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Abstract. We prove that for certain range of the the continuous
parameter the complementary series representation of SL(2,R) is
a direct summand of the complementary series representations of
SL(2,C). For this we construct a continuous ” geometric restriction
map” from the complementary series representations of SL(2,C) to
the complementary series representations SL(2,R). In the second
part we prove that the Steinberg representation σof SL(2,R) is a
direct summand of the restriction of the Steinberg representation
π of SL(2,C). We show that σ does not contain any smooth vectors
of π.

1. Introduction

Let G = SL(2,C) and denote by B(C) the (Borel-)subgroup of upper
triangular matrices in G, by N(C) the subgroup of unipotent upper

triangular matrices in G. Given an element b =

(
a n
0 a−1

)
of B(C),

denote by ρ(b) =| a |2. The group K = SU(2) is a maximal compact
subgroup of G. Given a complex number u, denote by πu the space of
functions on G which satisfy, for all b ∈ B(C) and all g ∈ G(C) the
formula

f(bg) = ρ(b)1+uf(g)

and in addition are K-finite under the action of K by right translations.
If Re(u) > 0 define the map IG(u) : πu → π−u by the formula (for
x ∈ G),

(IG(u)f)(x) =

∫
N(C)

dnf(w0nx).

The integral converges (for Re(u) > 0). If u is real and 0 < u < 1,
then the pairing

< f, f >πu=

∫
K

f(k)(IG(u)f)(k))dk
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defines a positive definite G-invariant inner product on K-finite func-
tions in πu. The completion π̂u with respect to this inner product is
complementary series representation with continuous parameter u.

Given a complex number u′ ∈ C, denote by σu′ the representa-
tion of (h, KH), where h is the Lie algebra of H = SL(2,R), and
KH = SO(2) is the maximal compact subgroup of H, defined as the
space of complex valued right KH-finite functions on H such that for

all upper triangular matrices b =

(
a n
0 a−1

)
in H and all h ∈ H, we

have f(bh) =| a |1+u′ f(h). The character | a |2 is the character ρ(b)2

(the “sum” of positive roots).

Denote byNH the group of unipotent upper triangular matrices inH.
If Re(u′) > 0, we define the intertwining operator IH(u′) : σu′ → σ−u′
as follows: for all g ∈ H, set

(IH(u′)f)(g) =

∫
NH(R)

dnf(w0ng).

The integral is convergent if Re(u′) > 0. Now for fH , gH ∈ σu′ and u′

is real and 0 < u′ < 1, the pairing

< fH , gH >σu′
=

∫
KH

fH(kH)(IH(u′)gH)(kH)dkH .

defines a positive definite H–invariant inner product on σ′u. The com-

pletion is the complementary series representation σ̂′u.

Theorem 1.1. Let 1
2
< u < 1 and π̂u denote the completion of the

complementary series representation of SL(2,C). Define similarly, the
completion σ̂u′ of the complementary series σu′for SL(2,R). If u′ =
2u− 1, then σ̂u′ is a direct summand of π̂u restricted to SL(2,R).

This theorem is proved in [5] . In the proof in the present paper
we realize the “abstract” projection map from π̂u to σ̂2u−1 as a simple
geometric map of sections of a line bundle on the flag varieties of G =
SL(2,C) and H = SL(2,R). In a sequel we will use this idea to analyze
the restriction of the complementary series representations of SO(n,1)

Consider the Steinberg representation π̂ = IndGB(χ). Here, Ind
refers to unitary induction from a unitary character χ of B. Given two
functions f, f ′ ∈ π, the product φ = ff ′ (f ′ is the complex conjugate
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of f ′) lies in π0. The G-invariant inner product on π is defined by

< f, f ′ >=

∫
G

(ff ′)dg

We have the exact sequence of (g, K)–modules

0→ π → π1 → 1→ 0

The (h, KH)– module of the Steinberg representation σ of SL(2, R)
is defined by the exact sequence

0→ σ → σ1 → 1→ 0

and the completion σ̂ is a direct sum of 2 discrete series representations.

Theorem 1.2. The restriction to H of π̂ contains the Steinberg Rep-
resentation σ̂ of H as a direct summand.

More precisely, the restriction is a sum of the Steinberg represen-
tation σ of H, its complex conjugate σ, and a sum of two copies of
L2(H/K ∩H) where K ∩H is a maximal compact subgroup of H. By
a theorem of T. Kobayashi (theorem 4.2.6 in citeko ) this implies that
σ̂ does not contain any nonzero K–finite vectors in π̂. Using an explicit
description of the functions in the subspace σ̂ we prove a stronger result

Theorem 1.3. The intersection

σ̂ ∩ π̂∞ = 0.

That is σ̂ does not contain any nonzero smooth vectors in π̂.

It is very important in the above theorems to consider a unitary
representation of G respectively H, and not only the unitary (g, K)
respectively (h, KH)-modules as the following example shows.

Fix a semi-simple non-compact real algebraic group G and let Cc(G)
denote the space of continuous complex valued functions on G with
compact support. Let π denote an irreducible representation on a
Hilbert space (which, we denote again by π) of G of the complemen-
tary series, which is unramified (i.e. fixed under a maximal compact
subgroup K of G). Fix a non-zero K invariant vector v in π.

Denote by || w ||π the metric on the space π. Given φ ∈ Cc(G), we
get a bounded operator π(φ) on π . Define a metric on Cc(G) by setting

|| φ ||2=|| π(φ)(v) ||2π + || φ ||2L2 ,
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where the latter is the L2-norm of φ. The group G acts by left trans-
lations on Cc(G) and preserves the above metric. Hence it operates by
unitary transfomations on the completion (the latter is a Hilbert space)
of this metric.

Proposition 1.4. Under the foregoing metric, the completion of Cc(G)
is the direct sum of the Hilbert spaces

π ⊕ L2(G).

The action of the group G on the direct sum, restricted to the sub-
space Cc(G), is by left translations.

Note that the direct sum π⊕L2(G) and L2(G) both share the same
dense subspace Cc(G) on which the G action is identical, namely by left
translations, and yet the completions are different: π⊕L2 is the comple-
tion with respect to the new metric and L2(G) is the completion under
the L2-metric. We have therefore an example of two non-isomorphic
unitary G-representations with an isomorphic dense subspace. This is
not posible in the case of irreducible unitary representations, as can
be easily seen.

Proof. The kernel to the map φ 7→ π(φ)v on Cc(G) is just those func-
tions, whose Fourier transform vanishes at a point on C (the latter is
the space of not-necessarily unitary characters of R). This is clearly
dense in Cc(G) and hence dense in L2(G). The restriction of the new
metric to the kernel is simply the L2-metric, and the kernel is dense in
L2. Therefore, the completion of the kernel gives all of L2.

Since the map from Cc(G) to the direct sum is non-zero, it follows
that the completion of Cc(G) can not be only L2. The irreducibility of
π now implies that the completion must be π ⊕ L2(G).

2. Complementary Series for SL(2,R) and SL(2,C)

2.1. Complementary Series for SL(2,R) . Given a complex num-
ber u′ ∈ C, denote by σu′ the representation of (h, KH), where h is
the Lie algebra of H = SL(2,R), and KH = SO(2) is the maximal
compact subgroup of H, defined as the space of complex valued right
KH-finite functions on H such that for all upper triangular matrices

b =

(
a n
0 a−1

)
in H and all h ∈ H, we have f(bh) =| a |1+u′ f(h). The

character | a |2 is the character ρ(b)2 (the “sum” of positive roots).
Define σ−u′ similarly, replacing u′ by −u′.
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Denote byNH the group of unipotent upper triangular matrices inH.
If Re(u′) > 0, we define the intertwining operator IH(u′) : σu′ → σ−u′
as follows: for all g ∈ H, set

(IH(u′)(f))(g) =

∫
NH(R)

dnf(w0ng).

The convergence of the integral follows under the assumption that
Re(u′) > 0 and by using the Iwasawa decomposition of the element
w0n. It is easy to check that IH takes σu′ into σ−u′ . We will restrict
f ∈ σu′ and g ∈ σ−u′ and consider the pairing (f, g) =

∫
KH

dkf(k)g(k).
This is easily seen to be an H-invariant pairing. Now, given f, g ∈ σu′ ,
define the pairing

< f, g >σu′
= (f, IH(u′)(g)).

The fact that IH is an intertwining operator says that this pairing
< f, g > between elements of σu′ is also an H-invariant pairing. If u′ is
real and 0 < u′ < 1, then it may be shown that the pairing between f
and f is positive unless f = 0. Via this isomorphism IH , we then get
an inner product on σ−u′ for all u′ with 0 < u′ < 1.

The space σu′ consists, by construction, of KH-finite vectors and the
restriction of σu′ to KH is an injection; under this map, σu′ may be
identified with trigonometric aolynomials on KH which are even. The
space of even trigonometric polynomials is spanned by the characters
χl = θ 7→ e4πlθ, l going through all integers. Each χl-eigenspace in
πu′ is one dimensional and has a unique vector , denoted χl(u, h) such
that for all k ∈ KH we have χl(u

′, k) = χl(k). Being an intertwining
map, the map Ih(u

′) maps χl(u
′, h) into a multiple of χl(−u′, h). After

replacing Ih(u
′) by a scalar multiple of itself, we may assume that Ih(u

′)
maps χ0(u′, h) into χ0(−u′, h). This normalised intertwining operator
will, by an abuse of notation, stil be denoted Ih(u

′). One computes
that after this normalisation, we have, for all integers l 6= 0 and all
k ∈ KH ,

IH(u′)(χl(u
′, k)) = dl(u

′)χl(−u′, k),

where

(1) dl(u
′) =

(1− u′)(3− u′) · · · (2 | l | −1− u′)
(1 + u′)(3 + u′) · · · (2 | l | −1 + u′)

and d0(u′) = 1. We note that for χl(u
′, h) we have

(2) || χl(u′, .) ||2σu′
=< χl(u

′, .), IH(u′)(χl(u
′, .)) >

= dl(u
′) || χl ||2L2(KH) .
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Therefore, the norm on σ−u′ is given by

(3) || χl(−u′, .) ||2σ−u′
=

1

dl(u′)
|| χl ||2L2(KH) .

Note that the space Rep({±1)\KH) is a direct sum (over integers
l ≥ 1 of the spaces σl = Cχl ⊕ Cχ−l and of Cχ0. The elements of
σl may be thought of as the space of Harmonic Polynomials in the
circle of degree 2l.

It is clear that dl(u
′) < 1. It can be shown, as | l | tends to infinity,

that dl(u
′) satisfies the following asymptotic: there exists a constant C

such that dl(u
′) ' C 1

|l|u′ .

Notice that if u′ = 2u− 1 and l ≥ 1 then

dl(u
′) =

(1− u)(2− u) · · · (l − u)

1 + u)(2 + u) · · · (l + u)

(l + u)

u
.

Define λl(u) by the formula

dl(u
′) = λl(u)

l + u

u
.

We have already noted that if 0 < u′ < 1, the pairing <,> on σu′
is positive definite. This easily follows from the formula (1) for dl(u

′),
which shows that dl(u

′) > 0, and the equation (2).

2.2. Complementary Series of SL(2,C). Let G = SL(2,C) and
denote by B(C) the (Borel-)subgroup of upper triangular matrices in
G, by N(C) the subgroup of unipotent upper triangular matrices in

G. Given an element b =

(
a n
0 a−1

)
of B(C), denote by ρ(b) =| a |2.

The group K = SU(2) is a maximal compact subgroup of G. Given
a complex number u, denote by πu the space of functions on G which
satisfy, for all b ∈ B(C) and all g ∈ G(C) the formula

f(bg) = ρ(b)1+uf(g)

and in addition are K-finite under the action of K by right translations.
Given f ∈ πu and g ∈ π−u, define the pairing (f, g) =

∫
K
f(k)g(k)dk.

It can be shown that this is a (right) G-invariant pairing.

If Re(u) > 0 define the map IG(u) : πu → π−u by the formula (for
x ∈ G),

(IG(u)(f))(x) =

∫
N(C)

dnf(w0nx).
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The integral converges (for Re(u) > 0).

For any u ∈ C, the restriction of the representation πu to the max-
imal compact subgroup K is isomorphic to Rep(T\K) where T is the
group of diagonal matrices in K, and Rep(T\K) denotes the space of
representation functions on T\K on which K acts by right translations.
It is known that as a representation of K, we have

Rep(T\K) = ⊕m≥0ρm,

where ρm = Sym2m(C2) is the 2m-th symmetric power of C2, the
standard two dimensional representation of K; ρm is irreducible and
occurs exactly once in Rep(T\K). The same decomposition holds if
πu is replaced by π−u. The operator IG(u) may be normalised so that
under the identification of the K-representations

πu ' R(T\K) ' π−u,

it acts on each ρm by the scalar

λm(u) =
(1− u)(2− u) · · · (m− u)

(1 + u)(2 + u) · · · (m+ u)
.

The formula for λm(u) shows that if u is real and 0 < u < 1, then the
pairing

< f, f >= (f, IG(u)f)

defines a positive definite G-invariant inner product on K-finite func-
tions in πu as can be easily checked using the formula for IG(u) = λm(u)
on ρm. If 0 < u < 1, then the operator IG(u)πu → π−u is an isomor-
phism, and hence the inner product on πu defines, via the isomorphism
IG(u), a G-invariant inner product on π−u. Denote the completions of
πu and π−u with respect to these inner products, by π̂u and π̂−u.

Lemma 2.1. Let ρm = Sym2m(C2) be the 2m-th symmetric power of
the standard representation of K = SU(2).Let (, ) be a K-invariant
inner product on ρm and v, w vectors in ρm of norm one with respect
to (, ) such that v is invariant under the diagonals T on K and the
group KH = SO(2) acts by the character χl on the vector w. Then,
the formula

| (v, w) |=
2mΓ(m−l+1

2
)Γ(m+l+1

2
)√

(m− l)!(m+ l)!

holds.

Proof. The formula clearly does not depend on the K-invariant met-
ric chosen, since any two invariant inner products are scalar multiples
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of each other. We will view elements of ρm as homogeneous polyno-
mials of degree 2m with complex coefficients in two variables X and

Y such that if k =

(
α β
−β α

)
∈ SU(2), then k acts on Xand Y by

k(X) = αX−βY and k(Y ) = βX+αY . The vector v′ = XmY m ∈ ρm
is invariant under the diagonal subgroup T of SU(2).

The subgroup KH = SO(2) is conjugate to T by the element k0 =(
1√
2

i√
2

i√
2

1√
2

)
. That is, SO(2) = k0Tk

−1
0 . If −m ≤ l ≤ m then the

element w′′ = Xm+lY m−l is an eigenvector for T with eigencharacter
χl : θ 7→ e4πil. Consequently, the vector w′ = k0(w′′) is an eigenvector
of SO(2) with eigencharacter χl.

If

f =
m∑

µ=−m

aµX
m+µY m−µ, g =

m∑
µ=−m

bµX
m+µY m−µ ∈ ρm,

then the inner product

(f, g) =
m∑

µ=−m

aµbµ(m+ µ)!(m− µ)!

is easily shown to be K-invariant (see p. 44 of [6]). Therefore, the
vectors

(4) w =
XmY m

m!
, v = k0(

Xm+lY m−l√
(m+ l)!(m− l)!

)

satisfy the conditions of Lemma 2.1. We compute

k0(Xm+lY m−l) = (
X + iY√

2
)m+l(

iX + Y√
2

)m−l

= (
m+l∑
a=0

(
m+ l
a

)
Xa(iY )m+l−a)(

m−l∑
b=0

(
m− l
b

)
(iX)bY m−l−b).

Using the fact that the vectors Xm+lY m−l are orthogonal for varying
l, we find that the inner product of XmY m with k0(Xm+lY m−l) is the
sum (over a ≤ m+ l and b ≤ m− l)∑

a+b=m

(m!)2

2m
im+l−aib

(
m+ l
a

)(
m− l
b

)
.



RESTRICTION OF REPRESENTATIONS 9

This sum is [because of Lemma 2.2 below], equal (in absolute value
) to

(5)
1

π

m!

2m
4mΓ(

m+ l + 1

2
)Γ(

m− l + 1

2
).

if m+ l is even (and 0 if m+ l is odd).
The Lemma follows from equations (4) and (5). �

Lemma 2.2. The equality

m!

2m

∑
a+b=m

(
m+ l
a

)(
m− l
b

)
(−1)b =

1

π
2mΓ(

m+ l + 1

2
)Γ(

m− l + 1

2
)

holds if m+ l is even; the sum on the left hand side is 0 if m+ l is odd.

Proof. If f(z) =
∑
akz

k is a polynomial with complex coefficients, then
the coefficient am is given by the formula

am =
1

2π

∫ 2π

0

dθf(eiθ)e−imθ.

The sum Σ on the left hand side of the statement of the Lemma is
clearly (m!

2m times) the mth-coefficient of the polynomial

f(z) = (1 + z)m+l(1− z)m−l.

We use the foregoing formula for the mth coefficient to deduce that

Σ =
1

2π

∫ 2π

0

dθe−imθ(1 + eiθ)m+l(1− eiθ)m−l.

After a few elementary manipulations, the integral becomes

im−l4m

π

∫ 2

0

πdθ(cos(
θ

2
)sin(

θ

2
))m
(sin( θ

2
)

cos( θ
2
)

)l
.

Substituting t = tan(θ/2) the integral becomes

2im−l4m

π

∫ ∞
0

dt
tm−l

(1 + t2)m+1

and the latter, when multiplied by m!
2m = Γ(m+1)

2m , is the right side of the
Lemma 2.2. �

We now collect some estimates for the Gamma function which will
be needed later.

Lemma 2.3. If Re(z) > 0, then we have, as m tends to infinity, the
asymptotic relation

Γ(m+ z) ' Constant mm+z− 1
2 .

1

em
.
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In particular, as m tends to infinity through integers,

m! = Γ(m+ 1) ' Constant mm+ 1
2

1

em
.

The formula for the inner product in Lemma 2.1 is unchanged if we
replace l by −l. We may therefore assume that l ≥ 0. Let m ≥ 0 and
0 ≤ l ≤ m. Put m = k + l. From Lemmas 2.3 and 2.1 we obtain
(notation as in Lemma 2.1), as m tends to infinity and l is arbitrary,
the asymptotic

| (v, w) |' Constant 2k+l

(k + 2l + 1)
k+2l+(1/2)

2 (k + 1)
k+(1/2)

2

(
k + 2l + 1

2
)

k+2l+1
2 (

k + 1

2
)

k
2

' Constant

(k + 2l + 1)1/4(k + 1)1/4
.

Moreover, the constant is independent of l.
This proves:

Lemma 2.4. Let m ≥ 0 be an integer and (, ) a SU(2)-invariant inner
product on the representation ρm = Sym2m(C2). Let 0 ≤ l ≤ m and
put m = k + l. Let vm a vector of norm 1 in ρm invariant under the
diagonals T in SU(2) and wm,l ∈ ρm a vector of norm 1 on which
SO(2) acts by the character χl. We have the following asymptotic as
m = k + l tends to infinity:

| (vm, wm,l) |'
Constant

(k + 2l + 1)1/4(k + 1)1/4
.

Notation 1. Given m ≥ 0 and −m ≤ l ≤ m, define the function for
k ∈ K = SU(2) by the formula

ψm,l(k) = (vm, ρm(k)wm,l).

The functions ψm,l form a complete orthogonal set for Rep(T\K). The
norm of ψm,l with respect to the L2 norm on functions K, is, by the Or-
thogonality Relations for matrix coefficients of ρm, equal to

√
2m+ 1.

If ψ is a function on K in Rep(T\K), denote by || ψ ||2K the integral
(dk is the Haar measure on K)∫

K

| ψ(k) |2 dk.

Define similarly the number || φ ||2KH
for φ ∈ Rep(KH), where KH =

SO(2).
The restriction of the function ψm,l to KH = SO(2) is, by the choice

of the vector wm,l, a multiple of the character χl: for kH ∈ KH , we
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have ψm,l(kH) = ψm,l(1)χl(kH). By Lemma 2.4, we have, for k+ l = m
tending to infinity, the asymptotic

(6) | ψm,l(1) |2' Constant√
(k + 2l + 1)(k + 1)

Notation 2. Let 1
2
< u < 1 and π−u the complementary series repre-

sentation of G = SL(2,C) as before. Set u′ = 2u−1. Then 0 < u′ < 1.
If σ−u′ is the complementary series representation of SL(2,R) as before,
the restriction of the functions (sections) in π−u on G/B(C) to the sub-
space H/B(R) lies in σ−u′ , as is easily seen. Denote by res : π−u → σ−u′
this restriction of sections.

Note that if ψ ∈ ρm ⊂ Rep(T\K) ' π−u (the latter isomorphism is
of K modules), then

|| ψ ||2π−u
=

1

λl(u)
|| ψ ||2K .

Similarly, if φ ∈ Cχl ⊂ Rep({±1}\KH) ' σ−u′ (the last isomporphism
is of KH-modules), then

|| φ ||2σ−u′
=

1

dl(u′)
|| φ ||2KH

.

Moreover, we have the asymptotics

(7) λm(u) ' Constant

m2u
, dl(u

′) ' Constant

| l |2u−1
,

as m and | l | tends to infinity.

Theorem 2.5. Let 1
2
< u < 1. The map res : π−u → σ−(2u−1) of the

complementary series for SL(2,C) and SL(2,R), is continuous with
respect to the invariant metrics on the complementary series.

Proof. We must prove the existence of a constant C such that for all
ψ ∈ π−u, the estimate

|| ψ ||2π−u
≤ C || res(ψ) ||2σ−(2u−1)

.

The map res is equivariant for the action of H and in particular, for
the action of KH . Therefore we need only prove this estimate when ψ
is an eigenvector for the acton of KH ; however, the constant C must
be proved to be independent of the eigencharacter.

Assume then that ψ is an eigenvector for KH with eigencharacter χl.
The function ψ is a linear combination of the functions ψm,l (m ≥| l |).
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Write

ψ =
∑
m≥|l|

xmψm,l,

where the sum is over a finite set of the m’s; the finite set could be
arbitrarily large.

The orthogonality of ψm,l and the equalities in Notation 2 imply

|| ψ ||2π−u
=
∑
m≥|l|

| xm |2|| ψm,l ||2π−u
=
∑
| xm |2

1

λm(u)
|| ψm,l ||2K .

We therefore get, for ψ ∈ π−u,

(8) || ψ ||2π−u
=
∑
m≥|l|

| xm |2
1

(2m+ 1)λm(u)
.

We now compute res(ψ). Since ψ is an eigenvector for KH with eigen-
character χl, we have

res(ψ) = ψ(1)χl = (
∑
m≥|l|

xmψm,l(1))χl.

Therefore,

|| res(ψ) ||2σ−(2u−1)
=| (

∑
xmψm,l(1)) |2 1

dl(2u− 1)
.

The Cauchy -Schwartz inequality implies

|| res(ψ) ||2σ−(2u−1)
≤

(
∑
| xm |2

1

λm(u)(2m+ 1)
)(
∑

(2m+ 1)λm(u) | ψm,l(1) |2)
1

dl(u′)
.

Assume for convenience that l ≥ 0. Put k = m + l. Then k ≥ 0.
The estimate (6) and the equality (8) imply that (write σ for σ−(2u−1)

and π for π−u),

|| res(ψ) ||2σ≤|| ψ ||2π (
∑
k≥0

2k + 2l + 1√
(k + 2l + 1)(k + 1)

λk+l(u)
1

dl(u′)
).

Let Σ denote the sum in brackets in the above equation. To prove
Theorem 2.5, we must show that Σ is bounded above by a constant
independent of l. We now use the asymptotics 7 to get a constant C
such that

Σ ≤ C
∑
k≥0

2k + 2l + 1√
(k + 2l + 1)(k + 1)

l2u−1

(k + l)2u
.
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This is a decreasing series in k and therefore bounded above by the
sum of the k = 0 term and the integral∫ ∞

0

dk
2k + 2l + 1√

(k + 2l + 1)(k + 1)

l2u−1

(k + l)2u
.

We first compute the k = 0 term: this is

2l + 1√
(2l + 1)

l2u−1

l2u
≤ 2√

2l + 1

which therefore tends to 0 for large l and is bounded for all l.
To estimate the integral, we first change the variable from k to kl.

The integral becomes∫ ∞
0

ldk
2kl + 2l + 1√

(kl + 2l + 1)(kl + 1)

l2u−1

(kl + l)2u

≤
∫ ∞

0

dk
2k + 3√

(k + 2)(k)

1

(k + 1)2u
,

and since 2u > 1, the latter integral is finite (and is independent of l).

We have therefore checked that both the k = 0 term and the integral
are bounded by constants independent of l and this proves Theorem
2.5.

�

Theorem 2.6. Let 1
2
< u < 1 and π̂u denote the completion of the

complementary series representation of SL(2,C). Define similarly, the
completion σ̂u′ of the complementary series σu′for SL(2,R). If u′ =
2u− 1, then σ̂u′ is a direct summand of π̂u restricted to SL(2,R).

Proof. We may replace πu and σu′ by the isomorphic (and isometric)
representations π−u and σ−u′ . By Theorem 2.5, the restriction map
π−u → σ−u′ is continuous. Therefore this map extends to the comple-
tions. Hence π̂−u is, as a representation of SL(2,R), the direct sum
of the kernel of this restriction map and of σ̂−u′ . This completes the
proof. �

Remark 1. Theorem 2.6 is proved in [5]; the point of the proof in
the present paper is that the “abstract” projection map is realised as a
simple geometric map of sections of a line bundle on the flag varieties
of G = SL(2,C) and H = SL(2,R).
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3. Branching laws for the Steinberg representation

Let G = SL2(C) and H = SL2(R). Let π be the Steinberg Repre-
sentation of G.

3.1. The Representation π0 and a G-invariant linear form.
Consider the representation π0 = indGB(ρ2). In this equality, ind refers

to non-unitary induction and πo is the space of all continuous complex
valued functions on G such that for all g ∈ G and man ∈ MAN = B,
we have

(φ(mang) = ρ2(a)φ(g).

Here, ρ2 is the product of all the positive roots of the split torus A
occurring in the Lie algebra of the unipotent radical N of B and M is
a maximal compact subgroup of the centraliser of A in G.

Now, π0 a non-unitary representation, but has a G-invariant linear
form L defined on it as follows. The map Cc(G)→ π0 given by integra-
tion with respect to a left invariant Haar measure on B is surjective.
Given an element φ ∈ π0 select any function φ∗ ∈ Cc(G) in the preim-
age of φ and define L(φ) as the integral of φ∗ with respect to the Haar
measure on G. This is well defined (i.e. independent of the function
φ∗ chosen) and yields a linear form L. Moreover, if a function φ ∈ π0

is a positive function on G, then L(φ) is positive.

Under the action of the subgroup H on the G-space G/B, the space
G/B has three disjoint orbits: the upper half plane, the lower half plane
and the space H/B ∩H. The upper and lower half planes form open
orbits. Given a function φ ∈ Cc(h) we may view it as a function in π0

as follows. The restriction of the character ρ2 to the maximal compact
subgroup of H is trivial, therefore, the restriction of any element of π0

to H yields a function on h (also on h−). Conversely, given φ ∈ Cc(h),
extend φ by zero outside h; we get a function (we will again denote it φ)
on all of π0. The linear form L applied to Cc(h) yields a positive linear
functional which is H-invariant. Hence the positive linear functional L
is a Haar measure on h.

3.2. The metric on the Steinberg Representation of G.
Consider the Steinberg representation π = IndGB(χ). Here, Ind refers

to unitary induction from a unitary character χ of B. Given two
functions f, f ′ ∈ π, the product φ = ff ′ (f ′ is the complex conjugate
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of f ′) lies in π0. The linear form L applied to φ gives a pairing

< f, f ′ >= L(ff ′)

on π which is clearly G-invariant. This is the G-invariant inner product
on π.

Given a compactly supported function f on H which, under the left
action of K ∩ H acts via the restriction of character χ to K ∩ H, we
can extend it by zero to an element of π. Then, the inner product
< f, f > is, by the conclusion of the last paragraph in (2.1), just the
Haar integral on H applied to the function | f |2∈ Cc(h). Consequently,
the metric on π restricted to Cc(H)∩π is just the restriction of the L2-
metric on Cc(H).

Remark 2. We know that the Steinberg representation of G is tem-
pered (and is induced by a unitary character from the Borel subgroup
of upper triangular matrices). The tempered dual of G does not con-
tain isolated points (G does not have discrete series representations).
Moreover, the entire tempered dual is automorphic (Burger-Sarnak).
Consequently, the Steinberg representation (which is cohomological) is
not isolated in the automorphic dual of G.

3.3. Decomposition of the Steinberg Representation π.

Proposition 3.1. The restriction to H of π contains the Steinberg
Representation of H. More precisely, the restriction is a sum of the
Steinberg representation σ of H, its complex conjugate σ, and a sum
of two copies of L2(H/K ∩ H) where K ∩ H is a maximal compact
subgroup of H.

Proof. The Steinberg Representation π is (unitarily) induced from a
unitary character χ of the Borel Subgroup B = B(C) of upper trian-
gular matrices in G = SL2(C). Now, the space G/B is the Riemann
sphere P1(C). The group H has three orbits, the upper half plane, the
lower half plane and the projective line P1(R) over R. The first two
are open orbits and P1(R) has zero measure in G/B. From this, it is
clear from section (2.2), that π is the direct sum of L2(h, χK∩H) and
L2(h−, χ∗K∩H), where the subscript denotes the restriction of the char-
acter χ to the subgroup K ∩H and χ∗ denotes the complex conjugate
of χ.

The representation χ∗ is such that its restriction to K ∩ H is the
minimal K-type of the Steinberg of H = SL(2,R). The space L2(h, χ)
is therefore a direct sum of the Steinberg representation π and the full
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unramified tempered spectrum (any unramified representation contains
χ as a K ∩H-type).

The Proposition now follows immediately. �

Remark 3. The Steinberg representation π is unitarily induced from
the unitary character χ. Thus, it is (non-unitarily) induced from the
character δCχ whose restriction to B(R) is δ2

R (δ2
R is the character by

which the split torus S(R) acts on the Lie albegra of the unipotent
radical of B(R)). Similarly δ2

C is the square of the character by which
the split real torus in S(C) acts on the complex Lie algebra of the
unipotent radical of B(C)).

The Proposition was proved by restricting π to the open orbit; we
may instead restrict π to the closed orbit G(R)/B(R). We thus get
a surjection of π onto the space of K ∩ H- finite sections of the line
bundle on G(R)/B(R) which is induced from the character δ2

R on B(R).

The latter representation contains the trivial representation as a quo-
tient. We have therefore obtained that the trivial representation is a
quotient of the restriction of π to the subgroup SL2(R). This shows
that there is a mapping of the (h, K ∩H)- modules from π restricted
to H, onto the trivial module of H; however, this cannot give a map
of Hilbert spaces (their completions) since the Howe-Moore Theorem
implies that the matrix coefficients of π restricted to the non-compact
subgroup H must tend to zero at infinity.

Suppose that G = SO(2m+ 1, 1) and H = SO(2m, 1). Let πm = Aq

be the cohomological representation of G which has non-zero cohomol-
ogy in degree m, and vanishing cohomology in lower degrees. Then Aq

is a tempered representation. Define the representation σ of H which
is cohomological and the lowest degree in which σ has cohomology is
m. Then m is a discrete series representation. Following the proof of
Proposition 3.1, we obtain the following proposition.

Proposition 3.2. The representation σ is a direct summand of the
restriction to H of the G- representation Aq.

Remark 4. Here again, if G = SO(2m+ 1, 1), then G hs no compact
Cartan Subgroup, and hence L2(G) does not have discrete spectrum.
Let Γ be an arithmetic (congruence) subgroup of G. The notion of “au-
tomorphic spectrum” of G with respect to the Q-structure defined by
—Γ was defined by Burger and Sarnak. Since all the tempered dual of
G is automorphic by Burger-Sarnak, it follows that the representation
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πm = Aq is not isolated in the automorphic spectrum of G. Thus, rep-
resentations with cohomology need not be isolated in the automorphic
dual.

3.4. Explicit Space of Functions in σ ⊂ π. Denote by StR the
space of K ∩ H-finite functions in the Steinberg representation σ of
SL2(R). By Proposition 3.1, this space of functions restricts trivially
to the lower half plane. Moreover, in the space of L2-functions on the
upper half plane, the representation σ occurs with multiplicity one. In
this subsection, we describe explicitly, elements in StR viewed as func-
tions on the upper half plane.

We will now replace H = SL2(R) with the subgroup SU(1, 1) of
G = SL2(C). Since SU(1, 1) is conjugate to H, this does not affect
the statement and proof of Proposition 3.1. The upper and lower half
planes are then replaced respectively, by the open unit ball in C and
the complement of the closed unit ball in P1(C). With this notation,
elements of StR are now thought of as functions on SU(1, 1) with the
equivariance property

f(ht) = χ(t)f(h)∀t ∈ K ∩H,∀h ∈ SU(1, 1).

The elements of StR are explicitly described in [4] (Chapter IX, sec-
tion 2, Theorem 1 in p. 181 of Lang). The eigenvectors of K ∩ H in
StR are

φ2+2r = α−2(
β

α
)r,

with r = 0, 1, 2, · · · . In this formula, an element of SU(1, 1) is of the
form (

α β
β α

)
,

with α, β ∈ C such that

| α |2 − | β |2= 1.

Note that the integer m in Lang’s book is 2 for the representation StR.
Further, the function φ2 vanishes on the complement of the closed

disc. That is, if g =

(
a b
c d

)
with | c

d
|> 1, then φ2(g) = 0.

It follows from the last two paragraphs that if g =

(
a b
c d

)
∈ SL2(C),

then one of the following two conditions hold:
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Proposition 3.3. If | d
c
|< 1, then for any matrix h =

(
α β
β α

)
∈

SU(1, 1) with (∞)h = (∞)g (the inequality satisfied by g ensures that
there exists an h with this property), we have,

φ2(g) = α−2 1

| d |2 − | c |2
.

If | d
c
|> 1 then φ2(g) = 0.

Proof. The points on the open unit disc are obtained as translates of
the point at infinity by an element of SU(1, 1). Therefore, if d

c
has

modulus less than one, there exists an element h ∈ SU(1, 1) such that
(∞)g = d

c
=∞(h). This means that

g =

(
u n
0 u−1

)
h

for some element b =

(
u n
0 u−1

)
ıSL2(C) (elements of type b form the

isotropy of G at infinity).

The intersection of the isotropy at infinity with SU(1, 1) is the space
of diagonal matrices whose entries have absolute value one. Therefore,
we may assume that the entry u above of the matrix b is real and
positive. Then it follows that

χδ(b) = u2 =
1

| d |2 − | c |2
,

and this proves the first part of the proposition.

The second part was already proved, as we noted that the restriction
of StR to the complement of the closed unit disc vanishes. �

Consider the decomposition

π = σ ⊕ σ ⊕ L2(K ∩H\H)⊕ L2(K ∩H\H),

of π as a representation of the group H. It can be proved that the space
π∞ of smooth vectors for the action of G = SL2(C) is simply the space
of smooth functions on G which lie in π, by proving the corresponding
statement for the maximal comact subgroup K = SU(2) of G. A
natural question that arises is whether the subresentation σ for the
action of H, contains any smooth vectors in π. we answer this n the
negative.
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Proposition 3.4. The intersection

σ ∩ π∞ = 0.

That is σ does not contain any nonzero smooth vectors in π.

Proof. The intersection of the proposition is stable under H and hence
under the maximal compact subgroup K ∩ H. If the intersection is
non-zero, then it contains nonzero K ∩H-finite vectors. Since the rep-
resentation σ is irreducible for H, the space StR of K∩H-finite vectors
is irreducible as a (h, K ∩ H)-module. Therefore, the space f smooth
vectors in σ contains all of StR and in particular, contains the function
f = φ2 introduced above. That is, the function φ2 is smooth on G (and
hence on K).

We will now view φ2 as a function on the group

SO(2) = {kθ =

(
cosθ sinθ
− sin θ cosθ

)
: 0 ≤ θ ≤ 2π}.

If | cosθ
−sinθ |< 1, then there exists a real number t such that

cosθ

−sinθ
=
cosht

sinht
.

By Proposition 3.3,

φ2(kθ) = α−2u−2 = cosht−2 1

cos2θ − sin2 θ
.

Moreover, it follows from the fact that h = bg (in the notation of
Proposition 3.3) that u−1cosht = cosθ and hence that cosh2tu−2 =
cosθ−2. We have then:

φ2(kθ) =
1

cos2θ

if 0 < θ < π/4 and 0 if π/4 < θ < π/2. This contradicts the
smootheness of φ2 as a function of θ and proves Proposition 3.4.

�

Remark 5. The Proposition says that although the completion of
the Steinberg module of SL(2,C), contains discretely the completion of
the Steinberg module of SL(2,R), this decomposition does not hold at
the level of K-finite vectors. In contrast, in the situation of Kobayashi
(see [3]), the decomposition is not at the level of K-finite vectors.
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