Finite Fields with Prime Power Elements

The goal is to construct finite fields with p^n elements from the polynomial rings $\mathbb{F}_p[x]$. The construction will be very similar to that of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ from \mathbb{Z} , where p is a prime number.

·	
the ring of integers \mathbb{Z}	the ring of polynomials $\mathbb{F}[x]$
Division with Remainder : For positive	For $f(x)$, $g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, there
$m, n \in \mathbb{Z}$, there exist nonnegative $q, r \in \mathbb{Z}$	
such that $m = qn + r$ with $r < n$.	$r(x)$ and deg $r(x) < \deg g(x)$ or $r(x) = 0$.
Bezout's identity For positive $m, n \in \mathbb{Z}$,	For $f(x), g(x) \in \mathbb{F}[x]$, there ex-
there exist $a, b \in \mathbb{Z}$ such that $gcd(m, n) =$	ist $a(x), b(x) \in \mathbb{F}[x]$ such that
am+bn.	gcd(f(x),g(x)) = a(x)f(x) + b(x)g(x).
prime number <i>p</i>	irreducible polynomial $p(x)$
the quotient ring \mathbb{Z}/nZ	the quotient ring $\mathbb{F}[x]/\langle p(x)\rangle$ (p(x) not
	necessarily irreducible)
\mathbb{Z}/nZ is a field iff <i>n</i> is prime	$\mathbb{F}[x] / \langle p(x) \rangle$ is a field iff $p(x)$ is irreducible.

Definition 1. A set *R*, together with two binary operations $+, \cdot$, is called a ring if the following axioms hold.

- (Associativity of addition) a + (b + c) = (a + b) + c for all $a, b, c \in R$.
- (Associativity of multiplication) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in R$.
- (*Commutativity of addition*) a + b = b + a for all $a, b \in R$,
- (Distributivity of multiplication over addition) $a \cdot (b + c) = a \cdot b + a \cdot c$ for all $a, b, c \in R_{,.}$
- (Existence of additive identity) There is an element in R, denoted by 0, such that a + 0 = a for all a ∈ R.
- (Existence of additive inverses) For every element a ∈ R, there exists an element (-a) ∈ R such that a + (-a) = 0.
- *R* is said to be commutative if
 - (*Commutativity of multiplication*) $a \cdot b = b \cdot a$ for all $a, b \in R_{,.}$
- *R* is said to contain the multiplicative identity (or with 1) if
 - (Existence of multiplicative identity) There is an element in R, denoted by 1, such that $1 \cdot a = a$ for all $a \in R$.

In short, a commutative ring with 1 satisfies all the field axioms except "existence of multiplicative inverse".

Examples 2. *The follwing are rings.*

- 1. Any field \mathbb{F} .
- 2. Z
- 3. ℤ/nΖ
- 4. LT(V, V), the set of linear transformation from V to itself.
- 5. $Fun(\mathbb{F},\mathbb{F})$
- 6. $\mathbb{F}[x]$.

7. $\mathbb{F}[x_1, ..., x_k]$

Proposition 3. (*Division with Remainder*) Given $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, there exist unique q(x), r(x) such that f(x) = q(x)g(x) + r(x) and $\deg r(x) < \deg g(x)$ or r(x) = 0.

Proof. Fix g(x). We proceed by induction on deg f(x).

When deg f(x) < deg g(x) or when f(x) = 0, there's nothing to prove. We can simply set q(x) = 0 and r(x) = f(x). This serves as our base case.

Now the induction hypothesis is that the statement is true whenever deg f(x) < n. (Since we have shown this for $n = \deg g(x)$, we can assume that $n \ge \deg g(x) = m$). When deg f(x) = n, let $f(x) = \alpha_n x^n + ... + \alpha_0$ and let $g(x) = \beta_m x^m + ... + \beta_0$. Then one easily sees that $f(x) - \alpha_n \beta_m^{-1} x^{n-m} g(x)$ has degree less than n. By induction hypothesis, there exist $q_1(x), r(x)$ such that $f(x) - \alpha_n \beta_m^{-1} x^{n-m} g(x) = q_1(x)g(x) + r(x)$ and deg r(x) <deg g(x) or r(x) = 0. Let $q(x) = q_1(x) + \alpha_n \beta_m^{-1} x^{n-m}$, the equation above becomes f(x) =q(x)g(x) + r(x) with deg $r(x) < \deg g(x)$ or r(x) = 0, which completes the proof.

This allows us to perform Euclidean Algorithm: Given $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, we can successively write down a sequence of equations:

$$f(x) = q_0(x)g(x) + r_0(x)$$

$$g(x) = q_1(x)r_0(x) + r_1(x)$$

$$r_0(x) = q_2(x)r_1(x) + r_2(x)$$

$$r_1(x) = q_3(r)r_2(x) + r_3(x)$$

...

$$r_{n-2}(x) = q_n(r)r_{n-1}(x) + r_n(x)$$

$$r_{n-1}(x) = q_{n+1}(x)r_n(x) + 0$$

such that deg $r_i(x) < \deg r_{i-1}(x)$ for all *i*.

Another consequence of proposition 3 is the following.

Proposition 4. (*Root Theorem*) Let $\alpha \in \mathbb{F}$. Then for $p(x) \in \mathbb{F}[x]$, $p(\alpha) = 0$ if and only if $(x - \alpha)|p(x)$.

Proof. Assume $p(\alpha) = 0$. By Proposition 3, there exist $q(x) \in \mathbb{F}[x], r \in \mathbb{F}$ such that $p(x) = q(x)(x - \alpha) + r$. When $x = \alpha$, this becomes 0 = r, so $x - \alpha | p(x)$.

Conversely, assume $(x - \alpha)|p(x)$. Then there exists $q(x) \in \mathbb{F}[x]$ such that $(x - \alpha)q(x) = p(x)$. When $x = \alpha$, this becomes $0 = p(\alpha)$.

Definition 5. A non-constant polynomial p(x) is said to be irreducible if there do not exist two non-constant polynomials $f(x), g(x) \in \mathbb{F}[x]$ such that p(x) = f(x)g(x).

Question 6. Is $x^2 + 1$ irreducible in $\mathbb{R}[x]$? in $\mathbb{C}[x]$? in $\mathbb{F}_2[x]$? Is 6 irreducible in $\mathbb{F}_7[x]$? Is 2x + 2 irreducible in $\mathbb{F}_7[x]$?

Examples 7.

- 1. All polynomials with degree 1 are irreducible in $\mathbb{F}[x]$.
- 2. Constants polynomials are **not** considered irreducible in $\mathbb{F}[x]$.
- 3. When $\mathbb{F} = \mathbb{C}$, the Fundamental Theorem of Algebra and the Root Theorem together imply that the irreducible polynomials in $\mathbb{C}[x]$ are linear (i.e. of degree 1).
- 4. When $\mathbb{F} = \mathbb{R}$, it can be shown that the irreducible polynomials in $\mathbb{R}[x]$ are either linear or *quadratic (i.e. of degree 2) with negative discriminant.*
- 5. When $\mathbb{F} = \mathbb{F}_2$, we will show that a complete list of irreducible polynomials in $\mathbb{F}_2[x]$ of degree 3 is : $x^3 + x + 1$, $x^3 + x^2 + 1$.

For $\mathbb{F}[x]$, define $\langle p(x) \rangle = \{p(x) \cdot f(x) | f(x) \in \mathbb{F}[x]\}$, i.e. the set polynomials that are divisible p(x). It's easy to show that $\langle p(x) \rangle$ is a subspace of $\mathbb{F}[x]$ so that we can define the quotient vector space $\mathbb{F}[x] / \langle p(x) \rangle$. Elements in $\mathbb{F}[x] / \langle p(x) \rangle$ are equivalence classes, and are denoted by $[f(x)]_{\langle p(x) \rangle}$ (or simply by [f(x)] when no confusion arises) as usual. It can be shown that [f(x)] = [g(x)] if and only if p(x) | f(x) - g(x). Finally, it's an easy exercise to show that the binary operations $+, \cdot$ defined by

$$[f(x)] + [g(x)] = [f(x) + g(x)]$$

[f(x)] \cdot [g(x)] = [f(x)g(x)]

are well defined and turn $\mathbb{F}[x]/\langle p(x)\rangle$ into a ring. The proof is exactly the same as that for $\mathbb{Z}/n\mathbb{Z}$.

Definition 8. Let $f(x), g(x) \in \mathbb{F}[x]$, the greatest common divisor of f(x) and g(x), denoted by gcd(f(x), g(x)), is the monic polynomial, with greatest degree, that divides both f(x) and g(x). Recall that a polynomial is called monic if it's leading coefficient is 1.

Proposition 9. (*Bezout's Identity*) Let $f(x), g(x) \in \mathbb{F}[x]$. There exist $a(x), b(x) \in \mathbb{F}[x]$ such that gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x).

Proof. The proof will be similar to the analogous statement for \mathbb{Z} , so we only sketch it. We will also refer to the Euclidean Algorithm above. It's an easy exercise to show that gcd(g(x), r(x)) = gcd(g(x), q(x)g(x) + r(x)) for arbitrary $g(x), r(x), q(x) \in \mathbb{F}[x]$. Applying this result multiple times to the Euclidean Algorithm above, we get $gcd(f(x), g(x)) = gcd(g(x), r_0(x)) = gcd(r_0(x), r_1(x)) = gcd(r_1(x), r_2(x)) = ... = gcd(r_{n-1}(x), r_n(x))$. Now since $r_n(x)$ divides $r_{n-1}(x)$, you may have guessed that $gcd(r_{n-1}(x), r_n(x)) = r_n(x)$. This is close, but not quite correct because $r_n(x)$ needs not be monic. To remedy this, we need to scale $r_n(x)$ by a constant $\alpha \in \mathbb{F}$ to make it monic. (More explicitly, if the leading coefficient of $r_n(x)$ is β , we pick $\alpha = \beta^{-1}$.) In summary, we have $gcd(f(x), g(x)) = \alpha r_n(x)$.

The second to last equation in the Euclidean Algorithm allows us to express $r_n(x)$ as a linear combination of $r_{n-1}(x)$ and $r_{n-2}(x) : r_n(x) = r_{n-2}(x) - q_n(x)r_{n-1}(x)$. The third to

last equation allows us to do the substitution $r_{n-1}(x) = r_{n-3}(x) - q_{n-1}(x)r_{n-2}(x)$ so that $r_n(x) = r_{n-2}(x) - q_n(x)r_{n-1}(x) = r_{n-2}(x) - q_n(x)(r_{n-3}(x) - q_{n-1}(x)r_{n-2}(x)) = (1 + q_n(x)q_{n-1}(x))r_{n-2}(x) - q_n(x)r_{n-3}(x)$ can be written as a linear combination of $r_{n-2}(x)$ and $r_{n-3}(x)$. We can repeat this process and eventually find $a(x), b(x) \in \mathbb{F}[x]$ such that $r_n(x) = a(x)f(x) + b(x)g(x)$.

In conclusion,
$$gcd(f(x), g(x)) = \alpha r_n(x) = \alpha a(x)f(x) + \alpha b(x)g(x)$$

Theorem 10. $\mathbb{F}[x] / \langle p(x) \rangle$ *is a field if and only if* p(x) *is irreducible.*

Proof. Assume p(x) is irreducible. We have seen that $\mathbb{F}[x]/\langle p(x) \rangle$ is a ring. In order to prove that $\mathbb{F}[x]/\langle p(x) \rangle$ is a field, it suffices to verify that multiplicative inverse exists. Let [f(x)] be a non-zero element in $\mathbb{F}[x]/\langle p(x) \rangle$, note that this is equivalent to saying that p(x) does not divide f(x). Since p(x) is irreducible, its only monic factors are $\alpha p(x)$ and 1, where $\alpha \in \mathbb{F}$ is some constant that makes $\alpha p(x)$ monic. Since p(x) does not divide f(x), neither does $\alpha p(x)$, so gcd(p(x), f(x)) = 1. By Bezout, there exist $a(x), b(x) \in \mathbb{F}[x]$ such that 1 = a(x)p(x) + b(x)f(x). Passing to the quotient space, this becomes [1] = [a(x)][p(x)] + [b(x)][f(x)] = [b(x)][f(x)]. Thus [b(x)] is the multiplicative inverse of [f(x)].

Conversely, assume p(x) is not irreducible, then p(x) = f(x)g(x) for some $f(x), g(x) \in \mathbb{F}[x]$ with degrees ≥ 1 . Since f(x), g(x) are not divisible by $p(x), [f(x)], [g(x)] \neq 0$. Suppose by contradiction that $\mathbb{F}[x]/\langle p(x) \rangle$ is a field, then $[f(x)]^{-1}, [g(x)]^{-1}$ exist. It follows that $[0] = [f(x)]^{-1} \cdot [0] \cdot [g(x)]^{-1} = [f(x)]^{-1} [p(x)][g(x)]^{-1} = [f(x)]^{-1} [f(x)][g(x)][g(x)]^{-1} = [1]$, which is a contradiction.

Theorem 11. Let $p(x) \in \mathbb{F}_p[x]$ be an irreducible polynomial with degree *n*. Then $\mathbb{F}_p[x] / \langle p(x) \rangle$ is a field with p^n elements.

Proof. We need to count the number of elements in $\mathbb{F}_p[x] / \langle p(x) \rangle$.

First of all, we will show that every class in $\mathbb{F}_p[x]/\langle p(x)\rangle$ can be represented by a polynomial with degree less than *n*. Indeed, let $[f(x)] \in \mathbb{F}_p[x]/\langle p(x)\rangle$. Perform division with remainder, we can find g(x), r(x) such that f(x) = g(x)p(x) + r(x) with deg r(x) < n. Since p(x)|f(x) - r(x), [f(x)] = [r(x)].

We next show that if $r_1(x)$ and $r_2(x)$ are distinct polynomials with degrees < n, then $[r_1(x)] \neq [r_2(x)]$. Indeed, since deg $(r_1(x) - r_2(x)) < n = \deg p(x)$, $p(x) \nmid (r_1(x) - r_2(x))$. Thus $[r_1(x)] \neq [r_2(x)]$.

Combine the results from the last two paragraphs, we see that the number of elements in $\mathbb{F}_p[x] / \langle p(x) \rangle$ is the same as the number of polynomials in $\mathbb{F}_p[x]$ with degree < n, which is p^n .

Fact 12. For any positive integer n, there exists an irreducible polynomial in $\mathbb{F}_{p}[x]$ with degree n.

Corollary 13. For any positive integer n and prime number p, there exists a field with p^n elements.