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Electron transport in metals in homogeneous magnetic field

3 / 40

Measured foliations on surfaces naturally appear in the study of conductivity in

crystals. For example, the energy levels in the quasimomentum space (called
Fermi-surfaces) might give sophisticated periodic surfaces in R

3.

Fermi surfaces of tin, iron, and gold.

Electron trajectories in the presence of a homogeneous magnetic field
correspond to sections of such a periodic surface by parallel planes. Passing to

the quotient by Z3 we get a measured foliation on the resulting compact surface.
Minimal components
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Diffusion in a periodic billiard (“Windtree model”)
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Consider a billiard on the plane with Z
2-periodic rectangular obstacles.

Old Theorem (V. Delecroix, P. Hubert, S. Leli èvre, 2011). For almost all
parameters of the obstacle, for almost all initial directions, and for any starting

point, the billiard trajectory escapes to infinity with the rate t2/3. That is,

max0≤τ≤t (distance to the starting point at time τ) ∼ t2/3.

Here “23 ” is the Lyapunov exponent of certain “renormalizing” dynamical system

associated to the initial one.

Remark. Changing the height and the width of the obstacle we get quite

different billiards, but this does not change the diffusion rate!
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Changing the shape of the obstacle
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Almost Old Theorem (V. Delecroix, A. Z., 2014). Changing the shape of the

obstacle we get a different diffusion rate. Say, for a symmetric obstacle with

4m− 4 angles 3π/2 and 4m angles π/2 the diffusion rate is

(2m)!!

(2m+ 1)!!
∼

√
π

2
√
m

as m → ∞ .

Note that once again the diffusion rate depends only on the number of the

corners, but not on the lengths of the sides, or other details of the shape of the

obstacle.
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From a billiard to a surface foliation
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the
copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the
copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

A B A

D
C

D

A B A

Identifying the equivalent patterns by a parallel translation we obtain a torus;

the billiard trajectory unfolds to a “straight line” on the corresponding torus.



From the windtree billiard to a surface foliation
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Similarly, taking four copies of our Z2-periodic windtree billiard we can unfold it

to a foliation on a Z
2-periodic surface. Taking a quotient over Z2 we get a

compact surface endowed with a measured foliation. Vertical and horizontal

displacement (and thus, the diffusion) of the billiard trajectories is described by
the intersection numbers c(t) ◦ v and c(t) ◦ h of the cycle c(t) obtained by

closing up a long piece of leaf with the cycles h = h00 + h10 − h01 − h11 and

v = v00 − v10 + v01 − v11.

h00

h01

h10

h11

v00 v10

v01 v11

Very flat metric. Automorphisms
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Diffeomorphisms of surfaces
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Observation 1. Surfaces can wrap around themselves.

Cut a torus along a horizon-

tal circle.
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2 −−−−→
fh

T
2 = R

2/Z2

Dehn twist corresponds to the linear map f̂h : R2 → R
2 with the matrix

(
1 1
0 1

)

.

a

a

b bc

a

a

b bc

a

a

c cb
=

It maps the square pattern of the torus to a parallelogram pattern. Cutting and

pasting appropriately we can transform the new pattern to the initial square one.



Pseudo-Anosov diffeomorphisms
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Consider a composition

of two Dehn twists g = fv ◦ fh = ◦
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Pseudo-Anosov diffeomorphisms
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Consider eigenvectors ~vu and ~vs of the linear transformation A =

(
1 1
1 2

)

with eigenvalues λ = (3 +
√
5)/2 ≈ 2.6 and 1/λ = (3−

√
5)/2 ≈ 0.38.

Consider two transversal foliations on the original torus in directions ~vu, ~vs. We

have just proved that expanding our torus T2 by factor λ in direction ~vu and

contracting it by the factor λ in direction ~vs we get the original torus.

Definition. Surface automorphism homogeneously expanding in direction of
one foliation and homogeneously contracting in direction of the transverse

foliation is called a pseudo-Anosov diffeomorphism.

Consider a one-parameter family of flat tori obtained from the initial square
torus by a continuous deformation expanding with a factor et in directions ~vu
and contracting with a factor et in direction ~vs. By construction such

one-parameter family defines a closed curve in the space of flat tori: after the

time t0 = log λu it closes up and follows itself.

Observation 2. Pseudo-Anosov diffeomorphisms define closed curves

(actually, closed geodesics) in the moduli spaces of Riemann surfaces.
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• By a composition of homothety and

rotation we can place the shortest
vector of the lattice to the horizontal

unit vector.

• Consider the lattice point

closest to the origin and
located in the upper

half-plane.

• This point is located

outside of the unit disc.

• It necessarily lives inside

the strip −1/2 ≤ x ≤ 1/2.

We get a fundamental domain in the space of lattices, or, in other words, in the

moduli space of flat tori.



Moduli space of tori

13 / 40

neighborhood of a
cusp = subset of
tori having short
closed geodesic

The corresponding modular surface is not compact: flat tori representing

points, which are close to the cusp, are almost degenerate: they have a very

short closed geodesic. It also have orbifoldic points corresponding to tori with

extra symmetries.



Very flat surface of genus 2
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Identifying the opposite sides of a regular octagon we get a flat surface of

genus two. All the vertices of the octagon are identified into a single conical

singularity. We always consider such a flat surface endowed with a

distinguished (say, vertical) direction. By construction, the holonomy of the flat

metric is trivial. Thus, the vertical direction at a single point globally defines

vertical and horizontal foliations.
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Group action
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The group SL(2,R) acts on the each space H1(d1, . . . , dn) of flat surfaces of

unit area with conical singularities of prescribed cone angles 2π(di + 1). This

action preserves the natural measure on this space. The diagonal subgroup
(
et 0
0 e−t

)

⊂ SL(2,R) induces a natural flow on H1(d1, . . . , dn) called the

Teichmüller geodesic flow.

Keystone Theorem (H. Masur; W. A. Veech, 1992). The action of the groups

SL(2,R) and

(
et 0
0 e−t

)

is ergodic with respect to the natural finite measure

on each connected component of every space H1(d1, . . . , dn).
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Theorem of Masur and Veech claims that taking at random an octagon as

below we can contract it horizontally and expand vertically by the same factor
et to get arbitrary close to, say, regular octagon.
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The first modification of the polygon changes the flat structure while the second

one just changes the way in which we unwrap the flat surface.
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Asymptotic cycle for a torus

18 / 40

Consider a leaf of a measured foliation on a surface. Choose a short

transversal segment X . Each time when the leaf crosses X we join the
crossing point with the point x0 along X obtaining a closed loop. Consecutive

return points x1, x2, . . . define a sequence of cycles c1, c2, . . . .

The asymptotic cycle is defined as limn→∞

cn

n
= c ∈ H1(T

2;R).

Theorem (S. Kerckhoff, H. Masur, J. Smillie, 1986.) For any flat surface

directional flow in almost any direction is uniquely ergodic.

This implies that for almost any direction the asymptotic cycle exists and is the
same for all points of the surface.
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Asymptotic cycle in the pseudo-Anosov case

19 / 40

Consider a model case of the foliation in direction of the expanding eigenvector

~vu of the Anosov map g : T2 → T
2 with Dg = A =

(
1 1
1 2

)

. Take a closed

curve γ and apply to it k iterations of g. The images g
(k)
∗ (c) of the

corresponding cycle c = [γ] get almost collinear to the expanding eigenvector

~vu of A, and the corresponding curve g(k)(γ) closely follows our foliation.

The first return cycles to a short subinterval exhibit exactly the same behavior

by a simple reason that they are images of the first return cycles to a longer

subinterval under a high iteration of g.

Direction of the expanding
eigenvector ~vu of A = Dg
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Consider a model case of the foliation in direction of the expanding eigenvector

~vu of the Anosov map g : T2 → T
2 with Dg = A =

(
1 1
1 2

)

. Take a

closed curve γ and apply to it k iterations of g. The images g
(k)
∗ (c) of the

corresponding cycle c = [γ] get almost collinear to the expanding eigenvector

~vu of A, and the corresponding curve g(k)(γ) closely follows our foliation.

The first return cycles to a short subinterval exhibit exactly the same behavior

by a simple reason that they are images of the first return cycles to a longer

subinterval under a high iteration of g.

First return cycle ci(g(X)) to g(X) is g∗(ci(X))

X
c1

c2

c3

X



First return cycles
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One should not think that in this phenomenon

there is something special for a torus. The same
story is valid for any pseudo-Anosov diffeomor-

phism g: first return cycles of the expanding foli-

ation to a subinterval X of the contracting folia-

tion are mapped by g to the first return cycles to

a shorter subinterval g(X).
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Idea of a renormalization
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By the theorem of Masur and Veech, the homogeneous expansion-

contraction in vertical-horizontal directions regularly brings almost
any flat surface, basically, back to itself. Multiplicative ergodic the-

orem states that, in a sense, there a matrix (one and the same for

almost all flat surfaces) which mimics the matrix of a fixed pseudo-

Anosov diffeomorphism as if the Teichmüller flow would be periodic.
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Asymptotic flag: empirical description
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cN

H1(S;R) ≃ R
2g

x1
x2

x3

x4

x5

x2g
To study a deviation of cycles

cN from the asymptotic cycle

consider their projections

to an orthogonal hyperscreen

Direction of the
asymptotic cycle

S



Asymptotic flag: empirical description
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cN

H1(S;R) ≃ R
2g

x1
x2

x3

x4

x5

x2g
The projections accumulate

along a straight line

inside the hyperscreen

Direction of the
asymptotic cycle

S



Asymptotic flag: empirical description
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cN

H1(S;R) ≃ R
2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S



Asymptotic flag: empirical description
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cN

‖cN‖λ2

‖cN‖λ3

H1(S;R) ≃ R
2g

x1
x2

x3

x4

x5

x2g

Asymptotic plane L2

Direction of the
asymptotic cycle

S



Asymptotic flag
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Theorem (A. Z. , 1999) For almost any surface S in any stratum

H1(d1, . . . , dn) there exists a flag of subspaces
L1 ⊂ L2 ⊂ · · · ⊂ Lg ⊂ H1(S;R) such that for any j = 1, . . . , g − 1

lim sup
N→∞

log dist(cN , Lj)

logN
= λj+1

and

dist(cN , Lg) ≤ const,

where the constant depends only on S and on the choice of the Euclidean

structure in the homology space.

The numbers 1 = λ1 > λ2 > · · · > λg are the top g Lyapunov exponents of

the Hodge bundle along the Teichmüller geodesic flow on the corresponding

connected component of the stratum H(d1, . . . , dn).

The strict inequalities λg > 0 and λ2 > · · · > λg, and, as a corollary, strict

inclusions of the subspaces of the flag, are difficult theorems proved later by

Forni (2002) and A. Avila–M. Viana (2007).
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Geometric interpretation of multiplicative ergodic theor em:
spectrum of “mean monodromy”

27 / 40

Consider a vector bundle endowed with a flat connection over a manifold Xn.

Having a flow on the base we can take a fiber of the vector bundle and
transport it along a trajectory of the flow. When the trajectory comes close to

the starting point we identify the fibers using the connection and we get a linear

transformation A(x, 1) of the fiber; the next time we get a matrix A(x, 2), etc.

The multiplicative ergodic theorem says that when the flow is ergodic a “matrix

of mean monodromy” along the flow

Amean := lim
N→∞

(A∗(x,N) · A(x,N))
1

2N

is well-defined and constant for almost every starting point.

Lyapunov exponents correspond to logarithms of eigenvalues of this “matrix of

mean monodromy”.
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Hodge bundle and Gauss–Manin connection
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Consider a natural vector bundle over the stratum with a fiber H1(S;R) over a

“point” (S, ω), called the Hodge bundle. It carries a canonical flat connection

called Gauss—Manin connection: we have a lattice H1(S;Z) in each fiber,

which tells us how we can locally identify the fibers. Thus, Teichmüller flow on
H1(d1, . . . , dn) defines a multiplicative cocycle acting on fibers of this bundle.

The monodromy matrices of this cocycle are symplectic which implies that the

Lyapunov exponents are symmetric:

λ1 ≥ λ2 ≥ · · · ≥ λg ≥ −λg ≥ · · · ≥ −λ2 ≥ −λ1
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Some important ingredients obtained in the last two decades
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An impression, that the only persons, who have contributed to this story are

Lyapunov, Hodge, Gauss–Manin, Thurston, Masur, Veech, and myself is ...

slightly misleading!

• The relation of the Lyapunov exponents to the deviation spectrum, and the
first idea how to compute them is our results with M. Kontsevich (1993–1996).

• Strict inequalities λg > 0 and λ2 > · · · > λg for all H1(d1, . . . , dn) are

proved by G. Forni (2002) and A. Avila–M. Viana (2007) correspondingly.

• Connected components of H(d1, . . . , dn) are classified by

M. Kontsevich–A. Z. (2003).

• Volumes of H1(d1, . . . , dn) are computed by A. Eskin–A. Okounkov (2003).

• Counting formulae for closed geodesics on flat surfaces (W. Veech, 1998, and
A. Eskin–H. Masur, 2001) leading to expression for Siegel–Veech constants in

terms of the volumes of the strata is obtained by A. Eskin–H. Masur–A. Z. (2003).

• The SL(2,R)-invariant submanifolds in genus 2 are classified by
C. McMullen (2007).
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3. State of the art

0. Model problem:
diffusion in a periodic
billiard

1. Teichmüller dynamics
(following ideas of
B. Thurston)

2. Asymptotic flag of an
orientable measured
foliation

3. State of the art
• Formula for the
Lyapunov exponents

• Strata of quadratic
differentials
• Siegel–Veech
constant

• Kontsevich conjecture
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Theorem (A. Eskin, M. Kontsevich, A. Z., 2014) The Lyapunov exponents
λi of the Hodge bundle H1

R
along the Teichmüller flow restricted to an

SL(2,R)-invariant suborbifold L ⊆ H1(d1, . . . , dn) satisfy:

λ1 + λ2 + · · ·+ λg =
1

12
·

n∑

i=1

di(di + 2)

di + 1
+

π2

3
· carea(L) .

The proof is based on the initial Kontsevich formula + analytic Riemann-Roch

theorem + analysis of det∆flat under degeneration of the flat metric.

Theorem (A. Eskin, H. Masur, A. Z., 2003) For L = H1(d1, . . . , dn) one has

carea(H1(d1, . . . , dn)) =
∑

Combinatorial types
of degenerations

(explicit combinatorial factor)·

·
∏k

j=1VolH1(adjacent simpler strata)

VolH1(d1, . . . , dn)
.
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Lyapunov exponents for strata of quadratic differentials
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Analogous formula exists for the moduli spaces of slightly more general flat

surfaces with holonomy Z/2Z. They correspond to meromorphic quadratic
differentials with at most simple poles. For example, the quadratic differential on

the picture below lives in the stratum Q(1, 1, 1,−1, . . . ,−1
︸ ︷︷ ︸

7

) =: Q(13,−17).

Flat surfaces tiled with unit squares define “integer points” in the corresponding

strata. To compute the volume of the corresponding moduli space

Q1(d1, . . . , dn) one needs to compute asymptotics for the number of surfaces

with conical singularities (d1 + 2)π, . . . , (dn + 2)π tiled with at most N
squares as N → ∞. When g = 0 this number is the Hurwitz number of

covers CP1 → CP1 with a ramification profile, say, as in the picture.
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Lyapunov exponents and alternative expression for the
Siegel–Veech constant
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Theorem (A. Eskin, M. Kontsevich, A. Z.) The Lyapunov exponents of the

Hodge bundle H1
R

along the Teichmüller flow restricted to a
PSL(2,R)-invariant subvariety L ⊆ Q1(d1, . . . , dn) satisfy:

λ1 + λ2 + · · ·+ λg =
1

24
·

n∑

i=1

di(di + 4)

di + 2
+

π2

3
· carea(L) .

For L = Q1(d1, . . . , dn) one can again express carea(L) in terms of the

volumes of the boundary strata, but we do not know yet the values of these

volumes except in several cases computed by E. Goujard (2014). However, in

genus 0 one can play the following trick.

Corollary. For any stratum Q1(d1, . . . , dn) of meromorphic quadratic

differentials with at most simple poles in genus zero one has

carea(Q1(d1, . . . , dn)) = −
1

8π2

n∑

j=1

dj(dj + 4)

dj + 2
.
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Kontsevich conjecture
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Let v(n) :=
n!!

(n+ 1)!!
· πn ·

{

π when n ≥ −1 is odd

2 when n ≥ 0 is even

By convention we set (−1)!! := 0!! := 1 , so v(−1) = 1 and v(0) = 2.

Theorem (J. Athreya, A. Eskin, A. Z., 2014 ) The volume of any stratum
Q1(d1, . . . , dk) of meromorphic quadratic differentials with at most simple

poles on CP1 (i.e. when di ∈ {−1 ; 0} ∪ N for i = 1, . . . , k, and
∑k

i=1 di = −4) is equal to

VolQ1(d1, . . . , dk) = 2π ·
k∏

i=1

v(di) .

M. Kontsevich conjectured this formula about ten years ago. Using approximate
values of Lyapunov exponents which we already knew experimentally, he

predicted volumes of the special strata Q(d,−1d+4) and then made an

ambitious guess for the general case.
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Proof: reduction to a combinatorial identity
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Combining two expressions for carea(Q1(d1, . . . , dn)) we get series of

combinatorial identities recursively defining volumes of all strata:

(explicit combinatorial factor) ·
∏

Vol(adjacent simpler strata)

VolQ1(d1, . . . , dk)
=

= −
1

8π2

n∑

j=1

dj(dj + 4)

dj + 2
.

It remains to verify that the guessed answer satisfy these identities. The

verification is reduced to verifying some combinatorial identities for multinomial

coefficients, which is reduced to verifying an equivalent identity for the
associated generating functions. The proof uses, however, some nontrivial

functional relations for the involved generating functions developing the one

discovered by S. Mohanty (1966).
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Equivalent combinatorial identity
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6 +
∑m

i=1

di(di + 1)

di + 2
ni

(

2 + (d+ 1) · n
)

·
(

3 + (d+ 1) · n
)

·
(

4 + (d+ 1) · n
) ·
(

4 + (d+ 1) · n
n

)

?
=

n∑

k=0

1
(

1 + (d+ 1) · k
)(

2 + (d+ 1) · k
) ·
(

2 + (d+ 1) · k
k

)

·

·
1

(

1 + (d+ 1) · (n− k)
)(

2 + (d+ 1)(n− k)
) ·
(

2 + (d+ 1) · (n− k)

n− k

)

,

where d, n, and k are nonnegative integer vectors of the same cardinality m,

and 1 = {1, . . . , 1
︸ ︷︷ ︸

m

}; 0 = {0, . . . , 0
︸ ︷︷ ︸

m

}. Finally,
( l
k

)
:=
( l
k1,...,km, l−k·1

)
.



Invariant measures and orbit closures
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Fantastic Theorem (A. Eskin, M. Mirzakhani, 2014). The closure of any

SL(2,R)-orbit is a suborbifold. In period coordinates H1(S, {zeroes};C) any

SL(2,R)-suborbifold is represented by an affine subspace.

Any ergodic SL(2,R)-invariant measure is supported on a suborbifold. In

period coordinates this suborbifold is represented by an affine subspace, and

the invariant measure is just a usual affine measure on this affine subspace.

Developement (A. Wright, 2014) Effective methods of construction of orbit

closures.

Theorem (J. Chaika, A. Eskin, 2014). For any given flat surface S almost all

vertical directions define a Lyapunov-generic point in the orbit closure of SL(2,R) · S.

Solution of the generalized windtree problem (V. Delecroix –A. Z., 2014).
Notice that any “windtree flat surface” S is a cover of a surface S0 in the

hyperelliptic locus L in genus 1, and that the cycles h and v are induced from

S0. Prove that the orbit closure of S0 is L. Using the volumes of the strata in

genus zero, compute carea(L). Using the formula for
∑

λi = λ1 compute λ1.
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• Study and classify all GL(2,R)-invariant suborbifolds in H(d1, . . . , dn).
(M. Mirzakhani and A. Wright have recently found an SL(2,R)-invariant

subvariety of absolutely mysterious origin.)

• Study extremal properties of the “curvature” of the Lyapunov subbundles

compared to holomorphic subbundles of the Hodge bundle. Estimate the

individual Lyapunov exponents.

• Prove conjectural formulae for asymptotics of volumes, and of Siegel–Veech

constants when g → ∞. (Partial results are already obtained by

D. Chen–M. Möller–D. Zagier, 2014–)

• Find values of volumes of Q1(d1, . . . , dn) in all strata in small genera.

• Express carea(L) in terms of an appropriate intersection theory (in the spirit

of ELSV-formula for Hurwitz numbers).

• Study dynamics of the Hodge bundle over other families of compact varieties

(some experimental results for families of Calabi–Yau varieties are recently
obtained by M. Kontsevich). Are there other dynamical systems, which admit

renormalization leading to dynamics on families of complex varieties?
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D. Chen–M. Möller–D. Zagier, 2014–)

• Find values of volumes of Q1(d1, . . . , dn) in all strata in small genera.

• Express carea(L) in terms of an appropriate intersection theory (in the spirit

of ELSV-formula for Hurwitz numbers).

• Study dynamics of the Hodge bundle over other families of compact varieties

(some experimental results for families of Calabi–Yau varieties are recently
obtained by M. Kontsevich). Are there other dynamical systems, which admit

renormalization leading to dynamics on families of complex varieties?



What’s next?

39 / 40

• Study and classify all GL(2,R)-invariant suborbifolds in H(d1, . . . , dn).
(M. Mirzakhani and A. Wright have recently found an SL(2,R)-invariant

subvariety of absolutely mysterious origin.)

• Study extremal properties of the “curvature” of the Lyapunov subbundles

compared to holomorphic subbundles of the Hodge bundle. Estimate the

individual Lyapunov exponents.

• Prove conjectural formulae for asymptotics of volumes, and of Siegel–Veech

constants when g → ∞. (Partial results are already obtained by
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Varvara Stepanova. Joueurs de billard. Thyssen Museum, Madrid
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