
Finite Fields with Prime Power Elements

The goal is to construct finite fields with pn elements from the polynomial rings Fp[x].
The construction will be very similar to that of Fp = Z/pZ from Z, where p is a prime
number.

the ring of integers Z the ring of polynomials F[x]
Division with Remainder: For positive
m, n ∈ Z, there exist nonnegative q, r ∈ Z

such that m = qn + r with r < n.

For f (x), g(x) ∈ F[x] with g(x) 6= 0, there
exist q(x), r(x) such that f (x) = q(x)g(x)+
r(x) and deg r(x) < deg g(x) or r(x) = 0.

Bezout’s identity For positive m, n ∈ Z,
there exist a, b ∈ Z such that gcd(m, n) =
am + bn.

For f (x), g(x) ∈ F[x],there ex-
ist a(x), b(x) ∈ F[x] such that
gcd( f (x), g(x)) = a(x) f (x) + b(x)g(x).

prime number p irreducible polynomial p(x)
the quotient ring Z/nZ the quotient ring F[x]/ 〈p(x)〉 (p(x) not

necessarily irreducible)
Z/nZ is a field iff n is prime F[x]/ 〈p(x)〉 is a field iff p(x) is irreducible.

Definition 1. A set R, together with two binary operations +, · , is called a ring if the following
axioms hold.
• (Associativity of addition) a + (b + c) = (a + b) + c for all a, b, c ∈ R.
• (Associativity of multiplication) a · (b · c) = (a · b) · c for all a, b, c ∈ R.
• (Commutativity of addition) a + b = b + a for all a, b ∈ R,
• (Distributivity of multiplication over addition) a · (b + c) = a · b + a · c for all a, b, c ∈ R,.
• (Existence of additive identity) There is an element in R, denoted by 0, such that a + 0 = a

for all a ∈ R.
• (Existence of additive inverses) For every element a ∈ R, there exists an element (−a) ∈ R

such that a + (−a) = 0.
R is said to be commutative if
• (Commutativity of multiplication) a · b = b · a for all a, b ∈ R,.

R is said to contain the multiplicative identity (or with 1) if
• (Existence of multiplicative identity) There is an element in R, denoted by 1, such that

1 · a = a for all a ∈ R.
In short, a commutative ring with 1 satisfies all the field axioms except ”existence of multiplicative
inverse”.

Examples 2. The follwing are rings.
1. Any field F.
2. Z

3. Z/nZ
4. LT(V, V), the set of linear transformation from V to itself.
5. Fun(F, F)
6. F[x].
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7. F[x1, ..., xk]

Proposition 3. (Division with Remainder) Given f (x), g(x) ∈ F[x] with g(x) 6= 0, there
exist unique q(x), r(x) such that f (x) = q(x)g(x) + r(x) and deg r(x) < deg g(x) or r(x) =
0.

Proof. Fix g(x). We proceed by induction on deg f (x).
When deg f (x) < deg g(x) or when f (x) = 0, there’s nothing to prove. We can simply

set q(x) = 0 and r(x) = f (x). This serves as our base case.
Now the induction hypothesis is that the statement is true whenever deg f (x) < n.

(Since we have shown this for n = deg g(x), we can assume that n ≥ deg g(x) = m).
When deg f (x) = n, let f (x) = αnxn + ... + α0 and let g(x) = βmxm + ... + β0. Then one
easily sees that f (x)− αnβ−1

m xn−mg(x) has degree less than n. By induction hypothesis,
there exist q1(x), r(x) such that f (x)− αnβ−1

m xn−mg(x) = q1(x)g(x)+ r(x) and deg r(x) <
deg g(x) or r(x) = 0. Let q(x) = q1(x) + αnβ−1

m xn−m, the equation above becomes f (x) =
q(x)g(x) + r(x) with deg r(x) < deg g(x) or r(x) = 0, which completes the proof.

This allows us to perform Euclidean Algorithm: Given f (x), g(x) ∈ F[x] with g(x) 6=
0, we can successively write down a sequence of equations:

f (x) = q0(x)g(x) + r0(x)
g(x) = q1(x)r0(x) + r1(x)

r0(x) = q2(x)r1(x) + r2(x)
r1(x) = q3(r)r2(x) + r3(x)

...
rn−2(x) = qn(r)rn−1(x) + rn(x)
rn−1(x) = qn+1(x)rn(x) + 0

such that deg ri(x) < deg ri−1(x) for all i.

Another consequence of proposition 3 is the following.

Proposition 4. (Root Theorem) Let α ∈ F. Then for p(x) ∈ F[x], p(α) = 0 if and only if
(x− α)|p(x).

Proof. Assume p(α) = 0. By Proposition 3, there exist q(x) ∈ F[x], r ∈ F such that
p(x) = q(x)(x− α) + r. When x = α, this becomes 0 = r, so x− α|p(x).

Conversely, assume (x− α)|p(x). Then there exists q(x) ∈ F[x] such that (x− α)q(x) =
p(x). When x = α, this becomes 0 = p(α).

Definition 5. A non-constant polynomial p(x) is said to be irreducible if there do not exist two
non-constant polynomials f (x), g(x) ∈ F[x] such that p(x) = f (x)g(x).
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Question 6. Is x2 + 1 irreducible in R[x]? in C[x]? in F2[x]? Is 6 irreducible in F7[x]? Is
2x + 2 irreducible in F7[x]?

Examples 7.

1. All polynomials with degree 1 are irreducible in F[x].
2. Constants polynomials are not considered irreducible in F[x].
3. When F = C, the Fundamental Theorem of Algebra and the Root Theorem together imply

that the irreducible polynomials in C[x] are linear (i.e. of degree 1).
4. When F = R, it can be shown that the irreducible polynomials in R[x] are either linear or

quadratic (i.e. of degree 2) with negative discriminant.
5. When F = F2, we will show that a complete list of irreducible polynomials in F2[x] of

degree 3 is : x3 + x + 1, x3 + x2 + 1.

For F[x], define 〈p(x)〉 = {p(x) · f (x)| f (x) ∈ F[x]}, i.e. the set polynomials that are
divisible p(x). It’s easy to show that 〈p(x)〉 is a subspace of F[x] so that we can define the
quotient vector space F[x]/ 〈p(x)〉. Elements in F[x]/ 〈p(x)〉 are equivalence classes, and
are denoted by [ f (x)]〈p(x)〉 (or simply by [ f (x)] when no confusion arises) as usual. It can
be shown that [ f (x)] = [g(x)] if and only if p(x)| f (x)− g(x). Finally, it’s an easy exercise
to show that the binary operations +, · defined by

[ f (x)] + [g(x)] = [ f (x) + g(x)]
[ f (x)] · [g(x)] = [ f (x)g(x)]

are well defined and turn F[x]/ 〈p(x)〉 into a ring. The proof is exactly the same as that
for Z/nZ.

Definition 8. Let f (x), g(x) ∈ F[x], the greatest common divisor of f (x) and g(x), denoted by
gcd( f (x), g(x)), is the monic polynomial, with greatest degree, that divides both f (x) and g(x).
Recall that a polynomial is called monic if it’s leading coefficient is 1.

Proposition 9. (Bezout’s Identity) Let f (x), g(x) ∈ F[x]. There exist a(x), b(x) ∈ F[x] such
that gcd( f (x), g(x)) = a(x) f (x) + b(x)g(x).

Proof. The proof will be similar to the analogous statement for Z, so we only sketch it.
We will also refer to the Euclidean Algorithm above. It’s an easy exercise to show that
gcd(g(x), r(x)) = gcd(g(x), q(x)g(x) + r(x)) for arbitrary g(x), r(x), q(x) ∈ F[x]. Apply-
ing this result multiple times to the Euclidean Algorithm above, we get gcd( f (x), g(x)) =
gcd(g(x), r0(x)) = gcd(r0(x), r1(x)) = gcd(r1(x), r2(x)) = ... = gcd(rn−1(x), rn(x)).
Now since rn(x) divides rn−1(x), you may have guessed that gcd(rn−1(x), rn(x)) = rn(x).
This is close, but not quite correct because rn(x) needs not be monic. To remedy this, we
need to scale rn(x) by a constant α ∈ F to make it monic. (More explicitly, if the leading
coefficient of rn(x) is β, we pick α = β−1.) In summary, we have gcd( f (x), g(x)) = αrn(x).

The second to last equation in the Euclidean Algorithm allows us to express rn(x) as a
linear combination of rn−1(x) and rn−2(x) : rn(x) = rn−2(x)− qn(x)rn−1(x). The third to
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last equation allows us to do the substitution rn−1(x) = rn−3(x)− qn−1(x)rn−2(x) so that
rn(x) = rn−2(x) − qn(x)rn−1(x) = rn−2(x) − qn(x)(rn−3(x) − qn−1(x)rn−2(x)) = (1 +
qn(x)qn−1(x))rn−2(x) − qn(x)rn−3(x) can be written as a linear combination of rn−2(x)
and rn−3(x). We can repeat this process and eventually find a(x), b(x) ∈ F[x] such that
rn(x) = a(x) f (x) + b(x)g(x).

In conclusion, gcd( f (x), g(x)) = αrn(x) = αa(x) f (x) + αb(x)g(x)

Theorem 10. F[x]/ 〈p(x)〉 is a field if and only if p(x) is irreducible.

Proof. Assume p(x) is irreducible. We have seen that F[x]/ 〈p(x)〉 is a ring. In order to
prove that F[x]/ 〈p(x)〉 is a field, it suffices to verify that multiplicative inverse exists. Let
[ f (x)] be a non-zero element in F[x]/ 〈p(x)〉, note that this is equivalent to saying that
p(x) does not divide f (x). Since p(x) is irreducible, its only monic factors are αp(x) and
1, where α ∈ F is some constant that makes αp(x) monic. Since p(x) does not divide
f (x), neither does αp(x), so gcd(p(x), f (x)) = 1. By Bezout, there exist a(x), b(x) ∈ F[x]
such that 1 = a(x)p(x) + b(x) f (x). Passing to the quotient space, this becomes [1] =
[a(x)][p(x)] + [b(x)][ f (x)] = [b(x)][ f (x)]. Thus [b(x)] is the multiplicative inverse of
[ f (x)].

Conversely, assume p(x) is not irreducible, then p(x) = f (x)g(x) for some f (x), g(x) ∈
F[x] with degrees ≥ 1. Since f (x), g(x) are not divisible by p(x), [ f (x)], [g(x)] 6= 0. Sup-
pose by contradiction that F[x]/ 〈p(x)〉 is a field, then [ f (x)]−1, [g(x)]−1 exist. It follows
that [0] = [ f (x)]−1 · [0] · [g(x)]−1 = [ f (x)]−1[p(x)][g(x)]−1 = [ f (x)]−1[ f (x)][g(x)][g(x)]−1 =
[1], which is a contradiction.

Theorem 11. Let p(x) ∈ Fp[x] be an irreducible polynomial with degree n. Then Fp[x]/ 〈p(x)〉
is a field with pn elements.

Proof. We need to count the number of elements in Fp[x]/ 〈p(x)〉.
First of all, we will show that every class in Fp[x]/ 〈p(x)〉 can be represented by a

polynomial with degree less than n. Indeed, let [ f (x)] ∈ Fp[x]/ 〈p(x)〉. Perform division
with remainder, we can find g(x), r(x) such that f (x) = g(x)p(x) + r(x) with deg r(x) <
n. Since p(x)| f (x)− r(x), [ f (x)] = [r(x)].

We next show that if r1(x) and r2(x) are distinct polynomials with degrees < n, then
[r1(x)] 6= [r2(x)]. Indeed, since deg(r1(x)− r2(x)) < n = deg p(x), p(x) - (r1(x)− r2(x)).
Thus [r1(x)] 6= [r2(x)].

Combine the results from the last two paragraphs, we see that the number of elements
in Fp[x]/ 〈p(x)〉 is the same as the number of polynomials in Fp[x] with degree < n,
which is pn.

Fact 12. For any positive integer n, there exists an irreducible polynomial in Fp[x] with degree n.

Corollary 13. For any positive integer n and prime number p, there exists a field with pn ele-
ments.
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