1. (a)

$$(123)(345) = (12345)$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$
$$= (15)(14)(13)(12)$$

Sign = +1

(b)

$$(125)(234)(56) = (123456)$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$$
$$= (16)(15)(14)(13)(12)$$

Sign = -1

(c)

$$(15)(152)(278) = (2785)$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 3 & 4 & 2 & 6 & 8 & 5 \end{pmatrix}$$
$$= (25)(28)(27)$$

Sign = -1

2. (Rotman #2.33) We just need to pick α, β, γ such that α and β are disjoint, α and γ are disjoint, but β and γ are not disjoint. For example $\alpha = (12), \beta = (34), \gamma = (35)$

3. Let $\alpha = (ij)$ and $\beta = (a_1 a_2 \cdots a_r)$. Either

- (a) $\{i, j\}$ is disjoint from $\{a_1, \ldots, a_r\}$, in which case α commutes with β .
- (b) $i \in \{a_1, ..., a_r\}$ but $j \notin \{a_1, ..., a_r\}$

Say $i = a_i$. Then

$$(a_i j)(a_1 \cdots a_r)(a_i j) = (a_1 \cdots a_{i-1} j a_{i+1} \cdots a_r)$$

So this has the effect of replacing a_i with j.

(c) Both $i, j \in \{a_1, ..., a_r\}$

Say $i = a_i, j = a_j$. WLOG assume i < j

$$(a_i a_j)(a_1 \cdots a_r)(a_i a_j) = (a_1 \cdots a_{i-1} a_j a_{i+1} \cdots a_{j-1} a_i a_{j+1} \cdots a_r)$$

This has the effect of swapping a_i and a_j .

4. (i) An *r*-cycle is of the form $(a_1a_2\cdots a_r)$. There are *n* choices for $a_1, n-1$ choices for $a_2, \ldots, n-r+1$ choices for a_r . Observe that *r* such notions describe the same permutation in S_n ,

e.g. (1234) = (2341) = (3412) = (4123). These 4 cycles describe the same permutation e.g. $(a_1a_2\cdots a_r) = (a_2\cdots a_ra_1) = \cdots = (a_ra_1\cdots a_{r-1})$

We thus get the desired formula

number of r-cycles =
$$\frac{1}{r} (n(n-1)\cdots(n-r+1))$$

 $\mathbf{2}$

(ii) Such a permutation is of the form

 $\alpha = (a_{11}a_{12}\cdots a_{1r})(a_{21}a_{22}\cdots a_{2r})\cdots (a_{k1}a_{k2}\cdots a_{kr})$

These are disjoint r-cycles. There are

n choices for a_{11} n-1 choices for a_{12} \dots n-kr+1 choices for a_{kr}

Again, for each r-cycle, we have over-counted by a factor of r. There are k r-cycles, so we have to divide by r k-times. Finally, observe that for disjoint r-cycles, the order we write them in is irrelevant,

e.g. $(123)(456)(789) = (123)(789)(456) = (789)(123)(456) = \cdots$

There are k! different possible permutations, thus giving the desired formula for the number of permutations in S_n which are represented by a product of k disjoint r-cycles as

$$\frac{1}{k!}\frac{1}{r^k}[n(n-1)\cdots(n-kr+1)]$$

5. (a) If $\alpha \in A_n$ then α factors into an even number of transpositions. Therefore for $\alpha, \beta \in A_n$ write

$$\alpha = \tau_1 \cdots \tau_{2r}$$
$$\beta = \sigma_1 \cdots \sigma_{2s}$$

where τ_i, σ_i are transpositions. Clearly $\alpha\beta = \tau_1 \cdots \tau_{2r} \cdot \sigma_1 \cdots \sigma_{2s}$ is a product of 2(r+s) transpositions, and thus is in A_n . We compute the inverse

$$\alpha^{-1} = \tau_{2r} \cdots \tau_2 \tau_1$$

which again is in A_n .

(b) Here is a general r-cycle,

$$\rho = (a_1 a_2 \cdots a_r)$$

It decomposes into transpositions as,

$$\rho = (a_1 a_r)(a_1 a_{r-1}) \cdots (a_1 a_2)$$

a product of r-1 transpositions. Thus $\rho \in A_n$ iff r is odd.

- (c) Let $|\sigma|$ denote the number of transpositions that a permutation σ decomposes into. To see this let's observe first that $|\sigma| = |\sigma^{-1}|$, an inverse decomposes into the same number of transpositions (see part (a) where we compute the inverse as a product of transpositions). Therefore the commutator $\sigma\tau\sigma^{-1}\tau^{-1}$ decomposes into $|\sigma| + |\tau| + |\sigma^{-1}| + |\tau^{-1}| = 2(|\sigma| + |\tau|)$ transpositions and thus is in A_n .
- (d) Consider the function

$$f: S_n \to S_n$$
$$\sigma \mapsto (12) \cdot \sigma$$

This is a bijection (indeed, f is its own inverse!). Now observe that if f maps even permutations to odd ones, and odd permutations to even ones. Therefore, since f is a bijection, the number of even permutations is equal to the number of odd permutations and we therefore get that

$$|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$$

(e) id: there is one identity permutation and it's cycle shape is (1,1,1,1,1) (3,1,1): e.g. (123), there are 20 (2,2,1): e.g. (12)(34), there are 15 (5): e.g. (12345), there are 24.