Reading. §4.10–4.11.

Problems from the book:

- 4.9.4, 4.9.6
- 4.10.2, 4.10.4, 4.10.5, 4.10.12, 4.10.13, 4.10.14
- 4.11.1, 4.11.2

Additional problems:

- 1. Compute $\iint_R (x+y)e^{x^2-y^2} dA$, where R is the region bounded by the lines x-y=0, x-y=2, x+y=0 and x+y=3.
- 2. Evaluate $\iiint_R xyz |dx dy dz|$ over the region R between the spheres centered at the origin of radius r=2 and r=4, and above the cone $\varphi=\frac{\pi}{3}$.
- 3. Recall that a matrix is **orthogonal** if and only if $AA^T = I$. Let O(n) denote the set of $n \times n$ orthogonal matrices.
 - a. Show that O(n) is a group.
 - b. Let $A \in O(n)$ and let $\chi_A(t)$ denote its characteristic polynomial. Suppose that $\alpha \in \mathbb{R}$ is a root of $\chi_A(t)$. Prove that $\alpha = \pm 1$.
 - c. We have seen in class that a permutation matrix M_{σ} is an orthogonal matrix, for every $\sigma \in S_n$. Can you describe all of the roots of the characteristic polynomial of M_{σ} ? Your answer should depend on the cycle type of σ .
 - d. We define $SO(n) = \{ A \in O(n) \mid det(A) = 1 \}$. This is the **special orthogonal group**. Can you give an example of an element of SO(2) such that none of the roots of the characteristic polynomial are real numbers? As best you can, describe SO(2).
- 4. Let V be a vector space, and $W \subseteq V$ a subspace. Let $T : V \to V$ be a linear transformation satisfying $T(W) \subseteq W$. Show that $\tilde{T} : V/W \to V/W$ defined by $\tilde{T}([v]) = [T(v)]$ is a well-defined linear transformation from V/W to V/W.
- 5. Let $T : \mathbb{R}^5 \to \mathbb{R}^5$ be defined by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 - 3x_3 \\ -2x_1 + 3x_2 \\ x_1 - 4x_3 \\ x_4 - 3x_5 \\ 4x_4 + x_5 \end{bmatrix}.$$

- a. Find a three dimensional subspace W of \mathbb{R}^5 such that $\mathsf{T}(W) \subseteq W$; that is, for each $w \in W$, $\mathsf{T}(w) \in W$.
- b. Let $T|_W$ be the restriction of T to W; that is, $T|_W: W \to W$ is a linear transformation from W to itself. Compute det(T), $det(T|_W)$, and $det(\tilde{T})$, where \tilde{T} is defined as in Problem 4. Can you explain the relationship between these determinants (and give a reason why)?