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Seifert genus

The (Seifert) genus of a knot K ⊂ S3 is defined to be

g(K ) = min{g(F )| F is a Seifert surface for K}.



Genus bounds from the Alexander polynomial

Let

∆K (t) = a0 +
n∑

i=1

ai(t i + t−i)

be the symmetrized Alexander polynomial of a knot K , where
an 6= 0.

Proposition
The genus of K is bounded below by the degree of ∆K , namely

deg∆K := n ≤ g(K ).

This bound is not always sharp. In fact, there are infinitely many
nontrivial knots with ∆K ≡ 1.
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Thurston Norm (Thurston, 1976)
Let S be a compact oriented surface with connected
components

S1, . . . ,Sn.

We define
χ−(S) =

∑
i

max{0,−χ(Si)}.

Let M be a compact oriented 3–manifold, A be a homology
class in H2(M;Z) or H2(M, ∂M;Z). The Thurston norm x(A) of
A is defined to be the minimal value of χ−(S), where S runs
over all the properly embedded oriented surfaces in M with
[S] = A.

Any Seifert surface can be regarded as a properly embedded
surface in M = S3 \ int(ν(K )), where ν(K ) is a tubular
neighborhood of K in S3. Let A be a generator of
H2(M, ∂M) ∼= Z, then

x(A) =

{
0, when K is the unkot,
2g(K )− 1, otherwise.
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A semi-norm

The function x has the following basic properties:
I (Homogeneity) x(nA) = |n| · x(A), n ∈ Z.
I (Triangle Inequality) x(A + B) ≤ x(A) + x(B).

Thus one can extend x homogenously and continuously to a
semi-norm x on H2(M;R) or H2(M, ∂M;R).
It is only a semi-norm because x vanishes (exactly) on the
subspace of H2 generated by the homology classes of spheres,
disks, tori and annuli.

McMullen: there is a lower bound to x in terms of the Alexander
polynomial of M.

The unit ball of x is a convex polytope which is symmetric in the
origin, also called the Thurston polytope.
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A page from Thurston’s paper “A norm for the
homology of 3–manifolds”



Thurston norm and taut foliations

Theorem (Thurston)
Suppose that M is a compact oriented 3–manifold. Let F be a
taut foliation over M such that each component of ∂M is either
a leaf of F or transverse to F , and in the latter case F |∂M is
also taut. Then every compact leaf of F attains the minimal χ−
in its homology class.
The proof uses a technique independently developed by
Roussarie and Thurston (in his thesis).

Gabai proved a converse to the above theorem.

Theorem (Gabai)
Suppose that M is a compact oriented irreducible 3–manifold
with (possibly empty) boundary consisting of tori. Let S ⊂ M be
a properly embedded surface which minimizes χ− in the
homology class of [S] ∈ H2(M, ∂M). Then there exists a taut
foliation F over M such that S consists of compact leaves of F .
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Spinc structures
Suppose that Y is an oriented 3–manifold. The set Spinc(Y ) of
Spinc structures is an affine set over H2(Y ). Namely, there is a
faithful and transitive action of H2(Y ) on Spinc(Y ), denoted by
addition:

Spinc(Y ) × H2(Y ) → Spinc(Y )
s α 7→ s + α.

Thus Spinc(Y ) is in one-to-one correspondence with H2(Y ).
Although this correspondence is not canonical, the difference
between any two Spinc structures is a well-defined element in
H2(Y ).

Moreover, for any s ∈ Spinc(Y ), there is a first Chern class
c1(s) ∈ H2(Y ) satisfying

c1(s1)− c1(s2) = 2(s1 − s2).
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Heegaard Floer homology

Let Y be a closed, oriented, connected 3-manifold,
s ∈ Spinc(Y ). Ozsváth and Szabó defined a package of
invariants associated with (Y , s): ĤF (Y , s),HF+(Y , s) . . .

The simplest of them, ĤF (Y , s), is a finitely generated abelian
group.

Example: ĤF (S3) ∼= H∗(pt), HF+(S3) ∼= H∗(CP∞).

For each Y , there are only finitely many s ∈ Spinc(Y ) such that
ĤF (Y , s) 6= 0 (⇐⇒ HF+(Y , s) 6= 0).
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The simplest of them, ĤF (Y , s), is a finitely generated abelian
group.
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ĤF (Y , s) 6= 0 (⇐⇒ HF+(Y , s) 6= 0).



Heegaard Floer homology

Let Y be a closed, oriented, connected 3-manifold,
s ∈ Spinc(Y ). Ozsváth and Szabó defined a package of
invariants associated with (Y , s): ĤF (Y , s),HF+(Y , s) . . .
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Heegaard Floer homology detects the Thurston norm

Theorem (Ozsváth–Szabó)
Suppose that Y is a closed oriented 3–manifold, A ∈ H2(Y ).
Then

x(A) = max
{
〈c1(s),A〉

∣∣s ∈ Spinc(Y ), HF+(Y , s) 6= 0
}
.

This theorem can be viewed as a generalization of McMullen’s
Alexander bound of the Thurston norm.
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Knot Floer homology and Seifert genus
There are also versions of the previous theorem for manifold
with torus boundary.
When K is a knot in S3, its knot Floer homology is a finitely
generated bigraded abelian group

ĤFK (K ) =
⊕

i,j

ĤFK j(K , i).

Here i is called the “Alexander grading”, and j is the “Maslov
grading” or “homological grading”. This invariant was
introduced by Ozsváth–Szabó and Rasmussen.

Theorem (Ozsváth–Szabó)
Suppose K is a knot in S3, g(K ) is its genus. Then

g(K ) = max
{

i
∣∣∣ ĤFK (K , i) 6= 0

}
.

This theorem has been genralized to links in S3

(Ozsváth–Szabó) and in arbitrary closed 3–manifold (Ni).
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Thurston’s influence everywhere

Ozsváth–Szabó’s original proof of these theorems builds on
Thurston and Gabai’s work on Thurston norm and taut
foliations, and many other deep results in contact and
symplectic topology due to

I Eliashberg–Thurston
I Giroux (the converse to a theorem of

Thurston–Winkelnkemper)
I Donaldson (the converse to a generalization of a theorem

of Thurston)
I Eliashberg and Etnyre.

Later developments allow us to bypass these contact and
symplectic results (Juhász, Kronheimer–Mrowka, Ni).
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Rational Seifert surface

Let K ⊂ Y be a rationally null-homologous knot, namely,
[K ] = 0 ∈ H1(Y ;Q).
A properly embedded oriented surface F ⊂ M = Y \ int(ν(K ))
is called a rational Seifert surface for K , if ∂F consists of
coherently oriented parallel curves on ∂M, and the orientation
of ∂F is coherent with the orientation of K .
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Rational genus

Calegari–Gordon: The rational genus of K is defined to be

gr (K ) = min
F

χ−(F )

2|[µ] · [∂F ]|
,

where F runs over all the rational Seifert surfaces for K , and
µ ⊂ ∂ν(K ) is the meridian of K .

When K is null-homologous and nontrivial,

gr (K ) =
2g(K )− 1

2
= g(K )− 1

2
.
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A function on TorsH1(Y )

Given a torsion homology class a ∈ TorsH1(Y ), let

Θ(a) = min
K⊂Y , [K ]=a

2gr (K ).

This Θ was introduced by Turaev as an analogue of Thurston
norm.
In fact, it measures the complexity of certain “folded” surfaces
representing homology classes in H2(Y ;Q/Z).
Turaev gave a lower bound to Θ(a) in terms of his torsion
function. He asked whether this lower bound is sharp for lens
spaces.
By definition, Turaev’s lower bound is always less than 1.
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Turaev gave a lower bound to Θ(a) in terms of his torsion
function. He asked whether this lower bound is sharp for lens
spaces.
By definition, Turaev’s lower bound is always less than 1.



Correction terms

For a rational homology sphere Y , there is an absolute Maslov
Q–grading on HF+(Y , s).

In this case, there is a canonical subgroup in HF+(Y , s) which
is isomorphic to H∗−d (CP∞) for some d = d(Y , s) ∈ Q. This
d(Y , s) ∈ Q is called the correction term of (Y , s).
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Lens spaces

Let the lens space L(p,q) be oriented as the p
q -surgery on S3.

The correction terms of L(p,q) can be computed by the
recursive formula:

d(S3,0) = 0,

d(L(p,q), i) = −1
4

+
(2i + 1− p − q)2

4pq
− d(L(q, r), j),

where 0 ≤ i < p, r and j are the reductions modulo p of q and i ,
respectively.

There are also closed formulas for d(L(p,q), i) involving
Dedekind sums (Némethi, Tange) or Dedekind–Rademacher
sums (Jabuka–Robins–Wang).
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The rational genus bound

Theorem (Ni–Wu)
Suppose that Y is a rational homology 3–sphere, K ⊂ Y is a
knot, F is a rational Seifert surface for K . Then

1 +
−χ(F )

|[∂F ] · [µ]|
≥ max

s∈Spinc(Y )

{
d(Y , s + PD[K ])− d(Y , s)

}
.

The right hand side of the inequality only depends on the
manifold Y and the homology class of K , so it gives a lower
bound for 1 + Θ(a) for the homology class a = [K ].
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Floer simple knots in L-spaces
A rational homology sphere Y is an L-space if

rank ĤF (Y ) = |H1(Y ;Z)|.

Examples of L-spaces include lens spaces, spherical space
forms, double branched cover of S3 branched along alternating
links . . .
Given a 3–manifold Z , a rationally null-homologous knot K ⊂ Z
is a Floer simple knot if

rank ĤFK (Z ,K ) = rank ĤF (Z ),

where ĤFK (Z ,K ) is the knot Floer homology of K .

Corollary (Ni–Wu)
The bound for Θ via correction terms is sharp for the homology
classes represented by Floer simple knots in L-spaces. In fact,
Floer simple knots in L-spaces attain the minimal values of the
rational genus in their homology classes.
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where ĤFK (Z ,K ) is the knot Floer homology of K .

Corollary (Ni–Wu)
The bound for Θ via correction terms is sharp for the homology
classes represented by Floer simple knots in L-spaces. In fact,
Floer simple knots in L-spaces attain the minimal values of the
rational genus in their homology classes.



Simple knots

Let U1 ∪ U2 be the genus one Heegaard
splitting of L(p,q). Let Di be the meridian
disk of Ui , then ∂D1 ∩ ∂D2 consists of p
points.

Pick any two points in ∂D1 ∩ ∂D2,
connecting them with arcs γ1 ⊂ D1 and
γ2 ⊂ D2. The knot γ1 ∪ γ2 is called a simple
knot in L(p,q). There is exactly one simple
knot up to isotopy in each homology class.
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Computing Θ for lens spaces

Simple knots in lens spaces are Floer simple. Thus the Θ of
lens spaces can be computed from the correction terms, and
simple knots are genus minimizers in their homology classes.

This proves a conjecture of Rasmussen and also answers a
previously mentioned question of Turaev. Rasmussen had
proved his conjecture in the case when Θ(a) < 1.

Our computation shows that Θ can be quite large for lens
spaces. For example, in L(p,1), for the homology class
a ∈ {0,1, . . . ,p − 1},

Θ(a) = max{0, a(p − a)

p
− 1}.

So if a ∼ p
2 , Θ(a) ∼ p

4 .
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Lens space surgery

Theorem (Hedden, Rasmussen)
Suppose that L(p,q) is obtained by p-surgery on a knot
K ⊂ S3, then the dual knot K ′ ⊂ L(p,q) is a Floer simple knot,
and it is a rational genus minimizer in its homology class.
There are similar results for lens space surgery on knots in lens
spaces (studied by Boileau–Boyer–Cebanu–Walsh) or S1 × S2

(studied by Cebanu, Baker–Buck–Lecuona).
Thus it is an interesting problem to find all the rational genus
minimizers in lens spaces.
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Uniqueness of genus minimizers

When Θ(a) < 1
2 and the minimal genus rational Seifert surface

has only one boundary component, Baker proved that any
rational genus minimizer in the homology class a must have
bridge number 1.

Rasmussen asked the question whether simple knots are the
unique rational genus minimizers in lens spaces.
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Non-uniqueness of genus minimizers

Theorem (Greene–Ni)
There are infinitely many triples (p,q,a), such that there are
non-simple rational genus minimizers in the homology class
a ∈ H1(L(p,q)). Moreover, there exist infinitely many triples
(p,q,a), such that there are infinitely many rational genus
minimizers in the homology class a ∈ H1(L(p,q)).
All the examples we have found have large Θ. It is possible that
the uniqueness holds when Θ is small. For example, when
Θ < 1

2 or even Θ < 1.
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The simplest example

The simplest example we have found is the (1,2)–cable of the
(1,2)–torus knot in L(8,1). The simple knot in this homology
class is the (1,4)–torus knot.
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Non-orientable genus

Fact: Any non-orientable surface Π ⊂ Y represents a nonzero
class in H2(Y ;Z2). Conversely, any nonzero class in H2(Y ;Z2)
is represented by a non-orientable surface.

Thus we can ask what the minimal genus is among all
non-orientable surfaces representing a given A ∈ H2(Y ;Z2).
Denote this minimal genus h(Y ,A).

This h(Y ,A) is closely related to the the so-called Z2-Thurston
norm ||A||Z2 of A. Similar to the Thurston norm, ||A||Z2 is
defined to be the minimal χ− of (not necessarily orientable)
surfaces representing A.
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Non-orientable genus and Θ

When the order of [K ] ∈ H1(Y ;Z) is 2, any rational Seifert
surface F gives rise to a closed non-orientable surface F̂ ⊂ Y ,
such that β([F̂ ]) = [K ], where

β : H2(Y ;Z2)→ H1(Y ;Z)

is the Bockstein homomorphism. This relates Θ([K ]) with the
non-orientable genus of F̂ .

Proposition
Let Y be a rational homology 3–sphere. Given a nonzero class
A ∈ H2(Y ;Z2), if h(Y ,A) ≥ 2, then we have

h(Y ,A) = 2Θ(β(A)) + 2.
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Bounding the non-orientable genus

Corollary
Let Y be a rational homology 3–sphere, A ∈ H2(Y ;Z2), then

h(Y ,A) ≥ 2 max
s∈Spinc(Y )

{
d(Y , s + PD ◦ β(A))− d(Y , s)

}
.

For L(p,q), the bound is sharp. This provides a new proof of a
classical theorem of Bredon and Wood (1969).

Levine–Ruberman–Strle proved that the bound in the above
corrollary is also a lower bound to the non-orientable genus in
Y × I.
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More computations

Ni–Wu:
Let L be the closure of the pure 3–braid

σ = σ1σ
−2a1
2 σ1σ

−2a2
2 · · ·σ1σ

−2a2n−1
2 σ1σ

−2a2n
2 ,

where ai ,n > 0, and Σ(L) be the double branched
cover of S3 branched along L. Then the
Z2–Thurston norms of the three nonzero
homology classes in H2(Σ(L);Z2) are

∑
i odd

ai + n − 2,
∑

i even

ai + n − 2,
2n∑

i=1

ai − 2.

2a1

2a2



The complexity of 3-manifolds

Moise: Every 3-manifold is triangulable.
Let C(Y ) be the minimal number of tetrahedra one needs to
(pseudo-linearly) triangulate Y , called the complexity of Y .
This invariant is hard to compute. The difficulty is to find a lower
bound to C(Y ).

Theorem (Jaco–Rubinstein–Tillmann)
Let Y be a closed, orientable, irreducible, atoroidal, connected
3–manifold with triangulation T . Let H ⊂ H2(Y ;Z2) be a rank 2
subgroup, then

|T | ≥ 2 +
∑
A∈H

||A||Z2 .
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The theorem of Ni–Wu implies that || · ||Z2 is bounded below in
terms of correction terms. As a result, C(Y ) is bounded below
in terms of correction terms in the cases discussed in
Jaco–Rubinstein–Tillmann.

In the previous example of Σ(L), H1(Σ(L);Z2) ∼= Z2 ⊕ Z2, and

C(Σ(L)) ≥ 2
2n∑

i=1

ai + 2n − 4.

On the other hand, we can construct a triangulation of Σ(L) with

2
2n∑

i=1

ai + 4n

tetrahedra. So we bound C(Σ(L)) in a range of length 2n + 4.
We should be able to do much better according to Rubinstein.
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Thank you!
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