2 implies that∫

Γ\X
E(ϕ) ∧ ω =

∫
Γ∩Γ\X

ϕ ∧ j∗ω .
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The classes in
H∗(Γ\X,C)cc := ∩Pker (resP )

where P runs in the set of proper Q–rational parabolic subgroups are called
cohomologically cuspidal. We show in Theorem 2.5 that the space of cohomolog-
ically cuspidal classes is the the orthogonal complement with respect to Poincaré
duality of the subspace spanned by the modular symbols (G, [EP (ϕ)]).

In general it is difficult to see if [E(ϕ)] 6= 0 . In § 3 we investigate the
restriction of [E(ϕ)] to certain sub symmetric spaces. For this let P and Q be
proper standard parabolic subgroups. We consider the restriction resQ[EP (ϕ)]
of [EP (ϕ)] to the standard Levi component L(Q) of Q. It is shown in Theorem
3.7. that this restriction is a sum of Pseudo–Eisenstein classes attached to ϕ
with respect to parabolic subgroups whose Levi factors are conjugate to L(Q) .
The formula is similar to the classical formula for the Fourier coefficient along
Q of an Eisenstein series for P . There are however no convergence problems.

For Q = P and a cohomologically cuspidal form ϕ the formula for resP ◦
corP (ϕ) simplifies, see 3.14. and the image of resP ◦corP is determined in 3.15.
In particular we obtain a generalization of the result of A.Ash and A.Borel on
the non vanishing of the modular symbol attached to the fundamental class of
the Levi factor of a parabolic subgroup, see 3.17.

Since all sums in the construction of pseudo–Eisenstein classes are locally
finite we use in this paper algebraic methods. Crucial is the relation between
the cohomology with compact support and the cohomology with coefficients in
the Steinberg representations of G and its parabolic subgroups. The Steinberg
representation has been used already by Ash and Reeder in a related context,
see [A 2], [Re].

The results of the paper are independent of the ones in [R–Sp]. The transla-
tion of the analytical definition of corP which we have used in this introduction
and in [R–Sp] to the purely algebraic definition of corP in 2.1. is explained in
2.2 and 2.3.

In contrast to the introduction we work in the paper with a reductive group G
in the adelic context. Moreover we work with congruence subgroups Γ ⊂ G(Q)
of all levels at the same time, i.e. if for example G simply connected then
H∗(Γ\X,C) is replaced by lim

→
Γ⊂G(Q)

H∗(Γ\X,C) . We also consider more general

coefficient systems. In § 1 we recall the corresponding notation and results.

1 Preliminaries

In this chapter we fix our notation concerning adelic symmetric spaces and
their cohomology. In particular we describe Poincaré–duality, the connection
with Borel–Serre–duality and properties of the Steinberg representation of the
Q–rational points of an algebraic group. Details can be found in [B–S], [Ha 1,2],
[Re] and [Ro].
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1.1. Let G be a connected reductive group defined over Q of semi–simple
Q–rank ` > 0 . By K we denote a maximal compact subgroup of the group
G(R) of real points of G . We observe that G(R) is non compact. Let AG be
the connected component of 1 of the group of real points of a maximal central
Q–split torus of G . Put X∞ := G(R)/AGK . Endowed with the quotient
topology of the real Lie group G(R) then X∞ is a globally symmetric space.
Let Af ⊂ A be the finite adeles of the adele ring A over Q . We give G(Af )
the topology induced by the topology of Af . We define X := X∞×G(Af ) and
give X the product topology. We call X the adelic symmetric space attached
to G. The group G(Q) of Q–rational points of G acts by left translation freely
and discontinuously on X . We endow G\X =: SG with the quotient topology.
It is called the adelic locally symmetric space attached to G .

1.2 The space X∞ depends on the choice of the point x0 given by K . We
choose x0 such that the Levi components of all standard parabolic subgroups
are θx0–stable, where θx0 is the Cartan involution determined by K . To fix our
notation we recall the argument from [A–B: 4.2]. We fix a minimal Q–rational
parabolic subgroup B of G and a maximal Q–split torus S of G such that
S ⊂ B . Then B = Z(S)N where N is the unipotent radical of B and Z(S)
is the centralizer of S in G. All Levi subgroups of B(R) are B(R)–conjugate,
and given x ∈ X∞ there is exactly one Levi subgroup Lx ⊂ B(R) which is
θx–stable, where θx is the Cartan involution determined by x , see [B–S: § 1].
Hence if L(R) = Z(S)(R) there is a p ∈ B(R) such that L(R) = pLxp

−1 . We
choose x0 := px and see that L(R) is θx0–stable. But thenS(R)∩Kx0 = {1}
and θx0(t) = t−1 for all t ∈ S(R) .

Let 4 be the set of simple Q–roots with respect to (B,S) . If ψ ⊂ ∆ then
Sψ := (

⋂
α∈ψ kerα)0 is a torus and its centralizer Z(Sψ) is the Levi component

of the standard parabolic subgroup Z(Sψ)N = Pψ . It follows that Z(Sψ) is
defined over Q and that Z(Sψ)(R) is θx0–stable. We write θ = θx0 and x0

for the point (x0, 1) ∈ X = X∞ ×G(Af ) .

1.3 Let P ⊃ B be a standard parabolic subgroup of G with standard Levi
part LP . Let x0 ∈ X be as in (ii). We consider the orbit of the point xo under
LP (A) in the globally symmetric space X. We see that

XLP := (LP (R)/(LP (R) ∩K)AG)× LP (Af ) ∼−→ LP (A)x0.

Since LP (R) is θx0–stable, LP (R)/(LP (R)∩K)AG is a symmetric space and

S\LP := LP (Q)\XLP

is a locally symmetric space. Moreover the above isomorphism is a homeomor-
phism with respect to the natural topologies on both spaces and the orbit XLP

is a closed subspace of X . We have an induced continuous injection

S\LP −→ SG ,

It is known that the inclusion S\L −→ SG identifies LP (Q)/(LP (R)∩K)AG×
LP (Af ) with a closed subspace of SG . This follows as in [A 1: 2.7]. We call
S\LP the modular manifold attached to P .
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Let ALP be as in 1.1 for LP instead of G. We define the locally symmetric
space SLP by

SLP := (LP (Q)\LP (R)/(LP (R) ∩K)ALP )× LP (Af ).

We have a fibration f : S\LP → SLP with fibers isomorphic to ALP /AG .

1.4 Let V be a finite dimensional C–vector space and let ρ : G(C) −→
GL(V ) be a representation. Then V determines a locally constant sheaf Ṽ of
C–vector spaces with fibres V on SG . By H∗(SG, Ṽ ) we denote the smooth
sheaf cohomology of SG with coefficients Ṽ . The group G(Af ) acts by right
translation on SG and Hj(SG, Ṽ ) is a smooth G(Af )–module, i.e. if Kf runs
in the set of compact open subgroups of G(Af ) and if Hj(SG, Ṽ )Kf denotes
the Kf–invariants in Hj(SG, Ṽ ) then⋃

Kf

Hj(SG, Ṽ )Kf = H∗(SG, Ṽ ).

Moreover
Hj(SG, Ṽ )Kf = Hj(SG/Kf , Ṽ )

where SG/Kf is the topological quotient of SG by the Kf–action, Ṽ is the
local system on SG/Kf determined by V and Hj(SG/Kf , Ṽ ) is the sheaf–
cohomology of SG/Kf with coefficients in the sheaf Ṽ . One has a canonical
isomorphism of G(Af )–modules

Hj(SG, Ṽ ) ∼−→ Hj(G(Q), C∞(G(Af ), V )).

Here Hj(G(Q), C∞(G(Af ), V )) denotes the group cohomology of G(Q) acting
on C∞(G(Af ), V ) . If P is a proper Q–rational parabolic of G we also write Ṽ
for the locally constant sheaf with fibres V attached to V on SP := P (Q)\X ,
and one can see

Hj(SP , Ṽ ) = Hj(P (Q), C∞(G(Af ), V )) .

1.5 Let B be a minimal Q–rational parabolic subgroup of G . Let Z[H]
denote the group algebra of a group H . Then we have a natural projection

rP : Z[G(Q)/B(Q)] ∼= Z[G(Q)]⊗Z[B(Q)] Z −→ Z[G(Q)]⊗Z[P (Q)] Z .

By definition StG :=
⋂
P ⊂

+
B

ker rP , where P runs in the set of minimal

parabolic subgroups which contain B properly. Then StG is a G(Q)–module.
For the following remarks, see [Re: § 1].

The Steinberg representation StG does not depend on the choice of
B . One has

∑
w∈W (−1)|w|w =: τG ∈ StG , where |w| denotes the length of w
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in the Q–rational Weyl group W of G(Q) . Moreover τG generates StG as
B(Q)–module.

If P ⊃ B is a parabolic subgroup, then StP ⊂ Z[P (Q)/B(Q)] denotes the
Steinberg representation of P (Q). It coincides with the Steinberg representation
StLP (Q) of the standard Levi part LP of P and is generated as LP –module
by τP :=

∑
w∈WP

(−1)|w|w , where WP is the Q–rational Weyl group of
P (Q) or LP (Q) . The obvious surjection Z[G(Q)/B(Q)] −→ Z[P (Q)/B(Q)]
induces a P (Q)–linear surjection s(P,G) : StG −→ StP . Moreover, there is
a LP (Q)–linear section σ(G,P ) : StP −→ StG of s(P,G) which induces an
isomorphism

σP : Z[P (Q)]⊗LP (Q) StP
∼−→ StG

of P (Q)–modules. One has σP (1⊗ τP ) = τG .

1.6 By ω : G(R) → {±1} we denote the orientation character of G(R), i.e.
if g ∈ G(R) then ω(g) = 1 resp. ω(g) = −1 if left translation with g is
orientation preserving, resp. orientation reversing on X∞.

(i) We define

Hj
c (SG, Ṽ ) := Hj−`(G(Q), Hom(StG, C∞(G(Af ), V )))

where ` is the semi simple Q–rank of G . For motivation let Kf ⊂ G(Af ) be
an open and compact subgroup. Then

Hj
c (SG, Ṽ )Kf = Hj−`(G(Q), Hom(StG, C∞(G(Af )/Kf , V ))) .

We can write G(Af ) =
⋃k
i=1G(Q)aiKf , ai ∈ G(Af ) , as finite disjoint union.

Put Γi = G(Q)∩ aiKfa
−1
i and assume that Kf is so small that all Γi are

torsionfree. Then

Hj
c (SG, Ṽ )Kf =

k⊕
i=1

Hj−`(Γi, Hom(StG, V )) .

By Borel–Serre duality, [B–S: 15.1], and Poincaré–duality on the manifold
Γi\X∞ then

Hj
c (SG, Ṽ )Kf = Hj

c (SG/Kf , Ṽ ) .

where on the right side we have cohomology with compact supports of the man-
ifold SG/Kf with coefficients in the locally constant sheaf Ṽ given by the
G(Q) action on X/Kf .

(ii) We define

Hj
c (SP , Ṽ ) := Hj−`(P (Q), Hom(StP , C∞(G(Af ), V ))) .
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We write G(Af ) =
⋃h
t=1 P (Q)btKf , bt ∈ G(Af ) , as finite disjoint union. One

takes Kf as in (i). We get as in (i)

Hj
c (SP , Ṽ )Kf =

h⊕
t=1

Hj
c (ΓP,t\X∞, Ṽ ) = Hj

c (SP /Kf , Ṽ )

where on the right side we have cohomology with compact supports with co-
efficients in the locally constant sheaf determined by V on ΓP,t\X∞ and on
SP /Kf .

1.7. On SG and on SP Poincaré–duality holds. For this let V ∨ be the
contragredient representation of V . Then there is a non degenerate pairing

〈 , 〉G : Hj(SG, Ṽ )×Hd−j
c (SG, ω̃ ⊗ V ∨)→ C

which induces an isomorphism of smooth G(Af )–modules

Hd−j
c (SG, ω̃ ⊗ V ∨) ∼→ Hom∞C (Hj(SG, Ṽ ),C) .

Here d = dimX∞ and if M is a smooth G(Af )–module then Hom∞C (M,C)
denotes the smooth G(Af )–submodule of HomC(M,C). The corresponding
result holds for SP instead of SG.

2 Corestriction and modular symbols

Let P be a standard proper Q–rational parabolic subgroup of G . In [R–Sp]
we have attached to a class [ϕ] ∈ Hj

c (SP , Ṽ ) a class corP ([ϕ]) ∈ Hj
c (SG, Ṽ ) .

If a compactly supported V –valued differential form ϕ represents [ϕ] then
corP [ϕ] is represented by the differential form∑

G(Q)/P (Q)

g∗
−1
ϕ.

In this chapter we describe a group–cohomological construction of corP ([ϕ]) .
This algebraic description of corP [ϕ] has technical advantages, which will be
useful in § 3. Using Poincaré–duality we consider

corP ([ϕ]) ∈ Hom∞C (H∗(SG, ω̃ ⊗ V ∨),C) .

In 2.5 we determine the subspace of Hom∞C (H∗(SG, ω̃ ⊗ V ∨),C) which is gen-
erated by all modular symbols corP ([ϕ]).

2.1. (i) We recall that the map s(P,G) : StG −→ StP of the Steinberg
representations of G(Q) and P (Q) for a proper Q–rational parabolic subgroup
P is induced by the natural restriction map Z[G(Q)/B(Q)] −→ Z[P (Q)/B(Q)]
of free Z–modules generated by G(Q)/B(Q) resp. P (Q)/B(Q) . If t ∈ StG
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then s(P,G)(g−1(t)) 6= 0 only for finitely many classes gP (Q), g ∈ G(Q) , see
[Re: Lemma, p. 310].

(ii) Let 0 −→ C∞(G(Af ), V ) −→ A∗ be a resolution by G(Q) × G(Af )
modules, which are acyclic as G(Q)–modules and smooth as G(Af )–modules.
Then

Hj
c (SG, Ṽ ) ∼−→ Hj−`(G(Q), Hom(StG, C∞(G(Af ), V )))

is computed as j − `–th cohomology of the complex HomG(Q)(StG, A∗). If
C∗ −→ C −→ 0 is a resolution of C by projective G(Q)–modules, we can take
A∗ = HomC(C∗, C∞(G(Af ), V )). For the convenience of the reader we give an
explicite construction of A∗ . For this let VX∞ be the constant sheaf on X∞
with fibre V and denote by VX∞ −→ Ω∗ the standard resolution of VX∞ by
the complex of sheaves of smooth V –valued differential forms on X∞ . If C∞
denotes the sheaf of smooth C–valued functions on G(Af ) then the exterior
tensor product Ω∗�C is a resolution of VX := VX∞�C∞ on X = X∞×G(Af ),
by sheaves with G(Q)×G(Af )–action. Now X is paracompact and Ω0 � C∞
is a fine sheaf. Hence Ṽ −→ Ω∗ ⊗ C∞ =: B∗ is a soft resolution of VX ,
see [Go: II, 3.7.3]. Softness is a local property, see [Go: II 3.4.1], and G(Q)
acts freely and discontinuously on X . Hence the G(Q)–invariant direct image
f
G(Q)
∗ Bj is soft and f

G(Q)
∗ is an exact functor. Here f : X −→ G(Q)\X is the

natural projection. Therefore fG(Q)
∗ B∗ is a soft resolution of Ṽ = f

G(Q)
∗ VX . In

particular Hj(G(Q)\X, fG(Q)
∗ Bi) = Hj(G(Q), Bi(X)) = 0 if j ≥ 1. Here we use

a standard spectral sequence argument, see [Gr: 5.2.4]. Hence for Ai := Bi(X)
the resolution

0 −→ C∞(G(Af ), V ) −→ A∗

has the desired properties. Moreover, the same type of result holds if G is
replaced by P .

The cohomology Hj
c (SP , Ṽ ) is the j − `–th cohomology of the complex

HomP (Q)(StP , A∗). If

ϕ ∈ HomP (Q)(StP , Aj−`),

then
ϕ ◦ s(P,G) ∈ HomP (Q)(StG, Aj−`)

and by (i) ∑
G(Q)/P (Q)

g(ϕ ◦ s(P,G)) ∈ HomG(Q)(StG, Aj−`)

is well defined. The map

ϕ −→
∑

G(Q)/P (Q)

g(ϕ ◦ s(P,G))

induces a map denoted by

cor(G,P ) : Hj−`(P (Q), Hom(StP , C∞(G(Af ), V )))
−→ Hj−`(G(Q), Hom(StG, C∞(G(Af ), V ))).
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Hence
cor(G,P ) : Hj

c (SP , Ṽ ) −→ Hj
c (SG, Ṽ )

is defined. We recall that both cohomology groups are smooth G(Af )–modules
and that cor(G,P ) is automatically a map of G(Af )–modules. By

res(P,G) : H∗(SG, Ṽ ) −→ H∗(SP , Ṽ )

we denote the restriction map induced by natural surjection SP → SG . For
short we write cor(P,G) = cor and res(P,G) = res .

2.2. Proposition. The map cor(P,G) is the adjoint of res(P,G) with respect
to Poincaré–duality on SG and SP , i.e. if [ϕ] ∈ H∗c (SP , Ṽ ) and [ψ] ∈
H∗(SG, ω̃ ⊗ V ∨) then

〈cor[ϕ], [ψ]〉G = 〈[ϕ], res[ψ]〉P .

Proof. We use 1.6 to reduce the claim to the corresponding one where SG is
replaced by a finite union of connected oriented locally symmetric manifolds of
the form Γ\X for an arithmetic group Γ , and where SP is replaced by Γ∩P\X.
Together with the isomorphisms in 1.6 the claim in this situation follows from
[Re: 4.9 (1)]. q.e.d.

Next, we indicate the connection of the definition of cor with the one used
in [R – Sp].

2.3. Let ψ ⊂ ∆ be a set of simple Q–roots and assume that P := Pψ is the
standard parabolic subgroup of type ψ with Levi part Z(Sψ) , see 1.2. For each
place v of Q then α ∈ ∆−ψ defines a homomorphism αv : Sψ(Qv) −→ Q∗v,
where Qv is the completion of Q with respect to the normalized norm || ||v
attached to v . Put |α|v(t) = ||α(t)||v, t ∈ Sψ(Qv) . Then |α|v extends to
a homomorphism |α|v : Pψ(Qv) −→ R∗>0 = {r ∈ R, s > 0} which is trivial
on NP (Qv) . We define |α| : Pψ(A) −→ R∗>0 by |α|(p) =

∏
v |α|v(pv) if

p = (· · · , pv, · · ·) ∈ Pψ(A) . We use the product formula for the norms || ||v
and see that |α| is trivial on P (Q) . Of course |α| is trivial on all compact
subgroups of P (A) . We chose a compact and open subgroup Kf ⊂ G(Af ) such
that P (A)K∞Kf = G(A) . This is possible since it is locally possible. Now we
can extend |α| to a smooth map again denoted by |α| : G(A) −→ R∗>0 such
that |α|(au) = |α|(a) for all a ∈ P (A), u ∈ K∞Kf . By construction |α| is a
smooth function |α| : X −→ R∗>0 which does not depend on the choice of Kf .
The maps |α| for α ∈ ∆ − ψ induce a smooth map p1 : X −→

∏
∆−ψ R∗>0 .

We put X(1) := {x ∈ X|p1(x) = 1} and get a decomposition

X
∼−→

∏
∆−ψ

R∗>0

×X(1).
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We choose an order {α1, . . . , α`} = ∆ of the simple roots. Then ∆ − ψ =
{αi1 , · · ·αi`(P )}, `(P ) = |∆ − ψ|, where ij > ik for j > k . Now da :=
d|αi1 | ∧ · · · ∧ d|αi`(P ) | is a `(P )–form on X . Put

e[P ](1) := P (Q)\X(1)

and denote by p2 : SP −→ e[P ](1) the obvious projection.
Let f :

∏
∆−ψ R∗>0 −→ R>0 be a smooth compactly supported function

such that
∫
f(t1, · · · , t`(P ))dt1 ∧ . . . ∧ dt`(P ) = 1 and put for x ∈ SP

ωP (x) = f(p1(x))da(x).

Then ωP is a smooth `(P )–form on SP . Given a compactly supported V –valued
differential form ϕ on e[P ](1) then

E(ϕ) :=
∑

g∈P (Q)\G(Q)

g∗−1(ωP ∧ p∗2ϕ)

is a smooth compactly supported form on SG . The map ϕ 7−→ ωP ∧p∗2ϕ induces
an isomorphism

Hj−`(P )
c (e[P ](1), Ṽ ) ∼−→ Hj

c (SP , Ṽ ).

It follows then from [R–Sp: 2.2.] and 2.2 that

cor([ωP ∧ p∗2ϕ]) = [E(ϕ)].

2.4 (i) We define
Hj(SG, Ṽ )cc = ∩P ker res(P,G),

where P runs in the set of all proper Q–rational parabolic subgroups of G. Ob-
viously here it suffices to take the intersection over all proper standard maximal
parabolic subgroups of G.

Let e[P ] be the face determined by P in the Borel–Serre boundary ∂(SG) of
the Borel–Serre compactification SG of SG and suppose that the differential form
ϕ is representing the cohomology class [ϕ]. The restriction of [ϕ] ∈ Hj(SG, V )
to the face e[P ] is determined by the constant Fourier coefficient ϕP along
the unipotent radical of P, see [Sch: § 4]. Now the form ϕ is called cuspidal if
ϕP is zero for all proper Q–rational parabolic subgroups P. In analogy we call
[ϕ] cohomologically cuspidal if all [ϕP ] represent a trivial cohomology class on
the face e[P ] of the Borel Serre compactification. We use the subscript cc to
indicate the the subspace of cohomologically cuspidal classes.

We observe that the image Hj
! (SG, Ṽ )) of the cohomology with compact

supports Hj
c (SG, Ṽ ) in Hj(SG, Ṽ ) is contained in Hj(SG, Ṽ )cc . The space

Hj
! (SG, Ṽ )\Hj(SG, Ṽ )cc

usually is called a space of ghost classes.
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(ii) Let V ∨ be the contragredient representation to V. Define C to be the sub-

space of H∗c (SG, ω̃ ⊗ Ṽ ∨) spanned by all cor(G,P )(ϕ), ϕ ∈ H∗c (SP , ω̃ ⊗ V ∨), P
proper parabolic in G .

(iii) If Γ ⊂ G(Q) is an arithmetic group and if H ⊂ G is a subgroup, which
is defined over Q , we choose a maximal compact subgroup K ⊂ G(R) such
that K ∩H(R) is maximal compact in H(R) . Then the inclusion of symmetric
spaces

H(R)/K ∩H(R) =: (XH)∞ ↪→ X∞ = G(R)/K

induces a map
j : Γ ∩H\(XH)∞ → Γ\X∞ .

Assume that Γ∩H\(XH)∞ is compact. If d = dim(XH)∞ and a closed d–form
ω represents [ω] ∈ Hd(Γ\X∞,C), then

∫
Γ∩H\(XH)∞

j∗ω is defined. This means
that Γ∩H\(XH)∞ determines a map Hd(Γ\X,C) −→ C, which is called the
modular symbol attached to H . We drop the assumption that H ∩Γ\(XH)∞ is
compact and let [ϕ] ∈ Hi

c(Γ ∩H\(XH)∞,C) . If [ϕ] is represented by a closed
compactly supported i–form ϕ and k = dim (XH)∞− i , then [ϕ] determines
a map Hk(Γ\X,C) −→ C by

[ω] −→
∫

Γ∩H\(XH)∞

ϕ ∧ j∗ω.

As in the introduction we call this map the modular symbol attached to ([ϕ], H) .
Similarly for cohomology with coefficients. By Poincaré duality we consider
cor(P,G)([ϕ]) as defined in 2.1 (ii) as element of Hom∞C (H∗(SG, Ṽ ),C) . Then
2.2 gives the motivation also to call this map a modular symbol. The next result
describes the space generated by these modular symbols.

2.5. Theorem. There is a natural isomorphism of G(Af )–modules

C ∼→ Hom∞C (H∗(SG, Ṽ )/H∗(SG, Ṽ )cc,C))

which sends cor(G,P )([ϕ]) ∈ C to the map

(G, cor(G,P )([ϕ])) : H∗(SG, V )→ C

given by
(G, cor(G,P )([ϕ]))([ψ]) = 〈cor(G,P )([ϕ]), [ψ]〉G

Here [ϕ] ∈ H∗c (SP , ω̃ ⊗ V ∨) , [ψ] ∈ H∗(SG, V ), and 〈 , 〉G is the pairing given
by Poincaré–duality.

Proof. By Poincaré–duality we have a non degenerate pairing

〈 , 〉G : H∗c (SG, ω̃ ⊗ V ∨)×H∗(SG, Ṽ )→ C

11



which identifies H∗c (SG, ω̃ ⊗ V ∨) with the smooth dual of H∗(SG, Ṽ ) . Let

C⊥ :=
{

[ψ] ∈ H∗(SG, Ṽ ) | 〈[m], [ψ]〉G = 0 for all [m] ∈ C
}
.

Since [m] ∈ C can be written as a finite sum [m] =
∑
P cor(G,P )([ϕP ]) where

[ϕP ] ∈ H∗c (SP , ω̃ ⊗ V ∨) and P runs over all proper parabolic subgroups. We
have by 2.2

〈[m], [ψ]〉G =
∑
P

〈 cor(G,P )([ϕP ]), [ψ]〉G =
∑
P

〈[ϕP ], res(P,G)[ψ]〉P .

By Poincaré duality on SP we deduce that [ψ] ∈ C implies res(P,G)[ψ] = 0
for all P , i.e. [ψ] ∈ H∗(SG, Ṽ )cc . It follows that the map in 2.5. induces an
injection

C −→ Hom∞C (H∗(SG, Ṽ )/H∗(SG, Ṽ )cc,C) .

Let α ∈ ∆ and denote by Pα the maximal standard parabolic subgroup of
G given by {α} ⊂ ∆ . Then we have an inclusion

⊕α resPα : H∗(SG, Ṽ )/H∗(SG, Ṽ )cc ↪→ ⊕α∈∆H
∗(SPα , Ṽ ),

see 2.4 (i). Let λ ∈ Hom∞C (H∗(SG, Ṽ )/H∗(SG, Ṽ )cc,C) . Then we can extend
λ to a smooth map λ′ : ⊕α∈∆H

∗(SPα , Ṽ ) → C . By Poincaré–duality on the
SPα there are [ϕα] ∈ H∗c (Pα, ω̃ ⊗ V ∨) such that for [ξ] ∈ H∗(SG, V )

λ(ξ) = λ′([ξ]) =
∑
α∈∆

〈[ϕα], res(Pα, G)[ξ]〉Pα .

Then
λ([ξ]) =

∑
α∈∆

〈 cor(G,Pα)([ϕα]), [ξ]〉G

Hence λ is the image of [m] =
∑
α∈∆ cor(G,Pα)([ϕα]) ∈ C . q.e.d.

Theorem 2.5. means that all cohomology classes with non trivial restriction
to faces of the Borel–Serre boundary can be detected by modular symbols in
C . This applies in particular to the classes which are constructed as values of
Eisenstein series in [Sch].

3 Algebraic Restriction of the Cohomology with
compact support and Modular Symbols

Let Q be a Q–rational parabolic subgroup of G. The restriction map to Q
in group cohomology induces the algebraic restriction

resc(Q,G) : Hj−`(G(Q),Hom(StG, (C∞(G(Af ), V )))
→ Hj−`(Q(Q),Hom(StG, C∞(G(Af ), V ))).

12



In 3.2 we give a topological interpretation of

Hj−`(Q(Q),Hom(StG, C∞(G(Af ), V ))).

As main result we show in 3.7 that the algebraic restriction of cor(G,P )([ϕ])
is essentially a sum of modular symbols coming from modular submanifolds of
Weyl–group conjugates of LQ . In 3.16 we discuss the relationship between the
algebraic restriction and the usual geometrically defined restriction.

3.1. To fix our notation, we recall some properties of induction. Here P is a
parabolic subgroup with Q–rational Levi part LP and unipotent radical NP .
If no confusion is possible we will drop the subscript P. Let E be a smooth
L(Af )–module.

We denote by IndG(Ff )

L(Af )E the set of maps ϕ : G(Af ) → E such that for
every ϕ there is an open and compact subgroup Kf of G(Af ) so that for all
` ∈ L(Af ), a ∈ G(Af ), u ∈ Kf we have ϕ(`au) = `ϕ(a). Let G(Af ) act on ϕ
by right–translation.

The assignment
E → IndG(Af )

L(Af )E

induces an exact functor from the category of smooth left L(Af )–modules to
the category of smooth G(Af )–modules. If E is a L(Q)×L(Af ) module then
IndG(Af )

L(Af )E is a L(Q)×G(Af )–module. Here for ` ∈ L(Q) the action of ` on

ϕ ∈ IndG(Af )

L(Af )E is defined by `ϕ(a) = `ϕ(a) . We will apply this functor to the
module

E := C∞(L(Af ), V ),

where `× b ∈ L(Q)× L(Af ) acts on ψ ∈ C∞(L(Af ), V ) by

(`, b)ϕ(a) = `ψ(`−1ab), a ∈ L(Af ) .

3.2. Lemma Let ` be the Q–rank of G and P,L,N be as above.

(i) The G(Af )–modules Hj−`(P (Q), Hom(StG, C∞(G(Af ), V ))) and
Hj−`(L(Q), Hom(StL, C∞(G(Af ), V ))) are isomorphic.

(ii) The G(Af ) –modules Hj−`(P (Q), Hom(StG, C∞(G(Af ), V ))) and
IndG(Af )

L(Af )H
j
c (S\L, Ṽ ) are isomorphic.

Proof: Since
StG

∼−→ Z[P (Q)]⊗Z[L(Q)] StL

as P (Q)–modules, see 1.5, the first claim follows from Shapiro’s Lemma for
group cohomomology.

To prove the second claim, we investigate Hj
c (S\L, Ṽ ) . The connected com-

ponent AL of the set of real points of the maximal Q–split central torus of L
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can be written as AG ×A′P , where A′P
∼−→ R∗`(P )

>0 and where `− `(P ) is the
semisimple Q–rank of L. Since AG acts trivially on XL∞ ⊂ X∞ we get a
fibration f : S\L −→ SL with fibres A′P . Hence there is a spectral sequence

Hi
c(SL, R

jf!Ṽ ) =⇒ Hi+j
c (S\L, Ṽ ) .

Since A′P is isomorphic to R`(P ) we get for j < `(P ) Rjf!Ṽ = 0. With
respect to a choice of an orientation on A′P we see R`(P )f!Ṽ

∼−→ Ṽ where now
Ṽ is the locally constant sheaf on SL determined by the representation of L
on V. Hence

Hj−`(P )
c (SL, Ṽ ) ∼−→ Hj

c (S\L, Ṽ ).

Now we apply Borel–Serre duality for the reductive group L , see 1.6, and
get

Hj−`(P )
c (SL, Ṽ ) ∼−→ Hj−`(L(Q),Hom(StL, C∞(L(Af ), V ))) .

By induction in stages we have

C∞(G(Af ), V ) = C∞L(Af )(G(Af ), C∞(L(Af ), V )) = IndG(Af )

L(Af )C
∞(L(Af ), V ).

Since IndG(Af )

L(Af ) is an exact functor, the second claim holds. q.e.d.

3.3. Remarks. (i) The isomorphism in 3.2 (ii) depends on the choice of
an orientation on A′P , i.e. it is unique up to a sign. Since P is a standard
parabolic subgroup this sign can be fixed by a choice of the order of the simple
Q–roots, see 2.3.
(ii) If Q is an arbitrary parabolic subgroup, there exists a standard parabolic
subgroup P and a g ∈ G(Q) such that Q = gPg−1 . We put LQ := gLP g

−1 .
Then A′Q = gA′P g

−1 and g is unique up to p ∈ P (Q) . But P (R) fixes the
orientation on AP . Hence the isomorphism in 3.3 (ii) is uniquely determined
by a choice of the order of the simple Q–roots of G . We will apply this to the
parabolic group w−1

Q,w ∈W , with θ–stable Levi–part Lw−1Q .

(iii) With 3.2 (ii) and 3.16 the algebraic restriction map resc(P,G) can be
interpreted as an Oda–restriction map to the modular manifold S\P , see [C–V].

3.4. (i) Let Q be a proper standard Q–rational parabolic subgroup of G .
Then the closed embedding

P ∩ Lw−1Q(Q)\X(Lw−1
Q

) ↪→ SP

induces a map of cohomology with compact supports. We will describe a version
of this map directly in group–theoretical terms, i.e. we define a natural map of
complexes of G(Af )–modules

res(P ∩ Lw−1Q, P ) : HomP (Q)(StP , A∗)

→ HomP∩Lw−1
Q

(Q)
(StP∩Lw−1

Q
, A∗),

14



where 0 → C∞(G(Af ), V ) → A∗ is a resolution by G(Q) ×G(Af ) modules,
which are acyclic as G(Q)–modules and smooth as G(Af )–modules.

To simplify the notation we write Q in this section instead of w−1
Q, i.e. Q

is not necessarily a standard parabolic subgroup but one which contains a fixed
Q split torus S , see 1.2.

For the translation of this map to the topological setting see also remark
3.16 (i).

(ii) Now Hj
c (SP , Ṽ ) is computed as j − ` the cohomology of the complex

HomP (Q)(StP , A∗). Let NP (Q) be the set of Q–rational points of the unipotent
radical NP of P . Denote by (A∗)NP the set of NP (Q)–invariants of A∗ . Since
StP is a trivial NP (Q)–module we have the isomorphism

HomP (Q)(StP , A∗)
∼→ HomLP (Q)(StLP , (A

∗)NP ).

We use that as P–modules StG
∼→ Z[P (Q)]⊗Z[LP (Q)] StLP , see 1.5, to get an

isomorphism

HomP (Q)(StP , A∗)
∼−→ HomP (Q)(StG, (A∗)NP ))

given by
ϕ 7−→ ϕ ◦ s(P,G).

We have the LQ(Q)–linear map

σ(G,Q) : StLQ −→ StG

and the LP∩LQ(Q)–linear map

σ(LQ, P ∩ LQ) : StLP∩LQ −→ StLQ ,

where LP∩LQ = LP ∩ LQ is a Levi part of the parabolic subgroup P ∩ LQ .
For ϕ ∈ HomP (Q)(StP , A∗) we consider the map

ψ := ϕ ◦ s(P,G) ◦ σ(G,Q) ◦ σ(LQ, P ∩ LQ)

in HomLP (Q)∩LQ(Q)(StLP (Q)∩LQ(Q), (A∗)NP ). The unipotent radical of the parabolic
subgroup P ∩ LQ is contained NP , see [H–Ch: Lemma 2, a)]. Hence ψ is
contained in

Hom(P∩LQ)(Q)(StP∩LQ , A
∗) .

We now replace Q by w−1
Q , where Q is a standard parabolic subgroup and

we see that res(P ∩ Lw−1Q, P ) is defined.
(iii) The map induced by res(P ∩Lw−1Q, P ) in group cohomology is denoted

by resc(P ∩Lw−1Q, P ). By the considerations in 3.2. its target space is identified
with

IndG(Af )

Lw−1
Q

(Af )H
∗
c ((P ∩ Lw−1Q)(Q)\XLw−1

Q
, Ṽ )
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3.5. We proceed as in 2.1 and using the map

ϕ 7−→
∑

g∈Lw−1
Q

(Q)\(P (Q)∩Lw−1
Q

(Q)

g(ϕ ◦ s(P ∩ Lw−1Q, Lw−1Q))

for ϕ ∈ HomP (Q)∩Lw−1
Q

(Q)(StP∩Lw−1
Q
, A∗) we define a map cor(Lw−1Q, P ∩

Lw−1Q)) from

Hj−`(P (Q) ∩ Lw−1Q(Q), Hom(StP∩Lw−1
Q
, C∞(G(Af ), V )))

to
Hj−`(Lw−1Q(Q), Hom(StLw−1

Q
, C∞(G(Af ), V ))).

We use 3.2 and see that the target space of cor(Lw−1Q, P ∩Lw−1Q) is identified
with

Hj−`(w
−1
Q(Q), Hom(StG, C∞(G(Af ), V ))).

3.6. For w ∈W let nw represent w in the rational points of the normalizer
N(S) of the torus S . Let ϕ ∈ Homw−1Q(Q)(StG, A

∗) and define

T (w)ϕ ∈ HomQ(Q)(StG, A∗)

by
(T (w)ϕ)(s) = nwϕ(n−1

w s) =: wϕ(s) .

Here s ∈ StG . We notice that wϕ = T (w)ϕ does not depend on the choice of
nw . We use 3.2 and see that T (w) defines a map

T (w) : IndG(Af )

Lw−1
Q

(Af )H
∗
c (S\Lw−1

Q

, Ṽ ) −→

−→ IndG(Af )

LQ(Af )H
∗
c (S\LQ , Ṽ ) .

Finally we can formulate the main result of this chapter

3.7. Theorem. Let P and Q be standard Q–rational proper parabolic
subgroups of G . Then

resc(Q,G) ◦ cor(G,P )

and ∑
w∈WQ\W/WP

T (w) ◦ cor(Lw−1Q, P ∩ Lw−1Q) ◦ resc(P ∩ Lw−1Q, P )

are equal in Hom(H∗c (SP , Ṽ ), IndG(Af )

LQ(Af )H
∗
c (S\Q, Ṽ )).
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Proof. Let [ϕ] ∈ Hj
c (SP , Ṽ ) be represented by ϕ ∈ HomP (Q)(StP , Aj−`). We

use 1.5, 2.1 and the definition of resc to deduce that resc(Q,P ) ◦ cor(G,P )([ϕ])
is represented by

ψ :=
∑

g∈G(Q)/P (Q)

g(ϕ ◦ s(P,G)) ◦ σ(G,Q)) .

Since this map is LQ(Q)–linear and since StLQ is generated by τQ as LQ(Q)–
module the map ψ is determined by its value at τQ . Since σ(G,Q)(τQ) = τG
we have to compute ∑

G(Q)/P (Q)

g(ϕ ◦ s(P,G))(τG).

Now
g(ϕ ◦ s(P,G))(τG) = gϕ(s(P,G)(g−1τG)) = 0

unless g−1 = pn−1
u where p ∈ P and u−1 ∈ W, see [Re: Lemma, p. 310]. If

g−1 = pn−1
u then g = nup

−1 and since ϕ and s(P,G) are P–linear, since
s(P,G)(τG) = τP and uτG = (−1)|u|τG we get

gϕ(s(P,G)(g−1τG) = (−1)|u|nuϕ(τP ) .

Hence
ψ(τQ) =

∑
W/WP

w(ϕ ◦ s(P,G))(τG).

Next we investigate

[φ] := T (w) ◦ cor(Lw−1Q, P ∩ Lw−1Q) ◦ resc(P ∩ Lw−1Q, P )([ϕ]).

For ϕ ∈ HomP (Q)(StP , A∗) we put

ψ := ϕ ◦ s(P,G) ◦ σ(G,Lw−1Q) ◦ σ(Lw−1Q, P ∩ Lw−1Q) .

We use 3.2 ii, 3.4, 3.5 and 3.6 to deduce that [φ] is represented by

w

 ∑
q∈Lw−1

Q
(Q)/P (Q)∩Lw−1

Q
(Q)

q(ψ ◦ s(P ∩ Lw−1Q, Lw−1Q)) ◦ s(w
−1
Q,G)


in HomQ(Q)(StG, A∗). Since this map is Q(Q)–linear and since StG is generated
as Q(Q)–module by τG it suffices to compute the value of the map at τG . We
have w−1τG = n−1

w τG = (−1)|w|τG and s(w
−1
Q,G)(τG) = τw−1Q and thus we

deduce that φ(τG) is equal to

(−1)|w|nw
∑

q∈Lw−1
Q

(Q)/P (Q)∩Lw−1
Q

(Q)

q(ψ ◦ s(P ∩ Lw−1Q, Lw−1Q))(τw−1Q).
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We use again [Re: p. 310] and see that q(ψ ◦ s(P ∩Lw−1Q, Lw−1Q))(τw−1Q) = 0
unless q−1 = pn−1

v , where p ∈ P (Q) ∩ Lw−1Q(Q) and where nv represents
v ∈Ww−1Q . If q−1 = pn−1

v then

s(P ∩ Lw−1Q, Lw−1Q)(q−1τw−1Q) = (−1)|v|nvp(τP∩Lw−1
Q

)

and we get

q(ψ ◦ s(P ∩ Lw−1Q, Lw−1Q))(τw−1Q) = (−1)|v|nvψ(τP∩L(w−1Q)).

Hence

φ(τG) = (−1)|w|nw
∑

v∈Ww−1
Q

(−1)|v|nvϕ(τP )

=
∑
v∈WQ

(−1)|v|(−1)|w|nvnwϕ(τP )

=
∑
v∈WQ

vw(ϕ ◦ s(P,G))(τG).

Since
W/WP =

⋃
w∈WQ\W/WP

WQw

as disjoint union our claim holds. q.e.d.

3.8. Remarks. (i) The cohomology H∗(P (Q),Hom(StG, C∞(G(Af ), V ))) is
analogous to the cohomologyH∗(P (Q), C∞(G(Af ), V )), which can be identified
with the cohomology of the face e[P ] attached to P of the Borel–Serre boundary
of SP . We view cor(G,P )(ϕ) as a version of the Eisenstein–series construction.
Then the formula 3.7. is similar to the formula for the restriction of Eisenstein
classes to faces of the boundary.

(ii) The formula in 3.7 tells, that the restriction to Q of the modular symbol
(G, cor(G,P )([ϕ])) is a sum over WQ\W/WP of conjugates of modular symbols
for the groups Lw−1Q, w ∈WQ\W/WP . The definition of the involved maps and
the formula 3.7 hold over arbitrary rings. However the topological interpretation
involving IndG(Af )

LQ(Af ) requires that the ring over which the representation V is
defined contains Q .

(iii) We have worked throughout in the group–cohomological setting with
coefficients C∞(G(Af ), V ) . This has the advantage that the G(Af )–module
structure is gotten for free and more important that thanks to the occurrence
of the Steinberg representation we can check 3.7 on the level on complexes. The
complex HomP (Q)(StG, A∗) contains information on the vanishing of restrictions
to S\LQ of cocycles which in an argument with compactly supported differential
forms is not easily accessible. For G = GL2|Q a look of the computation in
[R–Sp I: § 4] will explain the technical problem.
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3.9. (i) Let P be a standard parabolic subgroup. We saw in 3.2 that

Hj−`(P (Q),Hom(StG, C∞(G(Af ), V )))

and
Hj−`(LP (Q), Hom(StLP , C

∞(G(Af ), V )))

are isomorphic. If R ⊂ LP is a proper Q–rational parabolic subgroup we have
the restriction map

resc(R,LP ) : Hj−`(LP (Q), Hom(StLP , C
∞(G(Af ), V )))

−→ Hj−`(R(Q),Hom(StLP , C
∞(G(Af ), V ))).

As in section 2.4 we define

Hj−`(LP (Q), Hom(StLP , C
∞(G(Af ), V )))cc :=

⋂
R

ker(res(R,LP ))

where R runs in the set of proper Q–rational parabolic subgroups of LP .

(ii) We define the restriction

resc(LP , P ) : Hj−`(P (Q),Hom(StP , C∞(G(Af ), V )))
→ Hj−`(LP (Q), Hom(StLP , C

∞(G(Af ), V ))).

by the map

Hj−`(P (Q),Hom(StP , C∞(G(Af ), V )))
−→ Hj−`(P (Q), Hom(StG, C∞(G(Af ), V )))

induced by s(P,G). and 3.2(i) Denote by

Hj−`(P (Q), Hom(StP , C∞(G(Af ), V ))cc

the preimage under resc(LP , P ) ofHj−`(LP (Q),Hom(StLP , C
∞(G(Af ), V )))cc.

This space corresponds with respect to the isomorphism

Hj
c (SP , Ṽ ) = Hj−`(P (Q),Hom(StP , C∞(G(Af ), V )))

to a G(Af )–submodule Hj
c (SP , Ṽ )cc which is called the submodule of coho-

mologically cuspidal classes.
(iii) Now R′ := RNP ⊂ P is a parabolic subgroup contained in P, and

HomR(Q)(StLP , (A
∗)NP ) = HomR′(Q)(StP , A∗).

The map R −→ R′ defines a bijection between the set of proper Q–rational
parabolic subgroups of LP with the set of proper Q–rational parabolic subgroups
contained in P , see [H–Ch: Lemma 2]. If now R′ ⊂ P we have a restriction
map

res(R′, P ) : Hj−`(P (Q), Hom(StP , C∞(G(Af ), V )))
−→ Hj−`(R′(Q), Hom(StP , C∞(G(Af ), V )))
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and one can see
Hj
c (SP , Ṽ )cc =

⋂
R′⊂P

ker(resc(R′, P )) ,

where R′ runs in the set of all proper Q–rational parabolic subgroups con-
tained in P. Hence we see, that Hj

c (SP , Ṽ )cc is defined in complete analogy to
Hj(SG, Ṽ )cc .

3.10. (i) Let NB be the unipotent radical of the minimal Borel subgroup
B ⊂ P . Then P ∩Lw−1QNB =: P ′ ⊂ P is a parabolic subgroup of P and since
NB ⊂ P we have P ′ ∩ Lw−1Q = P ∩ Lw−1Q. Using 3.4., 3.5. and 3.9. (iii) we
deduce the equality of

cor(Lw−1Q, P ∩ Lw−1Q) ◦ resc(P ∩ Lw−1Q, P )

and
cor(Lw−1Q, P

′ ∩ Lw−1Q) ◦ resc(P ′ ∩ Lw−1Q, P
′) ◦ resc(P ′, P ).

(ii) Let P,Q be standard parbolic subgroups of the same rank, i.e. dimAP =
dimAQ . Then it follows from [H–Ch: Lemma 29] that P ∩L(w

−1
Q) is a proper

parabolic subgroup of L(w
−1
Q) unless w−1

AQ = AP .

If w−1
AQ = AP then P and Q are called associate parabolic subgroups. If

P = Q it follows that w ∈W (AP ), where W (AP ) is the subgroup of elements
of W which can be represented in the Q–rational points N(AP )(Q) of the
normalizer N(AP ) of AP in G .

3.11. In 3.7 we have defined an isomorphism

T (w) : Homw−1P (Q)(StG, A
∗) ∼−→ HomP (Q)(StG, A∗)

Assume now that w ∈ W (AP ) . If L = LP then wL = L and StG
∼−→

Z[wP (Q)]⊗Z[L(Q)] StL . Hence

Homw−1P (Q)(StG, A
∗) ∼= HomL(Q)(StL, A∗)

and we see that T (w) corresponds to an isomorphism HomL(Q)(StL, A∗) −→
HomL(Q)(StL, A∗), where

ϕ→ T (ω)ϕ = (−1)|w| wϕ .

Recall that here wϕ(s) is defined by nwϕ(n−1
w s) for s ∈ StL, nw ∈ N(AP )(Q)

and that nw : StL → StL maps τL to τL and if ` ∈ L(Q) it maps ` · τL to
nw`n

−1
w · τL.

Let now ϕ ∈ IndG(Af )

L(Af )H
j
c (S\L, Ṽ ) . Then

ϕ : G(Af ) −→ Hj
c (S\L, Ṽ )

is an L(Af )–equivariant map. Let a ∈ G(Af ) . Then ϕ(a) ∈ Hj
c (S\L, Ṽ ) and

(wϕ)(a) = nw(ϕ(n−1
w a)) is well defined, where nw denotes the map

Hj
c (S\L, Ṽ ) −→ Hj

c (S\L, Ṽ )
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given by conjugation with nw . Hence we see:

3.12. Corollary. If [ϕ] ∈ Hj
c (SP , Ṽ )cc then

resc(P,G) ◦ cor(G,P )([ϕ]) =
∑

w∈W (AP )

(−1)|w| w(resc(LP , P )([ϕ])).

We denote by sign the 1–dimensional representation of W (AP ) , where
w ∈W (AP ) acts by multiplication with (−1)|w| . Then we get:

3.13. Corollary. The G(Af )–modules

resc(P,G) ◦ cor(G,P )(H∗c (SP , Ṽ )cc)

and
((resc(LP , P )(H∗c (SP , Ṽ )cc))⊗ sign)W (AP )

coincide.

3.14. Remark. The following considerations will make the content of 3.13
more transparent: We investigate the map

resc(LP , P ) : Hj(P (Q), Hom(StP , C∞(G(Af ), V )))
→ Hj(P (Q), Hom(StG, C∞(G(Af ), V ))).

Since C∞(G(Af ), V ) = IndG(Af )

P (Af )C
∞(P (Af ), V ) and IndG(Af )

P (Af ) is an exact
functor we only have to consider the map

resc(LP , P )1 : Hj(P (Q), Hom(StP , C∞(P (Af ), V )))
−→ Hj(P (Q),Hom(StG, C∞(P (Af ), V ))).

Using the Hochschild–Serre spectral sequence we get for j = r + s maps

Hr(L(Q), Hs(NP (Q),Hom(StP , C∞(P (Af ), V ))))
→ Hr(LP (Q), Hs(NP (Q), Hom(StG, C∞(P (Af ), V )))).

Since StG ∼= Z[P (Q)]⊗Z[LP (Q)] StP is an induced NP (Q)–module

Hs(NP (Q), Hom(StG, C∞(P (Af ), V ))) = 0

for s > 0 and

H0(NP (Q),Hom(StG,W ) ∼= Hom(StL, C∞(P (Af ), V ))).
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Moreover since NP (Q) acts trivially on StP

H0(NP (Q),Hom(StP , C∞(P (Af ), V )))) ∼= Hom(StL, C∞(P (Af ), V )NP (Q)).

We assume now that V = C is the trivial representation. Since NP (Q) is
dense in NP (Af ) we see that

C∞(P (Af ),C)NP (Q) = C∞NP (Af )(P (Af ),C) ,

which is identified with C∞(LP (Af ),C), considered as trivialNP (Q)×NP (Af )–
module. Hence resc(LP , P ) is surjective if V = C .

Let now A′P be as in the proof of 3.4. The natural fibration S\LP −→ SLP
is W (AP ) –equivariant with fibre A′P and w ∈W (AP ) acts by multiplication
with (−1)|w| on H

`(P )
c (A′P , C̃) . Hence we get

3.15. Corollary. Let V = C be the trivial representation. Then

resc(P,G) ◦ cor(G,P ) : H∗c (SP , C̃)cc →
(

IndG(Af )

P (Af )H
∗−`(P )
c (SLP , C̃)cc

)W (AP )

is surjective.

3.16. Remark. We have used throughout the group theoretical description of
the maps between the relevant cohomology groups. We now add some remarks
on the translation to the topological description of these maps. Full details for
this will appear elsewhere.

(i) Let Q be a proper Q–rational θ–stable parabolic subgroup. We assume
that Kf is an open and compact subgroup. Then the inclusion LQ ⊂ G induces
a proper and closed map

j : P (Q) ∩ LQ(Q)\XLQ/Kf ∩ LQ(Af )→ SP /Kf ,

see [A: 2.7]. Hence there is an induced map

j∗ : Hi
c(SP /Kf , Ṽ )→ Hi

c(P (Q) ∩ LQ(Q)\XLQ/Kf ∩ LQ(Af ), Ṽ )

and a map

φ : Hi
c(SP , Ṽ )Kf →

(
IndG(Af )

L(Af )H
i
c

(
P (Q) ∩ LQ(Q)\XLQ , Ṽ

))Kf
so that

φ([ϕ]) : G(Af )→ Hi
c(P (Q) ∩ LQ(Q)\XLQ , Ṽ ),

is defined by φ([ϕ])(a) = j∗(R(a)[ϕ]) where R(a) denotes the map induced by
right translation on SP . It can be shown that this map is the one induced by
resc(P ∩ LQ, P ) as defined in 3.4 (iii).
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(ii) Let ψ be the family of supports on SP which are compact modulo
G(Q) . Then we have an obvious restriction map

Hj
c (SP , Ṽ )→ Hj

ψ(SP , Ṽ ) := lim
−→
Kf

Hj
ψ(SP /Kf , Ṽ )

which can be identified with the map

resc(LP , P ) : Hj−`(P (Q), Hom(StP , C∞(G(Af ), V )))
→ Hj−`(P (Q),Hom(StG, C∞(G(Af ), V ))).

The isomorphism

H∗ψ(SP , Ṽ ) ∼→ Hj−`(P (Q), Hom(StG, C∞(G(Af ), V )))

can be seen as in [Ro 1: 4.4].

3.17. As an application of 3.13 and 3.15 we explain a result of Ash and Borel
which roughly says that the fundamental class of a Levi–factor LP is a nontrivial
modular symbol, see [A–B: Thm. 2.5].

We observe Hj
c (S\LP , Ṽ ) = 0 if j > dim(XLP )∞ . Hence if d = dimX∞

then
Hd
c (SG, Ṽ )cc = Hd

c (SG, Ṽ ) .

Similarly we get
Hr
c (S\LP , C̃)cc = Hr

c (S\LP , C̃)

if r = dim(XLP )∞ .
Let Kf be such that all Γi are torsionfree, ωG(γ) = 1 for all γ ∈ Γi and

all γ ∈ ΓP,j act orientation preserving on NP (R) by conjugation, see 1.6 for
notation.

Consider 1 6= w ∈W (AP ) ⊂W/WP ⊂ G(Q)/P (Q) and let nw ∈ NLP (Q)
represent w. Then nw 6∈ P (Af ) . Since P (Af ) is closed in G(Af ) we choose
in addition Kf such that nwKf 6∈ P (Af ) for all nw, w 6= 1 . Then X∞ ×
wP (Q)Kf ∩X∞×P (Q)Kf = ∅ if 1 6= w ∈W (AP ) . If now [ψ] ∈ Hr

c (SP , C̃)Kf
is represented by a P (Q) – invariant r–form ψ ∈ Ωr(X∞)⊗C∞(G(Af ),C)Kf
with support in X∞ × P (Q)Kf then with notation from 3.16.(i)

φ(resc(P,G) ◦ cor(G,P )([ψ]))(1) = resc(LP , P )([ψ]). (∗)

Next we construct [ψ] . We have P (Q)\X∞×P (Q)×Kf
∼=
⋃h
h=1 ΓP,i\X∞

for suitable arithmetic subgroups ΓP,i ⊂ P (Q). We have fibrations

pi : ΓP,i\X∞ −→ ΓP,iNP (R)\X∞

with orientable base and fibres and induced finite coverings

ΓP,i ∩ LP (Q)\X(LP )∞ −→ ΓP,iNP (R)\X∞

23



where the covering group acts orientation preserving. We chose compatible
orientations. The fundamental classes fi ∈ Hr

c (ΓP,iNP (R)\X∞, C̃) determine
a class [ψ] = p∗1f1 + . . .+ p∗hfh such that resc(LP , P )[ψ] is a fundamental class
for

⋃h
i=1 ΓP,i ∩LP (Q)\(XP )∞ . According to [D: 1.15] we can shrink Kf such

that we get an injection

S\LP /Kf ∩ LP (Af ) ⊂ SP /Kf .

Hence (∗) shows for sufficiently smallKf that the fundamental class of S\LP /Kf∩
LP (Af ) is a non trivial modular symbol.
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