Pseudo-Modularity and Iwasawa Theory

Preston Wake and Carl Wang Erickson

April 11, 2015

The Ordinary Eigencurve

Fix a prime p ($p \ge 5$ later on) and a level $N \ge 1$ ($p \nmid N\varphi(N)$ later on).

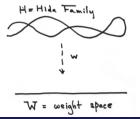
Hida Theory

Any ordinary (cuspidal) eigenform of weight k and level N

$$f(q) = a_0 + a_1q + a_2q^2 + a_3q^3 + \cdots$$

lies in a *p*-adic family of (cuspidal) eigenforms with *p*-adically varying weight k. "Ordinary" means that a_p is a *p*-adic unit.

Picture credit: Barry Mazur



Weight space is Spec $\Lambda[1/p]$, where $\Lambda = \mathbb{Z}_p[t]$.

Think of a weight $k \in \mathbb{Z}_p$ as a map $\Lambda \to \mathbb{Z}_p$ sending t to $(1+p)^k - 1$.

Preston Wake and Carl Wang Erickson

Example: Eisenstein series

The (classical) Eisenstein series of weight $k \in \mathbb{Z}_{\geq 2}$ and level N = 1:

$$E_k(q) = \zeta(k)/2 + \sum_{n\geq 1} q^n \sum_{d\mid n} d^k = \zeta(k)/2 + \sum_{n\geq 1} \sigma_n(k)q^n.$$

After a slight modification, the coefficients vary p-analytically in terms of k:

$$E(k,q) = \xi(k) + \sum_{n \ge 1} q^n \sum_{d \mid n, p \nmid d} d^k = \xi(k) + \sum_{n \ge 1} \sigma_n^{(p)}(k) q^n$$

Each $\sigma_n^{(p)}$ along with ξ are elements of $\Lambda = \mathbb{Z}_p[\![t]\!]$. The image of $\sigma_n^{(p)}$ under $t \mapsto (1+p)^k - 1$ is $\sigma_n^{(p)}(k)$.

The Hida Hecke Algebras

Write \mathfrak{H} for the Eisenstein component of the ring of Hecke operators acting on all *p*-adic families of ordinary eigenforms. Write \mathfrak{h} for the quotient of \mathfrak{H} arising from the Hecke action on *cuspidal* ordinary eigenforms.

Hida theory $\implies \mathfrak{H}$ and \mathfrak{h} are complete local finite and flat A-algebras.

Think: an ordinary modular form with coefficients in a ring A corresponds to a map $\mathfrak{H} \to A$.

Example

The ordinary Eisenstein series E = E(k,q) has coefficients in Λ , so there exists a map $\mathfrak{H} \twoheadrightarrow \Lambda$ corresponding to it.

イロト イヨト イヨト イヨト

The Ordinary Eigencurve

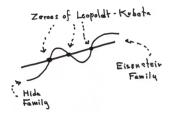
Definition

The ordinary eigencurve is Spec $\mathfrak{H}[1/p]$. The cuspidal locus and Eisenstein locus are the closed subschemes

Spec $\mathfrak{h}[1/p] \subset \text{Spec } \mathfrak{H}[1/p]$, Spec $\Lambda[1/p] \subset \text{Spec } \mathfrak{H}[1/p]$,

respectively.

The map $\mathfrak{H}\twoheadrightarrow\Lambda$ cutting out the Eisenstein locus corresponds to the Eisenstein series.



These two loci intersect whenever ξ has a zero at some weight.

Picture credit: Barry Mazur

Question

What is the nature of these crossings of Eisenstein and cuspidal families?

Conjecture (Preston Wake)

At an intersection point, the local rings $\mathfrak{H}_{\mathfrak{p}}$ and $\mathfrak{h}_{\mathfrak{p}}$ of $\mathfrak{H}[1/p]$ and $\mathfrak{h}[1/p]$ at this point are Gorenstein.

This conjecture for all intersection points is called "weak Gorensteinness."

In other words, the singularity at \mathfrak{p} should be not too bad. For example, if it is complete intersection (i.e. has the form $K[[x_1, \ldots, x_n]]/(f_1, \ldots, f_m)$ with Krull dimension equal to n - m), then it is Gorenstein.

Motivation from the integral case:

- The ordinary part of the cohomology of the tower of modular curves $X_0(p^n N)$ is a \mathfrak{h} -module H with a linear Galois action. This module is generically free of rank 2, but is free of rank 2 if and only if \mathfrak{h} is Gorenstein.
- Gorensteinness is sometimes known for \mathfrak{H} and \mathfrak{h} (integrally), and has close relations with Iwasawa towers of class groups "X":
 - Wake: If ℌ is Gorenstein, then X⁺ = 0. (X⁺ = 0 is Vandiver's conjecture when N = 1; also need X⁻ ≠ 0)
 - Wake: If Sharifi's conjecture is true, then $X^+ = 0 \implies \mathfrak{H}$ is Gorenstein.
 - Sharifi's conjecture proposes an isomorphism between X^- and a certain quotient H^-/IH^- of H, refining the Iwasawa main conjecture.
 - Wake's Corollary: \mathfrak{H} is not always Gorenstein. (Find $X^+ \neq 0$.)

Motivation for the Weak Gorensteinness Conjecture

We have seen that \mathfrak{H} is not always Gorenstein, but perhaps $\mathfrak{H}[1/p]$ and $\mathfrak{h}[1/p]$ are still Gorenstein along the Eisenstein locus; this is Wake's "weak Gorensteinness" conjecture.

- Similar consequences about class groups and representation theory are true.
- In particular, H_p := H ⊗_h h_p is a "true 2-dimensional representation" over h_p if and only if h_p is Gorenstein.

Theorem (Wake)

 \mathfrak{H} is weakly Gorenstein if and only if both of the following are true:

- Sharifi's conjecture (X[−] → H[−]/IH[−]) is "weakly" true, i.e. the kernel and cokernel are finite cardinality, and
- **2** A certain quotient of X^+ is finite cardinality.

A (10) N (10)

Main Result on the Eigencurve

 X^+ is expected to be finite cardinaltiy – this is Greenberg's pseudo-nullity conjecture. So Wake's theorem implies that weak Gorensteinness follows from weak Sharifi's conjecture and Greenberg's conjecture.

Our main theorem proves that Greenberg's pseudo-nullity conjecture is sufficient to imply weak Gorensteinness (and thereby also to imply weak Sharifi's conjecture).

Theorem (Wake-W.E.)

Moreover, ξ has at most simple zeros if and only if h_p are DVRs,
i.e. the cuspidal locus is smooth at each Eisenstein intersection point.

Method of Proof: Pseudo-Modularity

Although $G_{\mathbb{Q}} \to \operatorname{End}_{\mathfrak{h}_{\mathfrak{p}}}(H_{\mathfrak{p}})$ may not be a true representation (until we prove that $\mathfrak{h}_{\mathfrak{p}}$ is Gorenstein, $H_{\mathfrak{p}}$ may not be free), it still induces a trace and determinant function.

This data is a 2-dimensional *pseudorepresentation* – i.e. the data of a trace and determinant function on $G_{\mathbb{Q}}$ satisfying coherence conditions expected of such functions coming from a representation.

Theorem (Many people; Chenevier)

There is a universal deformation ring R for the residual Galois pseudorepresentation on $H_p/\mathfrak{p}H_p$.

There is then a surjection $R \twoheadrightarrow \mathfrak{h}_{\mathfrak{p}}$ induced by the $G_{\mathbb{Q}}$ action on $H_{\mathfrak{p}}$; we also produce $R \twoheadrightarrow \mathfrak{H}_{\mathfrak{p}}$.

We want to use a refinement of this map to prove $\mathfrak{H}_{\mathfrak{p}}, \mathfrak{h}_{\mathfrak{p}}$ to be Gorenstein.

Method of Proof: Pseudo-Modularity

- Construct a "universal ordinary pseudodeformation ring" R^{ord} , a quotient of R, and verify that there is a factorization $R^{\text{ord}} \rightarrow \mathfrak{H}_p$.
- Use the assumption of Greenberg's conjecture to control certain Galois cohomology groups.
- Use a result of Bellaïche that characterizes the tangent space of R^{ord} in terms of Galois cohomology, showing that it is 2-dimensional.
- Hence the cotangent space p/p² of 𝔅_p is at most 2-dimensional; because 𝔅_p is Krull 1-dimensional, it is complete intersection, hence Gorenstein. The same is true for 𝔥_p, proving the theorem.
- Using the same commutative algebra Wiles used in his Fermat paper:

Theorem (Wake-W.E.)

The Galois action on the cohomology of modular curves induces an isomorphism $R^{\mathrm{ord}} \xrightarrow{\sim} \mathfrak{H}_{\mathfrak{p}}$. " $R = \mathbb{T}$ "

Key Method: Ordinary Pseudorepresentations

The notion of "ordinary pseudorepresentation of $G_{\mathbb{Q}}$ " is subtle:

- "Ordinary" for a 2-dimensional representation V of $G_{\mathbb{Q}}$ means that the restriction to a decomposition group G_p at p is reducible, with a quotient that is unramified.
- However, pseudorepresentations are characteristic polynomial coefficients, and characteristic polynomial coefficients don't see which direction an extension goes!
- Nevertheless, an irreducible pseudorepresentation of $G_{\mathbb{Q}}$ can see extensions between factors of the restriction to G_p !

Definition (Ordinary pseudorepresentation, first attempt)

An ordinary pseudorepresentation is a pseudorepresentation induced by some ordinary representation.

But this does not work... not every pseudorepresentation comes from a representation.

Preston Wake and Carl Wang Erickson Pseudo-Mo

Solution

Expand the category of representations to include *Cayley-Hamilton* representations of $G_{\mathbb{Q}}$, a notion due (in this form) to Chenevier and Bellaïche-Chenevier: a C-H representation of $G_{\mathbb{Q}}$ is

- an A-algebra R,
- a pseudorepresentation $D: R \rightarrow A$, and
- a homomorphism $\rho: G_{\mathbb{Q}} \to R^{\times}$.

Every pseudorepresentation does come from a Cayley-Hamtilon representation via the pseudorepresentation $D \circ \rho$ of $G_{\mathbb{Q}}$.

Definition (Ordinary pseudorepresentation, successful attempt)

An ordinary pseudorepresentation is a pseudorepresentation induced by some ordinary Cayley-Hamilton representation.

Of course, "ordinary C-H representation" needs to be defined,

Ordinary Cayley-Hamilton Representations

Any Cayley-Hamtilon representation $\rho: G_{\mathbb{Q}} \to R$ of $G_{\mathbb{Q}}$ over A with residual pseudorepresentation identical to that of $H_{\mathfrak{p}}/\mathfrak{p}H_{\mathfrak{p}}$ will have two primitive orthogonal idempotents, giving R and ρ matrix decomposition

$$R \simeq \begin{pmatrix} A & B \\ C & A \end{pmatrix}, \qquad \rho = \begin{pmatrix} \rho_{1,1} & \rho_{1,2} \\ \rho_{2,1} & \rho_{2,2} \end{pmatrix}$$

where B, C are A-modules with a multiplication law $B \otimes_A C \to A$ satisfying those identities necessary to make R an associative algebra.

• This is a "generalized matrix algebra" of Bellaïche-Chenevier.

Definition (Ordinary Cayley-Hamilton Representation)

Call a Cayley-Hamilton representation ordinary when $\rho_{1,2}(G_p) = 0$ and $\rho_{1,1}(I_p) = 1$.

イロト 不得下 イヨト イヨト

There is actually a universal such Cayley-Hamilton representation E^{ord} with center R^{ord} , we we can actually prove a non-commutative strengthening of our pseudo-modularity theorem:

Theorem (Wake-W.E.)

Assuming Greenberg's conjecture as before, the canonical map $E^{\mathrm{ord}} \otimes_{R^{\mathrm{ord}}} \mathfrak{h}_{\mathfrak{p}} \to \mathrm{End}_{\mathfrak{h}_{\mathfrak{p}}}(H_{\mathfrak{p}})$ is injective, i.e. every ordinary cuspidal Cayley-Hamilton representation is realized in the ordinary cohomology of modular curves.

A similar statement should be true for E^{ord} itself, but is more complicated to state.