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Consider automorphisms of free groups, e.g.

f (a) = aaB, f (b) = bA

Note that a, b, ab are reduced words, but f (a) · f (b) = aaB · bA is
not, a word of length 2 cancels.

Notation: [x ] is the reduced word equivalent to x , e.g.
[aaBbA] = a.



Bounded Cancellation Lemma

Theorem (Thurston’s Bounded Cancellation Lemma, 1987)

For every automorphism f : Fn → Fn there is a constant C = C (f )
such that: whenever u, v , uv are reduced words the amount of
cancellation in [f (u)][f (v)] is at most C letters.



Proof:

1. f : Fn → Fn is a quasi-isometry with respect to the word
metric (it is even bilipschitz).

2. Quasi-isometries map geodesics to quasi-geodesics.

3. (Morse stability) Quasi-geodesics in trees (or Gromov
hyperbolic spaces) are contained in Hausdorff neighborhoods
of geodesics.



Train tracks
A train track structure on a graph Γ is a collection of 2-element
subsets of the link of each vertex, called the set of legal turns.



Bill Thurston:
The mental image is that of a railroad switch, or more generally a
switchyard, where for each incoming direction there is a set of
possible outgoing directions where trains can be diverted without
reversing course.
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A path on Γ is legal if it is a local embedding, and at each vertex it
takes a legal turn.
Let g : Γ→ Γ be a cellular map on a finite graph Γ. g is a train
track map if it satisfies the following equivalent conditions:

1. For every k > 0 and every edge e, the path f k(e) has no
backtracking (i.e. it is locally an embedding).

2. There is a train track structure preserved by g : legal paths are
mapped to legal paths. Equivalently, edges are mapped to
legal paths and legal turns are mapped to legal turns.



The map a 7→ aaB, b 7→ bA is a train track map.



Theorem (B.-Handel, 1992)

Every fully irreducible automorphism can be represented by a train
track map.

fully irreducible: no proper free factor is periodic up to conjugation.



Benefits of train track maps g : Γ→ Γ. Assume g is irreducible,
i.e. no homotopically proper g -invariant subgraphs.

I Γ can be assigned a metric so that g stretches legal paths by
a fixed factor λ, the dilatation.

I λ and the metric can be computed from the transition matrix.

I λ is the growth rate of the automorphism.

I λ is a weak Perron number.

(
2 1
1 1

)
a 7→ aaB, b 7→ bA.



Train track maps

a b

a 7→ ab

b 7→ bab

a

d

b

c

a 7→ b

b 7→ c

c 7→ dA

d 7→ DC

|a| = 1, |b| = λ− 1
λ2 − 3λ+ 1 = 0

|a| = 1, |b| = λ
|c | = λ2, |d | = λ3 − 1
λ4 − λ3 − λ2 − λ+ 1 = 0





Theorem (Thurston, 2011)

For every weak Perron number λ there is an irreducible train track
map with dilatation λ. (No rank restriction.)



Questions (Thurston)

I Characterize pseudo-Anosov dilatations, no bound on genus.
Fried’s conjecture.

I λ(f −1) is typically different from λ(f ) for automorphisms of
free groups. Characterize the pairs (λ(f ), λ(f −1)).



Mapping tori and 3-manifolds

If g : Γ→ Γ is a homotopy equivalence representing an
automorphism f : Fn → Fn, the mapping torus

Mg = Γ× [0, 1]/(x , 1) ∼ (g(x), 0)

has fundamental group
Fn of Z

also called the mapping torus of f .
Principle: These are similar to 3-manifolds.



A group is coherent if each of its finitely generated subgroups is
finitely presented.

Theorem (Scott, 1973)

Every finitely generated 3-manifold group is coherent.

Theorem (Feighn-Handel, 1999)

Mapping tori of free group automorphisms are coherent.



Theorem (Thurston)

If f : S → S is a homeomorphism of a surface that does not have
periodic isotopy classes of essential scc’s, the mapping torus Mf is
a hyperbolic 3-manifold.



Theorem (B-Feighn, Brinkmann)

If f : Fn → Fn does not have any nontrivial periodic conjugacy
classes, then Fn of Z is a Gromov hyperbolic group.

Theorem (Hagen-Wise, 2014)

If Fn of Z is hyperbolic, then it can be cubulated. So by [Agol,
Wise] it is linear.

Theorem (Bridson-Groves)

For any automorphism f : Fn → Fn the mapping torus Fn of Z
satisfies quadratic isoperimetric inequality.



Theorem (Thurston)

If M is a hyperbolic 3-manifold, the set of classes in H1(M;Z)
corresponding to fibrations is the intersection

C ∩ H1(M;Z)

for a finite collection of polyhedral open cones C ⊂ H1(M;R).



Theorem (Fried, 1982)

There is a continuous, homogeneous function of degree −1 defined
on C that on points of H1(M;Z) evaluates to log(λ), where λ is
dilatation of the monodromy.

Theorem (McMullen, 2000)

There is a (Teichmüller) polynomial Θ ∈ Z[H1(M)] so that for
every α ∈ C ∩H1(M;Z), the house of the specialization Θα ∈ Z[Z]
is the dilatation of the monodromy.



Theorem (Dowdall-I.Kapovich-Leininger,
Algom-Kfir-Hironaka-Rafi, 2013-14)

I Let G = Fnof Z be hyperbolic. The set of classes in H1(G ;Z)
corresponding to fibrations G = FN oF Z with expanding train
track monodromy is the intersection C ∩ H1(G ;Z) for a
collection of open polyhedral cones C ⊂ H1(G ;R).

I There is a continuous, homogeneous function of degree −1
that on integral points evaluates to log(λ), λ is the dilatation
of the monodromy.

I There is a polynomial Θ ∈ Z[H1(G )/tor] so that for every
α ∈ C ∩ H1(G ;Z), the house of the specialization Θα ∈ Z[Z]
is the dilatation of the monodromy.

Cf. Bieri-Neumann-Strebel



Outer space

Definition

I graph: finite 1-dimensional cell complex Γ, all vertices have
valence ≥ 3.

I rose R = Rn: wedge of n circles.
a

b

c

ab

aba

I marking: homotopy equivalence g : Γ→ R.

I metric on Γ: assignment of positive lengths to the edges of Γ
so that the sum is 1.



Outer space

Definition (Culler-Vogtmann, 1986)

Outer space CVn is the space of equivalence classes of marked
metric graphs (g , Γ) where (g , Γ) ∼ (g ′, Γ′) if there is an isometry
φ : Γ→ Γ′ so that g ′φ ' g .

Γ
g

↘
φ ↓ R

↗
g ′

Γ′

a

b

b

aB



Outer space in rank 2

a b

a B

aB
b

Triangles have to be added to edges along the base.



Picture of rank 2 Outer space by Karen Vogtmann



contractibility

Theorem (Culler-Vogtmann 1986)

CVn is contractible.



Action
If φ ∈ Out(Fn) let f : R → R be a h.e. with π1(f ) = φ and define

φ(g , Γ) = (fg , Γ) Γ
g→ Rn

f→ Rn

I action is simplicial,

I point stabilizers are finite.

I there are finitely many orbits of simplices (but the quotient is
not compact).

I the action is cocompact on the spine SCVn ⊂ CVn.



Topological properties
Finiteness properties:

I Virtually finite K (G , 1) (Culler-Vogtmann 1986).
I vcd(Out(Fn)) = 2n − 3 (n ≥ 2) (Culler-Vogtmann 1986).
I every finite subgroup fixes a point of CVn.

Other properties:
I every solvable subgroup is finitely generated and virtually

abelian (Alibegović 2002)
I Tits alternative: every subgroup H ⊂ Out(Fn) either contains

a free group or is virtually abelian (B-Feighn-Handel, 2000,
2005)

I Bieri-Eckmann duality (B-Feighn 2000)

H i (G ; M) ∼= Hd−i (G ; M ⊗ D)

I Homological stability (Hatcher-Vogtmann 2004)

Hi (Aut(Fn)) ∼= Hi (Aut(Fn+1)) for n >> i

I Computation of stable homology (Galatius, 2011)



Lipschitz metric on Outer space

Motivated by Thurston’s metric on Teichmüller space (1998).
If (g , Γ), (g ′, Γ′) ∈ CVn consider maps f : Γ→ Γ′ so that g ′f ' g
(such f is the difference of markings).

Γ
g

↘
f ↓ R

↗
g ′

Γ′

Consider only f ’s that are linear on edges.
Arzela-Ascoli ⇒ ∃f that minimizes the largest slope, call it
σ(Γ, Γ′).



Lipschitz metric on Outer space

Definition
d(Γ, Γ′) = log σ(Γ, Γ′)

I d(Γ, Γ′′) ≤ d(Γ, Γ′) + d(Γ′, Γ′′),

I d(Γ, Γ′) = 0 ⇐⇒ Γ = Γ′.

I in general, d(Γ, Γ′) 6= d(Γ′, Γ).

I Geodesic metric.

Example

0.5 0.5

x

1−x

A

B

d(A,B) = log
1− x

0.5
→ log 2

d(B,A) = log
0.5

x
→∞

But [Handel-Mosher] The restriction of d to the spine is
quasi-symmetric, i.e. d(Γ, Γ′)/d(Γ′, Γ) is uniformly bounded.



Lipschitz metric on Outer space

Theorem (Thurston)

Let f : S → S ′ be a homotopy equivalence between two closed
hyperbolic surfaces that minimizes the Lipschitz constant in its
homotopy class. Then there is a geodesic lamination Λ ⊂ S so that
f is linear along the leaves of Λ with slope equal to the maximum.
Moreover, f can be perturbed so that in the complement of Λ the
Lipschitz constant is smaller than maximal.

For the optimal map, lines of tension form a geodesic lamination.



Lipschitz metric on Outer space

Theorem
Let f : Γ→ Γ′ be a homotopy equivalence between two points of
CVn that minimizes the Lipschitz constant in its homotopy class.
Then there is a subgraph Γ0 ⊂ Γ so that f is linear along the edges
of Γ0 with slope equal to the maximum and Γ0 has a train track
structure so that legal paths are stretched maximally. Moreover, f
can be perturbed so that in the complement of Γ0 the Lipschitz
constant is smaller than maximal.

1/2

1/4 1/4

1/4

1/4

1/4

1/4

For the optimal map, lines of tension form a train track.



Proof of existence of train track maps

Proof.
(Sketch) Parallel to Bers’ proof of Nielsen-Thurston classification.
Consider

Φ : CVn → [0,∞)

Φ(Γ) = d(Γ, φ(Γ))

There are 3 cases:

I inf Φ = 0 and is realized. Then there is Γ with φ(Γ) = Γ so φ
has finite order.

I inf Φ > 0 and is realized, say at Γ. Apply above Theorem to
φ : Γ→ φ(Γ). Argue that Γ0 = Γ or else φ is reducible.
Train-track structure on Γ0 can be promoted to give the
theorem.

I d = inf Φ is not realized. Let Γi ∈ CVn have
d(Γi , φ(Γi ))→ d . Argue that projections to CVn/Out(Fn)
leave every compact set. Thus Γi has “thin part” which must
be invariant, so φ is reducible.



Proof of existence of train track maps



Axes
Irreducible φ has an axis with translation length log λ, where λ is
the expansion rate of φ.

Theorem (Yael Algom-Kfir, 2008)

Axes of fully irreducible elements are strongly contracting, i.e. the
projection of any ball disjoint from the axis to the axis has
uniformly bounded size.

The analogous theorem in
Teichmüller space was proved by
Minsky (1996).

Corollary (Yael Algom-Kfir)

Axes of fully irreducible elements
are Morse.



Very recent developments

I Hyperbolicity of associated complexes

I Boundary

I Subfactor projections and estimating distances

I Poisson boundary of Out(Fn)



Complex of free splittings Sn

Add missing faces to CVn. This simplicial complex is Sn.
An ideal point represents a graph of groups decomposition of Fn

with trivial edge groups.
Alternate description: complex of spheres in Mn = #n

1S1 × S2.





Complex of free factors Fn

Analogous to the Bruhat-Tits building for GLn(Z).

I Vertex: conjugacy class of proper free factors

I Simplex: Flag, i.e. collection of vertices that become nested
after appropriately conjugating.



Theorem (2011)

Both Fn [B-Feighn] and Sn [Handel-Mosher] are δ-hyperbolic. An
automorphism acts hyperbolically on Fn iff it is fully irreducible.



Hyperbolicity criteria
Masur-Minsky,...,Bowditch

Theorem (Masur-Schleimer, Bowditch, 2012)

Let X be a connected graph, h ≥ 0, and for all x , y ∈ X (0) there is
a connected subgraph L(x , y) 3 x , y so that:

I (thin triangles) for all x , y , z L(x , y) ⊆ Nh(L(x , z) ∪ L(z , y)),

I d(x , y) ≤ 1 implies diam(L(x , y)) ≤ h.

Then X is hyperbolic.



There are coarse maps:

CVn → Sn → Fn

Can take L(·, ·) to be images of folding paths [Stallings], or
Hatcher’s surgery paths (Horbez-Hilion).



Large scale geometry of Out(Fn)

Modeled on the Masur-Minsky theory of subsurface projections.
Goal: Construct many actions of Out(Fn) (or a finite index
subgroup) on δ-hyperbolic spaces.
Here we use splitting complexes – action is freer.

Theorem (B-Feighn)

If A,B are free factors “in
general position” then there is a
coarsely well defined projection
πA(B) ∈ S(A).

Taylor: Version for F(A), sharp notion of “general position”.



Projection complexes
There is a “projection complex” [B-Bromberg-Fujiwara] that
organizes subsurface and subfactor projections into individual
hyperbolic spaces.



Theorem (B-Bromberg-Fujiwara)

The mapping class group Mod(S) acts on a product Y1 × · · · × Yk

of hyperbolic spaces so that an orbit map is a QI embedding.

Theorem (B-Feighn)

Out(Fn) acts on a product Y1 × · · · × Yk of hyperbolic spaces so
that every exponentially growing automorphism has positive
translation length.

Question: Can a finite index subgroup of Out(Fn) act on a
δ-hyperbolic space so that a 7→ ab, b 7→ b, · · · has positive
translation length?



Boundary of Fn

I Outer space has a natural compactification CV n where ideal
points are represented by Fn − R-trees (Culler-Morgan).

I Structure of individual Fn − R-trees (Coulbois, Hilion,
Reynolds)

I Notion of arational trees – these correspond to filling
laminations in PML. Cf. Klarreich.

Definition
A tree T ∈ ∂CVn is arational if every proper factor A < Fn acts on
T discretely and freely.

Theorem (B-Reynolds, Hamenstädt)

The Gromov boundary of Fn can be identified with the
subquotient of ∂CVn = CV n − CVn, namely

{arationaltrees}/ ∼

where the equivalence is equivariant homeomorphism. Equivalence
classes are simplices.



Poisson boundary

Consider a random walk on Out(Fn), with measure of finite
support generating the whole group.

Theorem (Horbez, 2014)

The hitting measure is supported on the set of arational trees.

Theorem (Horbez, 2014)

∂Fn serves as a model of the Poisson boundary of Out(Fn).



Questions about the geometry of Out(Fn)

I Asymptotic dimension asdim(Out(Fn)) <∞?
asdim(S) <∞? asdim(F) <∞?

I Compute rank(Out(Fn)) (= largest N so that there is a qi
embedding RN → Out(Fn)).

I Asymptotic cone of Out(Fn). Is it tree graded? Dimension?

I QI rigidity?


