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G semisimple noncompact Lie group

Γ discrete subgroup with finite covolume

An irreducible unitary representation of G is called automorphic

with respect to Γ if it occurs discretely with finite multiplicity in

L2(Γ\G).

L2
dis(Γ\G) discrete spectrum.
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G semisimple noncompact Lie group

Γ discrete subgroup with finite covolume

An irreducible unitary representation of G is called automorphic

with respect to Γ if it occurs discretely with finite multiplicity in

L2(Γ\G).

L2
dis(Γ\G) discrete spectrum.

L2
0(Γ\G) ⊂ L2

dis(Γ\G) cusp forms

An irreducible automorphic representation of G is called
cuspidal if it occurs discretely with finite multiplicity in L2

cusp(Γ\G).
It is called residual if it occurs in in the complement.
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General Problem: Determine multiplicities of irreducible repre-

sentations in the cuspidal spectrum
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More precise problem: Are there irreducible cuspidal represen-

tations with the following properties: ”Favorite list”
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More precise problem: Are there irreducible cuspidal represen-

tations with the following properties: ”Favorite list”

My ”Favorite list” :

Integral infinitesimal character and invariant under certain auto-

morphisms.

4



The setup and Notation

G algebraic reductive group connected defined over Q
Assume that G(R) has no compact factor

g Lie algebra of G(R)

K∞ ⊂ G(R) max compact

τ : G→ G rational automorphism

F finite dimensional irreducible representation of G(R) n {1, τ}

Note: tr(F (τ)) 6= 0 implies F|G(R) irreducible. So F has an
infinitesimal character.
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A adeles of Q,
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A adeles of Q,

A(G(A)/G(Q)) the space of automorphic forms

Acusp(G(A)/G(Q)) the space of cusp forms
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A adeles of Q,

A(G(A)/G(Q)) the space of automorphic forms

Acusp(G(A)/G(Q)) the space of cusp forms

We have

Acusp(G(A)/G(Q)) = ⊕πA

An irreducible representation is called cuspidal if

Hom(πA,Acusp(G(A)/G(Q)) 6= 0
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We can define πτ = πτ . A representation is called

stable under τ if π and πτ are isomorphic.
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We can define πτ = πτ . A representation is called

stable under τ if π and πτ are isomorphic.

Example: G= Gl(n), τc(A) = (Atr)−1.

A representation invariant under τ is usually called a self dual

representation.
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We can define πτ = πτ . A representation is called

stable under τ if π and πτ are isomorphic.

Example: G= Gl(n), τc(A) = (Atr)−1.

A representation invariant under τ is usually called a self dual

representation.

Problem: For a given F and τ are there τ-stable irreducible

cuspidal representations with the same infinitesimal character as

F ?
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Why care about cuspidal reps stable under automorphisms?
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Why care about cuspidal reps stable under automorphisms?

A look at the example G=GL(n),

πA cuspidal representation of G(A).

L(s, πA, S
2Cn) symmetric square L-function of πA,

L(s, πA,
∧2 Cn) exterior square L-function of πA.

Then L(s, πA, S
2Cn)L(s, πA,

∧2 Cn) has a pole at s=1 precisely if

πA is stable under τc, i.e is self dual.
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Theorem 1.

Let G be a connected reductive linear algebraic group defined

over Q, Assume that G(R) has no compact factors and that the

derived group is simple. Let F be a finite dimensional irreducible

representation of G(R) n {1, τ}, and assume that the centralizer

of τ in g is of equal rank. If tr F (τ) 6= 0, then there exists a

cuspidal automorphic representation πA of G(A) stable under τ ,

with the same infinitesimal character as F.
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Theorem 1.

Let G be a connected reductive linear algebraic group defined

over Q, Assume that G(R) has no compact factors and that the

derived group is simple. Let F be a finite dimensional irreducible

representation of G(R) n {1, τ}, and assume that the centralizer

of τ in g is of equal rank. If tr F (τ) 6= 0, then there exists a

cuspidal automorphic representation πA of G(A) stable under τ ,

with the same infinitesimal character as F.

In addition

H∗(g(R),K∞, πA ⊗ F ) 6= 0.

10



Remark:

tr F (τ) 6= 0 for infinitely many representations.
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Remark:

tr F (τ) 6= 0 for infinitely many representations.

Previous results:

Clozel,1986, G(R) equal rank, τ trivial

Speh-Rohlfs , 1989, cocompact lattice, τ Cartan like

Borel-Labesse-Schwermer, 1996, S-arithmetic subgroups of re-
ductive groups over number fields, τ Cartan like

and some special cases.
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An example:

G=GL(n),

τc Cartan involution with fixed points SO(n),

τs symplectic involution with fixed points Sp(n)
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An example:

G=GL(n),

τc Cartan involution with fixed points SO(n),

τs symplectic involution with fixed points Sp(n)

Theorem 2.

There exist cuspidal representations πA of GL(n,A) with trivial

infinitesimal character invariant under the Cartan involution τc.

If n= 2m there also exist cuspidal representations πA of GL(n,A)

with trivial infinitesimal character invariant under τs.

12



Application:

Kf small compact subgroup

AG connected component of maximal split torus of center of

G(R).

S(Kf) := K∞ Kf\G(A)/AGG(Q) locally symmetric space
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Application:

Kf small compact subgroup

AG connected component of maximal split torus of center of

G(R).

S(Kf) := K∞ Kf\G(A)/AGG(Q) locally symmetric space

Example:

A adels of Q
G= GL(2)

K∞ = 0(2)

Kf =
∏
pGL(2, Op). Then

S(Kf) = H/SL(2,Z)
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A(G(A)/AGG(Q)) the space of automorphic forms.

Acusp(G(A)/AGG(Q)) the space of cusp forms

Ares(G(A)/AGG(Q)).
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A(G(A)/AGG(Q)) the space of automorphic forms.

Acusp(G(A)/AGG(Q)) the space of cusp forms

Ares(G(A)/AGG(Q)).

By Franke

H∗(S(Kf), F ) = H∗(g,K∞,A(G(A)/AGG(Q))⊗ F )Kf .
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A(G(A)/AGG(Q)) the space of automorphic forms.

Acusp(G(A)/AGG(Q)) the space of cusp forms

Ares(G(A)/AGG(Q)).

By Franke

H∗(S(Kf), F ) = H∗(g,K∞,A(G(A)/AGG(Q))⊗ F )Kf .

By Borel

H∗(g,K∞,Acusp(G(A)/AGG(Q))⊗ F ))Kf

↪→ H∗(g,K∞,A(G(A)/AGG(Q))⊗ F ))Kf .
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The image is the cuspidal cohomology H∗cusp(S(Kf), F ).

Theorem 3.

Let G be a connected reductive linear algebraic group defined

over Q whose derived group is simple. Suppose that Kf and τ

satisfy the assumptions satisfies of the main theorem. Then

H∗cusp(S(Kf),C) 6= 0.
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The image is the cuspidal cohomology H∗cusp(S(Kf), F ).

Theorem 3.

Let G be a connected reductive linear algebraic group defined

over Q whose derived group is simple. Suppose that Kf and τ

satisfy the assumptions satisfies of the main theorem. Then

H∗cusp(S(Kf),C) 6= 0.

Remark: If τ defines an involution on K∞\G(R) conjugate to

a Cartan involution τ satisfies the assumptions of the theorem.
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The image is the cuspidal cohomology H∗cusp(S(Kf), F ).

Theorem 3.

Let G be a connected reductive linear algebraic group defined

over Q whose derived group is simple. Suppose that Kf and τ

satisfy the assumptions satisfies of the main theorem. Then

H∗cusp(S(Kf),C) 6= 0.

Remark: If τ defines an involution on K∞\G(R) conjugate to

a Cartan involution τ satisfies the assumptions of the theorem.

Previous work by Clozel, Rohlfs-Speh, Borel-Labesse-Schwermer

and others
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The map

H∗(g,K∞,Ares(G(A)/AGG(Q))⊗ F ))Kf

→ H∗(g,K∞,A(G(Q)AG\G(A))⊗ F ))Kf .

NOT INJECTIVE. It image is the residual cohomology H∗res(S(Kf), F ).
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The map

H∗(g,K∞,Ares(G(A)/AGG(Q))⊗ F ))Kf

→ H∗(g,K∞,A(G(Q)AG\G(A))⊗ F ))Kf .

NOT INJECTIVE. It image is the residual cohomology H∗res(S(Kf), F ).

Theorem 4. (joint with J.Rohlfs) Suppose that G = Gl(n) and

that n = rm. Then for Kf small enough

Hj
res(S(Kf),C) 6= 0

if

1. r and m even and j = r(r+1)m
4 + r2m(m+2)

2

2. r even and m odd and j = r(r+1)(m−1)
4 + r2(m−1)(1+m)

2 ,

3. m=2 and j = r(r + 1)/2.
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About the proof
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About the proof

Main tool: Twisted Arthur trace formula.

We construct a function fA which satisfies the conditions for the

simple trace formula of Kottwitz/Labesse to hold.
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About the proof

Main tool: Twisted Arthur trace formula.

We construct a function fA which satisfies the conditions for the

simple trace formula of Kottwitz/Labesse to hold.

G∗ generated by G and τ .

F : G(R) → End(V ) τ-invariant irreducible, extends to represen-

tation of G∗(R).
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Results at the real Places

π representation of G∗(R)

Definition: L(τ, π) =
∑

(−1)−1trτ iHi(g,K, π)
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Results at the real Places

π representation of G∗(R)

Definition: L(τ, π) =
∑

(−1)−1trτ iHi(g,K, π)

A function fF ∈ C∞c (G(R)τ) called a Lefschetz function for F, τ

if

a.) fF (kgk−1) = fF (g),

b.) trπ(f) = L(τ, π ⊗ F ) for all representations π.

c.) fPF = 0 for P a real parabolic whose conjugacy class is stable

under τ
18



Theorem 5.

Let fF be the Lefschetz function for F, τ . Suppose that

γ ∈ G(R)τ is an elliptic element. Then

Oγ(fF ) :=
∫
G(R)/G(R)(γ)

fF (gγg−1) dg = (−1)q(γ)e(τ)tr F ∗(γ)
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Theorem 5.

Let fF be the Lefschetz function for F, τ . Suppose that

γ ∈ G(R)τ is an elliptic element. Then

Oγ(fF ) :=
∫
G(R)/G(R)(γ)

fF (gγg−1) dg = (−1)q(γ)e(τ)tr F ∗(γ)

Theorem 6.

Let fF be the Lefschetz function for F, τ . Suppose that

γ ∈ G(R)τ has a nontrivial hyperbolic part. Then

|det(I −Adγ)|1/2
g/g(γ)Oγ(fF ) = 0
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At the finite places,

The Lefschetz function fL is a generalization of Kottwitz Euler

Poincare function
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At the finite places,

The Lefschetz function fL is a generalization of Kottwitz Euler

Poincare function

Theorem 7. (Borel Labesse Schwermer Kottwitz) Assume the

derived group of G is simple. The only irreducible unitary rep-

resentations for which tr π(fL) 6= 0, are one dimensional or the

Steinberg representations.
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At the finite places,

The Lefschetz function fL is a generalization of Kottwitz Euler

Poincare function

Theorem 7. (Borel Labesse Schwermer Kottwitz) Assume the

derived group of G is simple. The only irreducible unitary rep-

resentations for which tr π(fL) 6= 0, are one dimensional or the

Steinberg representations.

Theorem 8. The orbital integrals of fL are

Oγ(fL) =

1 if γ is elliptic,

0 otherwise.
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Global Setup:

Define

fA =
∏
ν
fν

so that

• At ∞ place fν Lefschetz function fτ .

• At 2 finite places fν Lefschetz function fL.

• All other places characteristic function of open compact sub-

group Kν.
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By inserting fA into the twisted trace formula we prove the the-

orem.

At several places the subgroup Kν has be chosen very carefully

and may have to be smaller to ensure that we get a positive

contribution on the geometric side of the trace formula.

22


