
NOTIONS OF DIMENSION
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A quick overview of some basic notions of dimension for a summer REU program
run at UConn in 2010 with a view towards using dimension as a tool in attempting
to define fractals.

1. Topological Dimension

An inductive definition given in [3]. This is in the context of a separable metric
space X.

Definition 1. A set is of dimension zero if for any point p ∈ X if there are
arbitrarily small neighborhoods of p whose boundary is empty. A set is of dimension
n if there are arbitrarily small neighborhoods of any point p whose boundary is of
dimension ≤ n− 1.

Notice that this definition implicitly defines the dimension of the empty set as
zero.

Example 1. The set of rational numbers in R is of dimension zero. As are the
irrational numbers and in fact any totally disconnected set.

Under this definition we have that R is the union of two dimension zero sub-
sets yet it has dimension one itself. This is a source of dissatisfaction with this
definition of dimension. This next definition is given in [4] and also depends only
on the topological structure of the space X. This notion was originally Lebesgue’s
“covering dimension.”

Definition 2. A collection A of subsets of X is of order m+ 1 if some point of X
lies in m+ 1 elements of A, and no point of Z lies in more than m+ 1 elements of
A.

Definition 3. A space X is said to be finite dimensional if there is some integer m
such that for every open covering A of x, there is an open covering B that refines1

A and has order at most m+1. The topological dimension is defined as the smallest
value of m for which this statement holds. We denote it by dimT (X).

Using this definition there is a much more satisfactory relationship between the
dimension of a space and the dimension of it’s constituent pieces.

Theorem 1. Let X = Y ∪ Z, where Y, Z are close subspaces of X having finite
topological dimension. Then

(1.1) dimT (X) = max{dimT (Y ), dimT (Z)}.
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While the “covering dimension” is more satisfactory than the inductive topolog-
ical dimension it still has a few failings that we encourage us to look for something
more sophisticated. First, it does not reflect the amount of fine detail present in
X. This is because dimT takes values in the natural numbers. Second, given some
cover A of X the search through all possible refinements B of A is a daunting and
infinite task. It will actually turn out that this kind of problem never leaves us, it
can be mitigated later on by asking for only upper bounds on dimensions and not
exact values.

2. Similarity Dimension

This notion of dimension is given first for sets that are strictly self-similar. Even
relaxing the condition that the contractions mappings be affine ruins the proofs
and invalidates the general results. It is possible to consider some particularly
nice self-affine sets though. Recall that the difference between affine and similar
is the uneven scaling in different directions, this is not the same as the different
similarities having different scaling ratios. See Section 9.4 of [1]. So we will assume
that are considering self similar sets produced from similarities.

Definition 4. A self-similar set satisfies the open set condition if there exists a
non-empty open set V such that

(2.1) V ⊃
N⋃
i=1

Si(V )

with the union being disjoint.

Definition 5. Suppose that F is a strictly self-similar set such that F =
⋃N
i=1 Si(F )

where the Si are similarities and satisfies the open set condition and the contraction
ratios of the similarities are ri then the similarity dimension of F is the solution
to the equation

(2.2)
N∑
i=1

rsi = 1.

In the case where all of the similarities have equal contraction ratios there is a
simpler formula:

(2.3) dimS(F ) = − log(N)
log(r)

.

Similarity dimension has the peculiar distinction of being easy to calculate. This
is also what many, but not all, people will call fractal dimension. Although that
is often mistaken for a non-integer value of the Hausdorff dimension. One serious
disadvantage though is that the realm of applicability is rather limited. For topo-
logical dimension we needed only a topological space, here we need a space with two
very special properties. This is often good enough if we have nice enough fractals
to work with which is why you’ve probably seen this notion of dimension before.

3. Minkowski Dimension

Also called “box-counting” dimension is based on a method of measuring the
size of sets if one already knew the correct exponent (for example 2 in the plane).
Assume that F is a non-empty subset of Rn.



DIMENSIONS 3

Definition 6. Let Nδ(F ) be the smallest number of diameter precisely δ sets it
takes to cover F . The let

(3.1) dim+
M (F ) = lim sup

δ→0

log(Nδ(F ))
− log(δ)

be the upper Minkowski dimension of F . Similarly

(3.2) dim+
M (F ) = lim inf

δ→0

log(Nδ(F ))
− log(δ)

be the lower Minkowski dimension of F . If both the upper and lower Minkowski
dimensions are equal then their common value is the Minkowski dimension of F .

In fact the use of sets of diameter precisely δ can be altered to be boxes of side
length δ, closed sets of diameter exactly δ, largest number of disjoint balls of radius
δ with centers inside F . So in practice one gets to choose the precise definition of
Nδ(F ) in accordance with the situation.

Minkowski dimension has some noteworthy properties. If E ⊂ F then the di-
mension of F is larger than or equal to that of E. The upper Minkowski dimension
has the stability property as in Theorem 1 but lower Minkowski dimension doesn’t.

Proposition 1. Both F and it’s closure have the same upper and lower Minkowski
dimension.

Example 2. Let Q be the rational numbers. Which then have the same Minkowski
dimension as it’s closure, with is all of R. Recall that the topological dimension of
the rational numbers of zero.

In case you thought things would be simpler with closed sets...

Example 3. Let F = {0, 1, 1/2, 1/3, . . .}. Then dimM (F ) = 1
2 . See [1] page 45.

The idea is to take δ ∈
[

1
k(k+1) ,

1
k(k−1)

)
. This set has topological dimension zero as

well.
To get an upper estimate for dimM (F ) let δ < 1

2 . Then there exists a k such that

δ ∈
[

1
k(k+1) ,

1
k(k−1)

)
. Using intervals of length δ it takes k+ 1 of these intervals to

the interval [0.k−1]. This leaves k − 1 points all separated by a distance of at least
δ so it takes another k − 1 intervals of length δ to cover F . So Nδ(F ) ≤ 2k. The
limit is then

(3.3) dim+
M (F ) = lim sup

δ→0

log(Nδ(F ))
− log(δ)

≤ lim sup
k→∞

log(2k)
log(k(k − 1))

=
1
2
.

The lower bound on dim−M (F )is shown along similar lines by the argument that k
intervals of length δ will never be sufficient to cover all of F because of the number
of widely separated points in the set. Thus Nδ(F ) > k and

(3.4) dim−M (F ) = lim inf
δ→0

log(Nδ(F ))
− log(δ)

≤ lim inf
k→∞

log(k)
log(k(k + 1))

=
1
2
.

From these two estimates it is clear that dimM (F ) = 1
2 .

Despite these worries Minkowski dimension is still a useful tool. In many cases
(which will be touched on later) it is possible to show from general principles that
the Minkowski dimension and the Hausdorff dimension are the same where the
Minkowski dimension is much simpler to calculate.
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4. Hausdorff Measure and Dimension

The notion of Hausdorff dimension is applicable to any set in any Euclidean
space and can even be extended to subsets of any metric space as well. This feature
is particularly useful in the study of fractals where the natural metric on a fractal
does not interact well with the normal Euclidean metric.

4.1. Hausdorff Measure. A measure, µ, is a function from some set of sets, A to
[0,∞] with the following nice properties:

(1) µ(∅) = 0 and
(2) if {Ej}∞1 is a sequence of disjoint sets inA then µ

(⋃∞
j=1Ej

)
=
∑∞
j=1 µ(Ej).

There is a comprehensive and important theory of measures for which there are
many introductory texts such as [2]. What is important to know at present about
measures is that they provide a way of giving a “size” to sets in a self-consistent
manner but not always for every possible set and not always a non-trivial value.

Let δ−cover of a set F be a collection of sets U = {Ui} each of whose diameter,
denoted |Ui|, is less than δ. Notice that this is different than the situation for
Minkowski dimension where the diameters had to be precisely δ.

Definition 7. The s−dimensional Hausdorff measure of a set A ⊂ Rn is given by

(4.1) Hs(F ) = lim
δ→0
Hsδ(F ) = lim

δ→0
inf
U

{ ∞∑
i=1

|Ui|s :
⋃
Ui ⊃ F

}
.

For any set in Rn this will have a limit although the limit will generally be either
zero or infinity.

Proposition 2. If F is a subset of Rn and λF is all of the points of F multiplied
by λ then Hs(λF ) = λsHs(F ).

Proof. (Sketch) If you have a δ−cover of F then it gives you a λδ−cover of λF
so there is a correspondence between covers from which one can conclude that the
limits are the same. �

4.2. Hausdorff Dimension. Given a set F ⊂ Rn then for most choices of s you
have something strange happening. For small s and any set F you get thatHs(F ) =
∞ and then for much larger s you get Hs(F ) = 0.

Proposition 3. Let F be a subset of Rn. Then for t > s

(4.2) Hs(F ) ≥ Ht(F ).

Proof. This follows from Proposition 2 by setting up the inequality

(4.3)
∞∑
j=1

|Ui|t ≤ δt−s
∞∑
i=1

|Ui|s.

�

This tells us that Hs(F ) is a non-increasing function of s so once the switch from
a value of infinity to zero occurs the Hausdorff measure stays zero.

Definition 8. Let

(4.4) dimH(F ) = sup
s
{s : Hs(F ) =∞} = inf

s
{s : Hs(F ) = 0}

be the Hausdorff dimension of F .
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It is possible for the dimH−dimensional Hausdorff measure of a set F to be
zero, positive, or infinite and is typically difficult to calculate. In the cases where F
is a n−dimensional manifold the n−dimensional Hausdorff measure is a constant
multiple of Lebesgue measure.

Proposition 4. A set F ⊂ Rn with dimhF < 1 is totally disconnected.

Example 4. Let F be the middle third Cantor set. If s = log(2)/ log(3) then
dimHF = s and 1

2 ≤ H
s(F ) ≤ 1. In fact, Hs(F ) = 1 but that calculation is harder.

Cover the sets Ek by 2k intervals of length 3−k. This gives Hs3−k(F ) = 2k3−sk

which is equal to one if s = log(2)/ log(3). Letting k go to infinity gives an upper
bound on Hs(F ) ≤ 1.

The lower bound is more difficult. It is enough to assume that the Ui that cover F
since we only need a bound. By expanding the Ui slightly and using the compactness
of F we can even assume that there are only finitely many Ui. For each Ui let k
be such that 3−(k+1) ≤ |Ui| ≤ 3−k. Each Ui can only intersect one of the intervals
in Ek since they are separated by a distance of at least 3−k. If j > k then by
construction Ui intersects as most

(4.5) 2j−k = 2j3−sk ≤ 2j3s|Ui|s

of the basic intervals of Ej. Take j large enough so that 3−j−1 ≤ |Ui| we get that
2j ≤

∑
2j3s|Ui| since the collection {Ui} intersect all 2j intervals with length 3−j

of Ej. But this implies that

(4.6)
1
2
≤

M∑
i=1

|Ui|s

thus Hs(F ) ≥ 1
2 . Recall that Hs(F ) can take a value in (0,∞) when s = dimH(F ).

5. Relations Between the Notions

Theorem 2. For any subset of Rn

(5.1) dimH(F ) ≤ dim−M (F ) ≤ dim+
M (F ).

Theorem 3. Let F be as described in Definition 5 then

(5.2) dimS(F ) = dimM (F ) = dimH(F ).

Moreover 0 < Hs <∞ for s = dimH(F ).
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