Cuspidal representations of reductive groups joint work with Dan Barbasch

Paris, December 2008

Birgit Speh Cornell University ${\cal G}$ semisimple noncompact Lie group

 $\ensuremath{\Gamma}$ discrete subgroup with finite covolume

An irreducible unitary representation of G is called automorphic with respect to Γ if it occurs discretely with finite multiplicity in $L^2(\Gamma \setminus G)$.

 $L^2_{dis}(\Gamma \setminus G)$ discrete spectrum.

 ${\cal G}$ semisimple noncompact Lie group

 Γ discrete subgroup with finite covolume

An irreducible unitary representation of G is called automorphic with respect to Γ if it occurs discretely with finite multiplicity in $L^2(\Gamma \setminus G)$.

 $L^2_{dis}(\Gamma \setminus G)$ discrete spectrum.

 $L^2_0(\Gamma \backslash G) \subset L^2_{dis}(\Gamma \backslash G)$ cusp forms

An irreducible automorphic representation of G is called cuspidal if it occurs discretely with finite multiplicity in $L^2_{cusp}(\Gamma \setminus G)$. It is called residual if it occurs in the complement. **General Problem:** Determine multiplicities of irreducible representations in the cuspidal spectrum **More precise problem:** Are there irreducible cuspidal representations with the following properties: "Favorite list" **More precise problem:** Are there irreducible cuspidal representations with the following properties: "Favorite list"

My "Favorite list" :

Integral infinitesimal character and invariant under certain automorphisms.

The setup and Notation

G algebraic reductive group connected defined over \mathbb{Q} Assume that $G(\mathbb{R})$ has no compact factor

 \mathfrak{g} Lie algebra of $G(\mathbb{R})$

 $K_{\infty} \subset G(\mathbb{R})$ max compact

 $\tau: G \to G$ rational automorphism

F finite dimensional irreducible representation of $G(\mathbb{R}) \ltimes \{1, \tau\}$

Note: $tr(F(\tau)) \neq 0$ implies $F_{|G(\mathbb{R})}$ irreducible. So F has an infinitesimal character.

 \mathbbm{A} adeles of \mathbbm{Q} ,

 \mathbbm{A} adeles of \mathbbm{Q} ,

 $\mathcal{A}(G(\mathbb{A})/G(\mathbb{Q}))$ the space of automorphic forms

 $\mathcal{A}_{cusp}(G(\mathbb{A})/G(\mathbb{Q}))$ the space of cusp forms

 \mathbbm{A} adeles of \mathbbm{Q} ,

 $\mathcal{A}(G(\mathbb{A})/G(\mathbb{Q}))$ the space of automorphic forms

 $\mathcal{A}_{cusp}(G(\mathbb{A})/G(\mathbb{Q}))$ the space of cusp forms

We have

 $\mathcal{A}_{cusp}(G(\mathbb{A})/G(\mathbb{Q})) = \oplus \pi_{\mathbb{A}}$

An irreducible representation is called cuspidal if Hom $(\pi_{\mathbb{A}}, \mathcal{A}_{cusp}(G(\mathbb{A})/G(\mathbb{Q})) \neq 0$ We can define $\pi^{\tau} = \pi \tau$. A representation is called stable under τ if π and π^{τ} are isomorphic.

We can define $\pi^{\tau} = \pi \tau$. A representation is called stable under τ if π and π^{τ} are isomorphic.

Example: $G = GI(n), \tau_c(A) = (A^{tr})^{-1}.$

A representation invariant under τ is usually called a self dual representation.

We can define $\pi^{\tau} = \pi \tau$. A representation is called stable under τ if π and π^{τ} are isomorphic.

Example: $G = GI(n), \tau_c(A) = (A^{tr})^{-1}.$

A representation invariant under τ is usually called a self dual representation.

Problem: For a given F and τ are there τ -stable irreducible cuspidal representations with the same infinitesimal character as F ?

Why care about cuspidal reps stable under automorphisms?

Why care about cuspidal reps stable under automorphisms?

A look at the example G=GL(n),

 $\pi_{\mathbb{A}}$ cuspidal representation of $G(\mathbb{A})$.

 $L(s, \pi_{\mathbb{A}}, S^2 \mathbb{C}^n)$ symmetric square L-function of $\pi_{\mathbb{A}}$,

 $L(s, \pi_{\mathbb{A}}, \bigwedge^2 \mathbb{C}^n)$ exterior square L-function of $\pi_{\mathbb{A}}$.

Then $L(s, \pi_{\mathbb{A}}, S^2 \mathbb{C}^n) L(s, \pi_{\mathbb{A}}, \bigwedge^2 \mathbb{C}^n)$ has a pole at s=1 precisely if $\pi_{\mathbb{A}}$ is stable under τ_c , i.e is self dual.

Theorem 1.

Let G be a connected reductive linear algebraic group defined over \mathbb{Q} , Assume that $G(\mathbb{R})$ has no compact factors and that the derived group is simple. Let F be a finite dimensional irreducible representation of $G(\mathbb{R}) \ltimes \{1, \tau\}$, and assume that the centralizer of τ in \mathfrak{g} is of equal rank. If tr $F(\tau) \neq 0$, then there exists a cuspidal automorphic representation $\pi_{\mathbb{A}}$ of $G(\mathbb{A})$ stable under τ , with the same infinitesimal character as F.

Theorem 1.

Let G be a connected reductive linear algebraic group defined over \mathbb{Q} , Assume that $G(\mathbb{R})$ has no compact factors and that the derived group is simple. Let F be a finite dimensional irreducible representation of $G(\mathbb{R}) \ltimes \{1, \tau\}$, and assume that the centralizer of τ in \mathfrak{g} is of equal rank. If tr $F(\tau) \neq 0$, then there exists a cuspidal automorphic representation $\pi_{\mathbb{A}}$ of $G(\mathbb{A})$ stable under τ , with the same infinitesimal character as F.

In addition

 $H^*(\mathfrak{g}(\mathbb{R}), K_{\infty}, \pi_{\mathbb{A}} \otimes F) \neq 0.$

Remark:

tr $F(\tau) \neq 0$ for infinitely many representations.

Remark:

tr $F(\tau) \neq 0$ for infinitely many representations.

Previous results:

Clozel,1986, $G(\mathbb{R})$ equal rank, τ trivial

Speh-Rohlfs , 1989, cocompact lattice, τ Cartan like

Borel-Labesse-Schwermer, 1996, S-arithmetic subgroups of reductive groups over number fields, τ Cartan like

and some special cases.

An example:

G=GL(n),

 τ_c Cartan involution with fixed points SO(n),

 τ_s symplectic involution with fixed points Sp(n)

An example:

G=GL(n),

 τ_c Cartan involution with fixed points SO(n),

 τ_s symplectic involution with fixed points Sp(n)

Theorem 2.

There exist cuspidal representations $\pi_{\mathbb{A}}$ of $GL(n,\mathbb{A})$ with trivial infinitesimal character invariant under the Cartan involution τ_c .

If n=2m there also exist cuspidal representations $\pi_{\mathbb{A}}$ of $GL(n,\mathbb{A})$ with trivial infinitesimal character invariant under τ_s .

Application:

 K_f small compact subgroup

 A_G connected component of maximal split torus of center of $G(\mathbb{R})$.

 $S(K_f) := K_{\infty} K_f \setminus G(\mathbb{A}) / A_G G(\mathbb{Q})$ locally symmetric space

Application:

 K_f small compact subgroup

 A_G connected component of maximal split torus of center of $G(\mathbb{R})$.

 $S(K_f) := K_{\infty} K_f \setminus G(\mathbb{A}) / A_G G(\mathbb{Q})$ locally symmetric space

Example:

A adels of \mathbb{Q} G = GL(2) $K_{\infty} = 0(2)$ $K_f = \prod_p GL(2, O_p)$. Then

 $S(K_f) = H/SL(2,\mathbb{Z})$

 $\mathcal{A}(G(\mathbb{A})/A_G G(\mathbb{Q}))$ the space of automorphic forms.

 $\mathcal{A}_{cusp}(G(\mathbb{A})/A_GG(\mathbb{Q}))$ the space of cusp forms

 $\mathcal{A}_{res}(G(\mathbb{A})/A_GG(\mathbb{Q})).$

 $\mathcal{A}(G(\mathbb{A})/A_G G(\mathbb{Q}))$ the space of automorphic forms.

 $\mathcal{A}_{cusp}(G(\mathbb{A})/A_GG(\mathbb{Q}))$ the space of cusp forms

 $\mathcal{A}_{res}(G(\mathbb{A})/A_GG(\mathbb{Q})).$

By Franke

 $H^*(S(K_f), F) = H^*(\mathfrak{g}, K_{\infty}, \mathcal{A}(G(\mathbb{A})/A_G G(\mathbb{Q})) \otimes F)^{K_f}.$

 $\mathcal{A}(G(\mathbb{A})/A_G G(\mathbb{Q}))$ the space of automorphic forms.

 $\mathcal{A}_{cusp}(G(\mathbb{A})/A_GG(\mathbb{Q}))$ the space of cusp forms

 $\mathcal{A}_{res}(G(\mathbb{A})/A_GG(\mathbb{Q})).$

By Franke

 $H^*(S(K_f), F) = H^*(\mathfrak{g}, K_{\infty}, \mathcal{A}(G(\mathbb{A})/A_G G(\mathbb{Q})) \otimes F)^{K_f}.$

By Borel

 $H^*(\mathfrak{g}, K_{\infty}, \mathcal{A}_{cusp}(G(\mathbb{A})/A_G G(\mathbb{Q})) \otimes F))^{K_f}$ $\hookrightarrow H^*(\mathfrak{g}, K_{\infty}, \mathcal{A}(G(\mathbb{A})/A_G G(\mathbb{Q})) \otimes F))^{K_f}.$ The image is the cuspidal cohomology $H^*_{cusp}(S(K_f), F)$.

Theorem 3.

Let G be a connected reductive linear algebraic group defined over \mathbb{Q} whose derived group is simple. Suppose that K_f and τ satisfy the assumptions satisfies of the main theorem. Then

 $H^*_{cusp}(S(K_f),\mathbb{C})\neq 0.$

The image is the cuspidal cohomology $H^*_{cusp}(S(K_f), F)$.

Theorem 3.

Let G be a connected reductive linear algebraic group defined over \mathbb{Q} whose derived group is simple. Suppose that K_f and τ satisfy the assumptions satisfies of the main theorem. Then

 $H^*_{cusp}(S(K_f),\mathbb{C})\neq 0.$

Remark: If τ defines an involution on $K_{\infty} \setminus G(\mathbb{R})$ conjugate to a Cartan involution τ satisfies the assumptions of the theorem.

The image is the cuspidal cohomology $H^*_{cusp}(S(K_f), F)$.

Theorem 3.

Let G be a connected reductive linear algebraic group defined over \mathbb{Q} whose derived group is simple. Suppose that K_f and τ satisfy the assumptions satisfies of the main theorem. Then

 $H^*_{cusp}(S(K_f),\mathbb{C})\neq 0.$

Remark: If τ defines an involution on $K_{\infty} \setminus G(\mathbb{R})$ conjugate to a Cartan involution τ satisfies the assumptions of the theorem.

Previous work by Clozel, Rohlfs-Speh, Borel-Labesse-Schwermer and others

The map

$H^*(\mathfrak{g}, K_{\infty}, \mathcal{A}_{res}(G(\mathbb{A})/A_G G(\mathbb{Q})) \otimes F))^{K_f} \\ \to H^*(\mathfrak{g}, K_{\infty}, \mathcal{A}(G(\mathbb{Q})A_G \setminus G(\mathbb{A})) \otimes F))^{K_f}.$

NOT INJECTIVE. It image is the residual cohomology $H^*_{res}(S(K_f), F)$.

The map

$$H^*(\mathfrak{g}, K_{\infty}, \mathcal{A}_{res}(G(\mathbb{A})/A_G G(\mathbb{Q})) \otimes F))^{K_f} \\ \to H^*(\mathfrak{g}, K_{\infty}, \mathcal{A}(G(\mathbb{Q})A_G \setminus G(\mathbb{A})) \otimes F))^{K_f}.$$

NOT INJECTIVE. It image is the residual cohomology $H^*_{res}(S(K_f), F)$.

Theorem 4. (joint with J.Rohlfs) Suppose that G = Gl(n) and that n = rm. Then for K_f small enough

 $H^{j}_{res}(S(K_f),\mathbb{C})\neq 0$

if

1. r and m even and
$$j = \frac{r(r+1)m}{4} + \frac{r^2m(m+2)}{2}$$

2. r even and m odd and $j = \frac{r(r+1)(m-1)}{4} + \frac{r^2(m-1)(1+m)}{2}$,
3. $m=2$ and $j = r(r+1)/2$.

16

About the proof

About the proof

Main tool: Twisted Arthur trace formula.

We construct a function $f_{\mathbb{A}}$ which satisfies the conditions for the simple trace formula of Kottwitz/Labesse to hold.

About the proof

Main tool: Twisted Arthur trace formula.

We construct a function $f_{\mathbb{A}}$ which satisfies the conditions for the simple trace formula of Kottwitz/Labesse to hold.

 G^* generated by G and τ .

 $F: G(\mathbb{R}) \to \text{End}(V) \ \tau$ -invariant irreducible, extends to representation of $G^*(\mathbb{R})$.

Results at the real Places

 π representation of $G^*(\mathbb{R})$

Definition: $L(\tau,\pi) = \sum (-1)^{-1} tr \tau^i H^i(\mathfrak{g},K,\pi)$

Results at the real Places

 π representation of $G^*(\mathbb{R})$

Definition: $L(\tau,\pi) = \sum (-1)^{-1} tr \tau^i H^i(\mathfrak{g},K,\pi)$

A function $f_F \in C_c^{\infty}(G(\mathbb{R})\tau)$ called a Lefschetz function for F, τ if

a.) $f_F(kgk^{-1}) = f_F(g),$

b.) $tr\pi(f) = L(\tau, \pi \otimes F)$ for all representations π .

c.) $f_F^P = 0$ for P a real parabolic whose conjugacy class is stable under τ

Theorem 5.

Let f_F be the Lefschetz function for F, τ . Suppose that $\gamma \in G(\mathbb{R})\tau$ is an elliptic element. Then

$$O_{\gamma}(f_F) := \int_{G(\mathbb{R})/G(\mathbb{R})(\gamma)} f_F(g\gamma g^{-1}) \, dg = (-1)^{q(\gamma)} e(\tau) \operatorname{tr} F^*(\gamma)$$

Theorem 5.

Let f_F be the Lefschetz function for F, τ . Suppose that $\gamma \in G(\mathbb{R})\tau$ is an elliptic element. Then

$$O_{\gamma}(f_F) := \int_{G(\mathbb{R})/G(\mathbb{R})(\gamma)} f_F(g\gamma g^{-1}) \, dg = (-1)^{q(\gamma)} e(\tau) \operatorname{tr} F^*(\gamma)$$

Theorem 6.

Let f_F be the Lefschetz function for F, τ . Suppose that $\gamma \in G(\mathbb{R})\tau$ has a nontrivial hyperbolic part. Then

$$|\det(I - Ad\gamma)|_{\mathfrak{g}/\mathfrak{g}(\gamma)}^{1/2}O_{\gamma}(f_F) = 0$$

At the finite places,

The Lefschetz function f_L is a generalization of Kottwitz Euler Poincare function

At the finite places,

The Lefschetz function f_L is a generalization of Kottwitz Euler Poincare function

Theorem 7. (Borel Labesse Schwermer Kottwitz) Assume the derived group of G is simple. The only irreducible unitary representations for which tr $\pi(fL) \neq 0$, are one dimensional or the Steinberg representations.

At the finite places,

The Lefschetz function f_L is a generalization of Kottwitz Euler Poincare function

Theorem 7. (Borel Labesse Schwermer Kottwitz) Assume the derived group of G is simple. The only irreducible unitary representations for which tr $\pi(fL) \neq 0$, are one dimensional or the Steinberg representations.

Theorem 8. The orbital integrals of f_L are

$$O_{\gamma}(f_L) = \begin{cases} 1 & \text{if } \gamma \text{ is elliptic,} \\ 0 & \text{otherwise.} \end{cases}$$

Global Setup:

Define

$$f_{\mathbb{A}} = \prod_{\nu} f_{\nu}$$

so that

- At ∞ place f_{ν} Lefschetz function f_{τ} .
- At 2 finite places f_{ν} Lefschetz function f_L .
- All other places characteristic function of open compact subgroup K_{ν} .

By inserting $f_{\mathbb{A}}$ into the twisted trace formula we prove the theorem.

At several places the subgroup K_{ν} has be chosen very carefully and may have to be smaller to ensure that we get a positive contribution on the geometric side of the trace formula.