The Greek mathematician Pythagoras is often credited with proving the following theorem. We give a proof that is essentially a single figure. We include the full details explaining why this figure establishes the Pythagorean Theorem.

The Pythagorean Theorem. Consider a right triangle with leg lengths and b , and hypotenuse length c . These lengths satisfy

$$
a^{2}+b^{2}=c^{2}
$$

Proof. We may arrange four copies of the right triangle into a square, as shown in the figure below. We

FIGURE 1. Four copies the right triangle, arranged in a square.
notice that the angle marked γ is a right angle, since $\alpha+\beta+\gamma=180^{\circ}$, and the angles α and β are the two acute angles in a right triangle, so their sum is $\alpha+\beta=90^{\circ}$. Therefore, $\gamma=90^{\circ}$, and the quadrilateral in the center of the figure must be a square.

The entire square has side lengths $a+b$, and the central square has side length c. We may compute the area A of the entire square as $A=(a+b)^{2}$, or by adding up the areas of the four triangles plus the area of the central square,

$$
A=4 \cdot\left(\frac{1}{2} a b\right)+c^{2}
$$

Thus we have

$$
(a+b)^{2}=2 a b+c^{2}
$$

We now multiply out the left-hand side to get

$$
a^{2}+2 a b+b^{2}=2 a b+c^{2}
$$

Subtracting $2 a b$ from each side, we get the desired equality, $a^{2}+b^{2}=c^{2}$.

