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Thurston(Qn 19 of the 1982 Bulletin of the AMS article)

Find topological and geometric properties of quotient spaces of

arithmetic subgroups of PSL(2,C). These manifolds often seem to

have special beauty.
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Thurston(Qn 19 of the 1982 Bulletin of the AMS article)

Find topological and geometric properties of quotient spaces of

arithmetic subgroups of PSL(2,C). These manifolds often seem to

have special beauty.

Many of the key examples in the development of the theory of

geometric structures on 3-manifolds (e.g. the figure-eight knot

complement, the Whitehead link complement, the complement of the

Borromean rings and the Magic manifold) are arithmetic.
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The modular group

The basic example of an ”arithmetic group” is

PSL(2,Z) = SL(2,Z)/±Id.
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The modular group

The basic example of an ”arithmetic group” is

PSL(2,Z) = SL(2,Z)/±Id.

Every non-cocompact finite co-area arithmetic Fuchsian group is

commensurable with the modular group.

Some particularly interesting subgroups of PSL(2,Z) of finite index

arethe congruence subgroups.
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A subgroupΓ < PSL(2,Z) is called acongruence subgroupif there

exists ann ∈ Z so thatΓ contains theprincipal congruence group:

Γ(n) = ker{PSL(2,Z) → PSL(2,Z/nZ)},

where PSL(2,Z/nZ) = SL(2,Z/nZ))/{±Id}.
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A subgroupΓ < PSL(2,Z) is called acongruence subgroupif there

exists ann ∈ Z so thatΓ contains theprincipal congruence group:

Γ(n) = ker{PSL(2,Z) → PSL(2,Z/nZ)},

where PSL(2,Z/nZ) = SL(2,Z/nZ))/{±Id}.

n is called the level.
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The structure of congruence subgroups (genus, torsion, number of

cusps) has been well-studied.

Rademacher Conjecture: There are only finitely many congruence

subgroups of genus 0 (or fixed genus).
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The structure of congruence subgroups (genus, torsion, number of

cusps) has been well-studied.

Rademacher Conjecture: There are only finitely many congruence

subgroups of genus 0 (or fixed genus).

This was proved by J. B. Denin in the 70’s.
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Easy Case: Only finitely many principal congruence subgroups of

genus 0—whenn = 2, 3, 4, 5.

Why?
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elements.
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Easy Case: Only finitely many principal congruence subgroups of

genus 0—whenn = 2, 3, 4, 5.

Why?

1. Γ(n) has genus zero if and only ifΓ(n) is generated by parabolic

elements.

2.
〈(

1 n
0 1

)〉

is the stabilizer of∞ in Γ(n).

Hence the normal closureN of

〈(

1 n
0 1

)〉

in PSL(2,Z) is a

subgroup ofΓ(n).

Note PSL(2,Z)/N ∼= the(2, 3, n) triangle group.
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3. Claim: Γ(n) is generated by parabolic elements if and only if

N = Γ(n).

Given the claim the result follows as ifN = Γ(n) thenN has finite

index; i.e. the the(2, 3, n) triangle group is finite.
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3. Claim: Γ(n) is generated by parabolic elements if and only if

N = Γ(n).

Given the claim the result follows as ifN = Γ(n) thenN has finite

index; i.e. the the(2, 3, n) triangle group is finite.

Proof of Claim:One direction is clear.
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3. Claim: Γ(n) is generated by parabolic elements if and only if

N = Γ(n).

Given the claim the result follows as ifN = Γ(n) thenN has finite

index; i.e. the the(2, 3, n) triangle group is finite.

Proof of Claim:One direction is clear.

Now H2/PSL(2,Z) has 1 cusp. So ifΓ(n) is generated by parabolic

elements{p1, . . . pr}, then eachpi is PSL(2,Z)-conjugate into
〈(

1 n
0 1

)〉

; i.e.,pi ∈ N.



20

A more general version of Rademacher’s Conjecture that we now

discuss was proved by J. G. Thompson and independently P. Zograf.

SupposeΓ < PSL(2,R) is commensurable with PSL(2,Z). DefineΓ

to be acongruence subgroupif Γ contains someΓ(n).
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A more general version of Rademacher’s Conjecture that we now

discuss was proved by J. G. Thompson and independently P. Zograf.

SupposeΓ < PSL(2,R) is commensurable with PSL(2,Z). DefineΓ

to be acongruence subgroupif Γ contains someΓ(n).

Examples:Supposen > 1 and letΓ0(n) < PSL(2,Z) denote the

subgroup consisting of those elements congruent to±
(

a b
0 d

)

(mod n).

Note thatτn =

(

0 −1/
√

n√
n 0

)

normalizesΓ0(n).

Hence〈Γ0(n), τn〉 ⊂ NPSL(2,R)(Γ0(n)) is
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A more general version of Rademacher’s Conjecture that we now

discuss was proved by J. G. Thompson and independently P. Zograf.

SupposeΓ < PSL(2,R) is commensurable with PSL(2,Z). DefineΓ

to be acongruence subgroupif Γ contains someΓ(n).
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Hence〈Γ0(n), τn〉 ⊂ NPSL(2,R)(Γ0(n)) is

commensurable with PSL(2,Z),

visibly is not a subgroup of PSL(2,Z),

containsΓ(n).
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Remarks:1. The groupsNPSL(2,R)(Γ0(n)) contain all maximal

Fuchsian groups commensurable with PSL(2,Z).

2. These involutions illustrate a common theme in arithmetic

groups—lots of hidden symmetry!

These involutions are hidden to PSL(2,Z) but visible on finite index

subgroups.
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Theorem 1 (Thompson, Zograf)

There are only finitely many congruence Fuchsian groups

commensurable withPSL(2,Z) of genus 0 (resp. of fixed genus).

Sketch Proof: By Selberg’s work congruence groups have aspectral

gap; i.e. if Γ is congruence thenλ1(H2/Γ) ≥ 3/16.

On the other hand we have the following result of Zograf:

Theorem 2

LetΓ be a Fuchsian group of finite co-area and let the genus ofH2/Γ

be denoted by g(Γ). If Area(H2/Γ) ≥ 32π(g(Γ) + 1), then

λ1(Γ) <
8π(g(Γ) + 1)
Area(H2/Γ)

.
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Now letΓi be a sequence of congruence subgroups of genus 0.

There are only finitely many arithmetic Fuchsian groups of bounded

co-area.

Thus areas→ ∞ and so by Zograf:

λ1 → 0.

This is a contradiction, since by Selberg there is a spectral gap for

congruence subgroups.
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Maximal Groups of genus 0:

Below we list thosen for which the maximal groups (as constructed

above) have genus 0. The case ofn = 1 is the modular group.

Prime Level:2,3,5,7,11,13,17,19,23,29,31,41,47,59,71.

Non-prime Level:6,10, 14, 15,21,22,26,30,

33,34,35,38,39,42,51,55,62,66,69, 70,78,87, 94,95,105,110, 119,141.
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Maximal Groups of genus 0:

Below we list thosen for which the maximal groups (as constructed

above) have genus 0. The case ofn = 1 is the modular group.

Prime Level:2,3,5,7,11,13,17,19,23,29,31,41,47,59,71.

Non-prime Level:6,10, 14, 15,21,22,26,30,

33,34,35,38,39,42,51,55,62,66,69, 70,78,87, 94,95,105,110, 119,141.

As Ogg noticed back in the 70’s:

the prime values are precisely the prime divisors of the order of the

Monster simple group.
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There are 132 genus 0 congruence subgroups of PSL(2,Z) (up to

conjugacy in PSL(2,Z) (C. K. Seng, M. L. Lang, Y. Yifan, 2004)
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There are 132 genus 0 congruence subgroups of PSL(2,Z) (up to

conjugacy in PSL(2,Z) (C. K. Seng, M. L. Lang, Y. Yifan, 2004)

26 of these are torsion free (A. Sebbar, 2001)
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Dimension 3: The Bianchi groups

Let d be a square-free positive integer, andOd the ring of integers of

the quadratic imaginary number fieldQ(
√
−d).

TheBianchi groupsare defined to be the family of groups

PSL(2,Od). Let Qd = H3/PSL(2,Od) denote theBianchi orbifold.
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Some Bianchi Orbifolds(from Hatcher’s paper)
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Every non-cocompact arithmetic Kleinian group is commensurable

(up to conjugacy) with some PSL(2,Od).
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Every non-cocompact arithmetic Kleinian group is commensurable

(up to conjugacy) with some PSL(2,Od).

Natural generalization of genus 0 surface groups are link groups inS3.
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The Cuspidal Cohomology Problem

Theorem 3 (Vogtmann finishing off work by lots of Germans)

If S3 \ L → Qd then d∈ {1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71}.
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The Cuspidal Cohomology Problem

Theorem 3 (Vogtmann finishing off work by lots of Germans)

If S3 \ L → Qd then d∈ {1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71}.

Theorem 4 (M. Baker)

For each d in this list there is a link Ld such that S3 \ Ld → Qd.
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Saw some examples earlier for some small values ofd. Here are some

more:

d = 1 d = 2

d = 3 d = 7
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Call a linkL ⊂ S3 arithmeticif S3 \ L = H3/Γ whereΓ is arithmetic

(in this case we mean commensurable with PSL(2,Od))
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Call a linkL ⊂ S3 arithmeticif S3 \ L = H3/Γ whereΓ is arithmetic

(in this case we mean commensurable with PSL(2,Od))

Remarks:1. The figure eight knot is the only arithmetic knot.
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Call a linkL ⊂ S3 arithmeticif S3 \ L = H3/Γ whereΓ is arithmetic

(in this case we mean commensurable with PSL(2,Od))

Remarks:1. The figure eight knot is the only arithmetic knot.

2. There are infinitely many arithmetic links–even with two

components.
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Congruence link complements

We define congruence subgroups, principal congruence subgroups as

above; ie

A subgroupΓ < PSL(2,Od) is called acongruence subgroupif there

exists anI ⊂ Od (as before called thelevel) so thatΓ contains the

principal congruence group:

Γ(I) = ker{PSL(2,Od) → PSL(2,Od/I)},

where PSL(2,Od/I) = SL(2,Od/I)/{±Id}
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Question 1 (Analogue of Rademacher’s Conjecture)

Are there only finitely many congruence link complements inS3?
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Question 1 (Analogue of Rademacher’s Conjecture)

Are there only finitely many congruence link complements inS3?

Question 2

Is there some version of Ogg’s observation—i.e. which maximal

groups have trivial cuspidal cohomology? Infinitely many prime

levels?
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Lemma 5

There are only finitely many principal congruence link complements

in S3.

Proof.

Note by Vogtmann’s result, only finitely many possibled’s.

If M = H3/Γ(I) is a link complement inS3, then some cusp torus

contains a short curve (length< 6). The peripheral subgroups have

entries inI . As the norm of the idealI grows then elements inI have

absolute values> 6.
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An alternative approach is usingSystole bounds.

Theorem 6 (Adams-R, 2000)

Let N be a closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature. Let L be a link in N whose

complement admits a complete hyperbolic structure of finite volume.

Then sys(N \ L) ≤ 7.35534....



51

An alternative approach is usingSystole bounds.

Theorem 6 (Adams-R, 2000)

Let N be a closed orientable 3-manifold which does not admit any

Riemannian metric of negative curvature. Let L be a link in N whose

complement admits a complete hyperbolic structure of finite volume.

Then sys(N \ L) ≤ 7.35534....

For principal congruence manifolds the following simple lemma

shows that systole will grow with the norm of the ideal.

Lemma 7

Letγ ∈ Γ(I) be a hyperbolic element. Thentr γ = ±2 mod I2.
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Using this idea G. Lakeland and C. Leininger recently proved:

Theorem 8 (Lakeland-Leininiger)

Let M be a closed orientable 3-manifold, then there are only finitely

many principal congruence subgroups with M\ L ∼= H3/Γ(I).
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Using this idea G. Lakeland and C. Leininger recently proved:

Theorem 8 (Lakeland-Leininiger)

Let M be a closed orientable 3-manifold, then there are only finitely

many principal congruence subgroups with M\ L ∼= H3/Γ(I).

Question 3 (Generalized Rademacher’s Conjecture)

ForM a fixed closed orientable 3-manifold are there only finitely

many congruence link complements inM?
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Thurston in an email in 2009:“Although there are infinitely many

arithmetic link complements, there are only finitely many that come

from principal congruence subgroups. Some of the examples known

seem to be among the most general (given their volume) for

producing lots of exceptional manifolds by Dehn filling, so I’m

curious about the complete list.”
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Thurston in an email in 2009:“Although there are infinitely many

arithmetic link complements, there are only finitely many that come

from principal congruence subgroups. Some of the examples known

seem to be among the most general (given their volume) for

producing lots of exceptional manifolds by Dehn filling, so I’m

curious about the complete list.”

What are the principal congruence link complements?
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Old Examples (from Baker’s thesis): All levels are 2

d=1

d=2
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d=3

d=7
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The Magic manifold is principal congruence of level
〈

(1+
√
−7)/2

〉

.

Generators for the fundamental group are (from

Grunewald-Schwermer):
(

1 2
0 1

)

,

(

1 (1+
√
−7)/2

0 1

)

,

(

1 0
−(1+

√
−7)/2 1

)

.
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Some other examples ind = 15 andd = 23 of levels

〈2, (1+
√
−15)/2〉 and〈2, (1+

√
−23)/2〉

d=15

d=23
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Thurston’s principal congruence link complement

Ford = 3 and level〈(5+
√
−3)/2)〉, Thurston observed that the

complement of the link below is a principal congruence link

complement.

Thurston’s principal congruence link
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He said in an email in 2009:“One of the most intriguing congruence

covers I know is for the ideal generated by(5+
√
−3)/2 in

PSL(2,Z[ω]) which is an 8-component link complement in S3.”
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He said in an email in 2009:“One of the most intriguing congruence

covers I know is for the ideal generated by(5+
√
−3)/2 in

PSL(2,Z[ω]) which is an 8-component link complement in S3.”

Indeed even in his notes there are examples. Doesn’t say it’s principal

congruence but he probably knew!

L1 = 

d = 2, level=< 1+
√
−2 >
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Another nice example is from Hatcher’s JLMS paper. Hered = 11

and the ideal is〈(1+
√
−11)/2)〉. Need to prove it is principal

congruence.

L2 = 

Hatcher’s Example
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The following theorem contains all known principal congruence link

complements. This contains “old” examples, and “new” ones. This

includes examples from M. Baker and myself and also work of

Matthias Goerner (2011 Berkeley thesis) and his recent preprint

(arXiv:1406.2827) Regular Tessellation Links.
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Theorem 9

The following list of pairs(d, I) indicates the known Bianchi groups

PSL(2,Od) containing a principal congruence subgroupΓ(I) such

that H3/Γ(I) is a link complement in S3. Those annotated by * are

new.

d = 1: I ∈ {2, 〈2± i〉∗, 〈(1± i)3〉∗, 3∗, 〈3± i〉∗, 〈3± 2i〉∗, 〈4± i〉∗}.

d = 2: I ∈ {2, 〈1±
√
−2〉∗, 〈2±

√
−2〉∗}.

d = 3: I ∈ {2, 3, 〈(5±
√
−3)/2〉, 〈3±

√
−3〉, 〈(7±

√
−3)/2〉∗,

〈4±
√
−3〉∗, 〈(9±

√
−3)/2〉∗}.

d = 5: I = 〈3, 1±
√
−5〉∗.

d = 7: I ∈ {〈(1±
√
−7)/2〉, 2, 〈(3±

√
−7)/2〉∗, 〈1±

√
−7〉∗}.
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d = 11: I ∈ {〈(1±
√
−11)/2〉∗, 〈(3±

√
−11)/2〉∗}.

d = 15: I = 〈2, (1±
√
−15)/2〉.

d = 19: I = 〈(1±
√
−19)/2〉.

d = 23: I = 〈2, (1±
√
−23)/2〉.

d = 31: I = 〈2, (1±
√
−31)/2〉.
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d = 11: I ∈ {〈(1±
√
−11)/2〉∗, 〈(3±

√
−11)/2〉∗}.

d = 15: I = 〈2, (1±
√
−15)/2〉.

d = 19: I = 〈(1±
√
−19)/2〉.

d = 23: I = 〈2, (1±
√
−23)/2〉.

d = 31: I = 〈2, (1±
√
−31)/2〉.

Goerner also shows this is a complete list in the cases ofd = 1, 3.
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d = 11: I ∈ {〈(1±
√
−11)/2〉∗, 〈(3±

√
−11)/2〉∗}.

d = 15: I = 〈2, (1±
√
−15)/2〉.

d = 19: I = 〈(1±
√
−19)/2〉.

d = 23: I = 〈2, (1±
√
−23)/2〉.

d = 31: I = 〈2, (1±
√
−31)/2〉.

Goerner also shows this is a complete list in the cases ofd = 1, 3.

This leavesd = 6, 39, 47, 71.

Recent work with Baker suggest none whend = 6.
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In the case when the level is a rational integer we can say more.

Theorem 10 (Baker-R)

Let n∈ Z. ThenΓ(n) < PSL(2,Od) is a link group in S3 if and only

if:

(d, n) ∈ {(1, 2), (2, 2), (3, 2), (7, 2), (1, 3), (3, 3)}.
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Some comments on the strategy of Baker-R.
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Some comments on the strategy of Baker-R.

Let L = L1 ∪ . . . ∪ Ln ⊂ S3 be a link,X(L) denote the exterior ofL,

andΓ = π1(S3 \ L) be the link group. Then:
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Some comments on the strategy of Baker-R.

Let L = L1 ∪ . . . ∪ Ln ⊂ S3 be a link,X(L) denote the exterior ofL,

andΓ = π1(S3 \ L) be the link group. Then:

1. Γab is torsion-free of rank equal to the number of components of

L; i.e. Γab ∼= Zn.
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Some comments on the strategy of Baker-R.

Let L = L1 ∪ . . . ∪ Ln ⊂ S3 be a link,X(L) denote the exterior ofL,

andΓ = π1(S3 \ L) be the link group. Then:

1. Γab is torsion-free of rank equal to the number of components of

L; i.e. Γab ∼= Zn.

2. Γ is generated by parabolic elements.
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Some comments on the strategy of Baker-R.

Let L = L1 ∪ . . . ∪ Ln ⊂ S3 be a link,X(L) denote the exterior ofL,

andΓ = π1(S3 \ L) be the link group. Then:

1. Γab is torsion-free of rank equal to the number of components of

L; i.e. Γab ∼= Zn.

2. Γ is generated by parabolic elements.

3. For each component Li , there is a curve xi ⊂ ∂X(L) so that Dehn

filling S3 \ L along the totality of these curves gives S3.

Following Perelman’s resolutio n of the Geometrization

Conjecture, this can be rephrased as saying that the group

obtained by setting xi = 1 for each i is the trivial group.
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Given this, our method is:

Step 1: Show thatΓ(I) is generated by parabolic elements.
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Given this, our method is:

Step 1: Show thatΓ(I) is generated by parabolic elements.

We briefly discuss how this is done. LetP = P∞(I) be the peripheral

subgroup fixing∞, and let〈P〉 denote the normal closure in

PSL(2,Od). SinceΓ(I) is a normal subgroup of PSL(2,Od), then

〈P〉 < Γ(I).
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PSL(2,Od). SinceΓ(I) is a normal subgroup of PSL(2,Od), then

〈P〉 < Γ(I).
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Given this, our method is:

Step 1: Show thatΓ(I) is generated by parabolic elements.

We briefly discuss how this is done. LetP = P∞(I) be the peripheral

subgroup fixing∞, and let〈P〉 denote the normal closure in

PSL(2,Od). SinceΓ(I) is a normal subgroup of PSL(2,Od), then

〈P〉 < Γ(I).

So if 〈P〉 = Γ(I) thenΓ(I) is generated by parabolic elements

Note that the converse also holds in the case whenQd has 1 cusp.

For if Γ(I) is generated by parabolic elements, then sinceΓ(I) is a

normal subgroup andQd has 1 cusp, all such generators are

PSL(2,Od)-conjugate intoP.
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The orders of the groups PSL(2,Od/I) are known, and we can use

Magma to test whetherΓ(I) = 〈P〉.
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The orders of the groups PSL(2,Od/I) are known, and we can use

Magma to test whetherΓ(I) = 〈P〉.

Sometimes this does not work!
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Step 2: Find parabolic elements inΓ(I) so that as above, trivializing

these elements, trivializes the group.

This step is largely done by trial and error, however, the motivation

for the idea is that, ifH3/Γ hasn cusps, we attempt to findn parabolic

fixed points that areΓ(I)-inequivalent, and for which the

corresponding parabolic elements of〈P〉 provide curves that can be

Dehn filled above.
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ExampleThe case ofd = 1. Γ(〈2+ i〉) is a six component link group.

PSL(2,O1) = 〈a, ℓ, t, u | ℓ2 = (tℓ)2 = (uℓ)2 = (aℓ)2 = a2 = (ta)3 =

(uaℓ)3 = 1, [t, u] = 1〉.

(i) N(〈2+ i〉) = 5, soΓ(〈2+ i〉) is a normal subgroup of PSL(2,O1)

of index 60.

(ii) The image of the peripheral subgroup in PSL(2,O1) fixing ∞
under the reduction homomorphism is dihedral of order 10. Hence

H3/Γ(〈2+ i〉) has 6 cusps.

(iii) Use Magma as discussed above to see that

[PSL(2,O1) : 〈P〉] = 60, and soΓ(〈2+ i〉) = 〈P〉.
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Finding inequivalent cusps and the right parabolics

Lemma 11

Let S= {∞, 0,±1,±2}. Then each element of S is a fixed point of

some parabolic element ofΓ(〈2+ i〉) and moreover they are all

mutually inequivalent under the action ofΓ(〈2+ i〉). The parabolics

are:

S′ = {t2u, at2ua, t−1at2uat, tat2uat−1, t−2at2uat2, t2at−3uat−2}.



84

Magma routine

G〈a, l, t, u〉 := Group〈a, l, t, u|l2, a2, (t ∗ l)2, (u ∗ l)2,

(a ∗ l)2, (t ∗ a)3, (u ∗ a ∗ l)3, (t, u)〉;
h := sub〈G|t2 ∗ u, t5〉;
n := NormalClosure(G, h);

print Index(G, n);

60

print AbelianQuotientInvariants(n);

[0, 0, 0, 0, 0, 0]

r := sub〈n|t2 ∗ u, a∗ t2 ∗ u∗ a, t−1 ∗ a∗ t2 ∗ u∗ a∗ t, t ∗ a∗ t2 ∗ u∗ a∗
t−1, t−2 ∗ a ∗ t2 ∗ u ∗ a ∗ t2, t2 ∗ a ∗ t−3 ∗ u ∗ a ∗ t−2〉;
print Index(n, r);

1



85

How to prove finiteness of congruence links?



86

How to prove finiteness of congruence links?

Partial progress. Baker-R eliminate many possible levels (prime,

products of distinct primes).



87

How to prove finiteness of congruence links?

Partial progress. Baker-R eliminate many possible levels (prime,

products of distinct primes).

Can one use spectral gap?



88

How to prove finiteness of congruence links?

Partial progress. Baker-R eliminate many possible levels (prime,

products of distinct primes).

Can one use spectral gap?

As in the case of dimension 2, Congruence manifolds have a spectral

gap: hereλ1 ≥ 3/4 (should be 1).



89

How to prove finiteness of congruence links?

Partial progress. Baker-R eliminate many possible levels (prime,

products of distinct primes).

Can one use spectral gap?

As in the case of dimension 2, Congruence manifolds have a spectral

gap: hereλ1 ≥ 3/4 (should be 1).
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However:

Theorem 12 (Lackenby-Souto)

There exists an infinite family of links{Ln} in S3 with

Vol(S3 \ Ln) → ∞ such thatλ1 > C > 0 for some constant C.

ProblemCan’t use spectral gap directly!

Corollary: No Zograf theorem in dimension 3.
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Call a family of links as in the Lackenby-Souto theorem, anexpander

family.

On the other hand Lackenby has shown:

Theorem 13 (Lackenby)

Alternating links don’t form expander families.

Corollary 14

There are finitely many congruence alternating link complements.

There is also other work by Futer-Kalfagianni-Purcell constructing

other non expander families.
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Amusing side note:

In an email correspondence with Thurston about congruence links I

mentioned Lackenby’s result and he said the following :

“ I wasn’t familiar with Lackenby’s work, but alternating knots are

related in spirit to Riemannian metrics onS2, which does not admit an

expander sequence of metrics, so alternating links are not the best

candidates.”
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Amusing side note:

In an email correspondence with Thurston about congruence links I

mentioned Lackenby’s result and he said the following :

“ I wasn’t familiar with Lackenby’s work, but alternating knots are

related in spirit to Riemannian metrics onS2, which does not admit an

expander sequence of metrics, so alternating links are not the best

candidates.”

He then proceed to outline a construction to produce an expander

family of links.
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What can one use?
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What can one use?

ExpectationSequences of congruence subgroups should develop

torsion inH1.

This would rule out infinitely many congruence link complements.
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Where are the manifolds with largeλ1?

Theorem 15 (Long-Lubotkzy-R)

LetΓ be a finite co-volume Kleinian group. ThenΓ contains a nested

descending tower of normal subgroups

Γ > N1 > N2 > . . . > Nk > . . . with ∩ Ni = 1

and C> 0 with λ1(Ni) > C.
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Where are the manifolds with largeλ1?

Theorem 15 (Long-Lubotkzy-R)

LetΓ be a finite co-volume Kleinian group. ThenΓ contains a nested

descending tower of normal subgroups

Γ > N1 > N2 > . . . > Nk > . . . with ∩ Ni = 1

and C> 0 with λ1(Ni) > C.

Question 4

Can these ever be link groups inS3?
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Back to dimension 2
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Back to dimension 2

There is a notion ofcongruence subgroupfor cocompact Fuchsian

groups(or lattices more generally). As before such examples have a

spectral gap.

Question 5

Are there congruence surfaces of every genus?

Remark:There are only finitely many conjugacy class of arithmetic

surface groups of genusg.

Expectation:(i) These congruence surfaces will not lie in a fixed

commensurability class.

(ii) These congruence surfaces will not arise from invariant

trace-fields of bounded degree.
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surfaces of every genus (non-arithmetic) with “large”λ1.
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Remarks:1. Brooks and Makover gave a construction of closed

surfaces of every genus (non-arithmetic) with “large”λ1.

2. Mirzakhani showed that a “random” closed surface of genusg has

λ1 > c for some very explicit constantc.

Question 6

Can one build surfaces of every genus in a fixed commensurability

class with a spectral gap?
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certain choices of generators. CanSn andAn be made expanders on 2

generators?

If so then can build surfaces as in the previous question.
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generators?
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THE END


