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Abstract. In this work we provide a novel approach to homogenization for a class of static
Hamilton–Jacobi (HJ) equations, which we call metric HJ equations. We relate the solutions of the
HJ equations to the distance function in a corresponding Riemannian or Finslerian metric. The
metric approach allows us to conclude that the homogenized equation also induces a metric. The
advantage of the method is that we can solve just one auxiliary equation to recover the homogenized
Hamiltonian H̄(p). This is a significant improvement over existing methods which require the solution
of the cell problem (or a variational problem) for each value of p. Computational results are presented
and compared with analytic results when available for piecewise constant periodic and random speed
functions.
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1. Introduction. In this work we provide a novel approach to homogenization
for a class of convex Hamilton–Jacobi (HJ) equations, which we call metric HJ equa-
tions. We relate the solutions of the HJ equations to the distance function in a
corresponding Riemannian or Finslerian metric. By appealing to a homogenization
result for metrics, we conclude that the homogenized equation also corresponds to the
distance in a homogenized metric. The advantage of our method is that we can solve
just one auxiliary equation to recover the homogenized Hamiltonian H̄(p). This is a
significant improvement over existing methods which require the solution of the cell
problem (or a variational problem) for each value of p.

One application is front propagation problems in multiscale media. The wide
range of spatial scales prohibits the direct solution of the fully resolved problem.
However, the separation of scales allows homogenization: the medium which varies
on small scales is replaced by a homogeneous medium, which approximates the prop-
agation of the fronts on the larger scale.

The main theoretical idea is to recognize that the distance function in the ho-
mogenized metric captures the solution to a variational problem for the geodesics
corresponding to all directions. This distance function, which is approximated by
solving a single Hamilton–Jacobi equation, can be used to recover the entire homog-
enized metric. To make this procedure work, we need to be able to easily translate
results for anisotropic front propagation between various formulations (reviewed in
section 2). The first formulation expresses the speed of propagation in the media by
a local speed function. The speed function induces a metric on the space, given by
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the least time to traverse using admissible paths. The distance function in this metric
satisfies an eikonal-type Hamilton–Jacobi equation.

Remark. Our results apply to the metric Hamiltonian H(p, x) = 1, defined below,
which homogenizes to H̄(p). We mention here that the results extend to some other
cases, provided that H(p, x) is a metric Hamiltonian. While it is not completely
obvious, it is true that H2(∇u, x) = 1 homogenizes to H̄2(∇u) = 1. In the time-
dependent case, ut = H(∇u, x) homogenizes to ut = H̄(∇u). In addition, ut =
H2(∇u, x) homogenizes to ut = H̄2(∇u). These results can be obtained using the
Hopf–Lax formula. For an explanation, see the remarks at the end of section 2.9 and
at the start of section 3.

Another natural definition of metric in an inhomogeneous medium is provided by
the geodesic distance. In this case a cost function is minimized over admissible paths
(which are not required to have bounded speeds). The relationship between the cost
function and the speed function which makes the geodesic metric equal to the metric
induced by the speed function is given in section 2.8.

In our approach, we compute an approximation to the homogenized Lagrangian
L̄(q) for all values of q. The Legendre transform is then applied to obtain H̄(p) for all
values of p. In fact, it is often more convenient to solve anisotropic Hamilton–Jacobi
equations by semi-Lagrangian numerical methods. In that case, all that is needed is
L̄(q), and the additional step of applying Legendre transform can be avoided.

Contents. The remainder of this section introduces anisotropic front propaga-
tion and presents a few model problems. Section 2 reviews front propagation more
thoroughly. The HJ equation for the arrival time is derived, and the geodesic distance
is presented. The Lagrangian and the Hopf–Lax formula are reviewed. Section 3 con-
tains a review of homogenization and the proof of the main theoretical result. The
algorithmic details of our numerical method are provided in section 4, and the nu-
merical results can be found in section 5.

1.1. Particle speeds and front normal velocities. Suppose Γ is the initial
position of a front which is advancing monotonically, passing through each point only
once. In this case the position of the front at time t can be represented by the level
set of a single function T (x). If T (x) is the time when the front passes through the
point x, then the level sets of T give subsequent positions of the front. Assume that
the normal speed of the front, F (x, n), depends only on the position, x, and normal
direction, n. If the front remains smooth, its normal direction is n = ∇T

|∇T | and the

rate of increase of T in that direction is equal to |∇T |. On the other hand, this rate
of increase should be the reciprocal of the normal speed, F . This yields the following
static Hamilton–Jacobi equation:

F

(
x,

∇T (x)

|∇T (x)|
)
|∇T (x)| = 1

with the boundary condition T = 0 on Γ. However, this argument is formal, since the
advancing front will generally not remain smooth. (For two growing circles, the front
develops a cusp when they intersect.) To deal with singularities, the notion of viscosity
solutions should be used to interpret this partial differential equation (PDE) [15].

A Lagrangian formulation of the same problem results from considering a front
as an aggregate of infinitely many particles, all of which are moving along optimal
trajectories, with the goal of advancing in the front’s normal direction as quickly as
possible. The optimal particle trajectories coincide with the characteristics of the
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Fig. 1. Illustration of normal front speed versus particle speed.

above PDE, and the front remains smooth as long as these optimal trajectories do
not intersect.

In order to properly link the Hamilton–Jacobi equation with the Lagrangian for-
mulation, we need to be particularly careful when dealing with anisotropic speeds. In
the isotropic case, F (x, n) = c(x) and the optimal direction for particle travel is also
orthogonal to the front, yielding the eikonal PDE

c(x)|∇T (x)| = 1.

In the anisotropic case, the normal velocity of the front is different from the velocity
of the moving particles which make up that front.

Example. Suppose particles move horizontally with speed 1, and have no vertical
speed allowed. Then the front with normal (1, 1)/

√
2 moves with speed 1/

√
2 in the

normal direction, whereas the vertical front moves at speed 1 and a horizontal front
does not move at all. See Figure 1.

The example above can be extended to the general case, where the allowable
particle speed in the direction α is given by c(x, α). All particles try to advance the
front as quickly as possible, so the optimal direction for particle motion will depend
on the local orientation of the front. In that case, the normal speed of the front is

F (x, n) = max
|α|=1

{(n · α)c(x, α)},

and the maximizing α corresponds to the direction of particle motion. This con-
nection is discussed in detail in section 2.4. Here we simply note that the front-
crossing-time function T (x) is the viscosity solution of the Hamilton–Jacobi equation
H(∇T (x), x) = 1, where the Hamiltonian is given by

(1.1) H(p, x) := max
|α|=1

{(p · α)c(x, α)} = |p|F
(
x,

p

|p|
)
.

Before going into the details of our approach, we present several model problems.

1.2. The periodic checkerboard. Consider a periodic checkerboard, where
the speed of motion is either 1 or 2. Suppose further that the scale of the periodicity, ε,
is too small to resolve computationally. Clearly, simply solving on a coarse grid could
produce incorrect results, because the coarse grid could fail to resolve one of the two
parts of the medium. This is where homogenization comes in: we need to replace
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Fig. 2. An optimal path in the (2, 1) direction for the checkerboard material.

Fig. 3. Homogenization of the checkerboard material, illustrated with vectograms.

the medium which varies on small scales with an approximation which captures the
large-scale behavior.

The homogenized medium can be found by finding the explicit optimal paths
(which are not unique). In this case, if the ratio of speeds is large enough, there is no
point spending any time in the slower material. For horizontal, vertical, and diagonal
directions, the paths stay in the fast squares and move directly, up to small oscillations
on the scale of ε. But in other directions, for example, the direction (2, 1), there is
no straight line path, so the optimal path is longer than in the Euclidean case. As a
result, the homogenized speed is slower for these directions; see Figure 2. A rigorous
proof of these results can be found in [2]. The checkerboard medium homogenizes to
a medium whose vectogram is octagonal. We represent the speed of propagation by
a vectogram which illustrates the speed in each possible direction permitted by the
material; see Figure 3. This example illustrates a general principle:

Anisotropy can develop as a result of homogenization.

1.3. The random checkerboard. The random case, where each square is fast
or slow with probability 1/2, is shown in Figure 4. In this case, numerical results
suggest that homogenized material is isotropic with speed faster than the harmonic
mean; see section 5.5.
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Fig. 4. Optimal paths in a random media. The particle speed is c0 > 1 in the dark and 1 in
the light region. Left: c0 = 2. Right: c0 = 10.

Fig. 5. The three-scale problem (left), result of homogenization in each medium scale cell (right).

1.4. The toy three-scale problem. Consider a two-dimensional material made
up of 50×50 unit blocks. Each block is allowed to have a different periodic small-scale
structure. See Figure 5.

To solve the full three-scale problem, we apply a two-step procedure. First in
each block, homogenize to get a homogeneous material with a new (anisotropic) speed
profile. Next, on the large scale, solve the front propagation problem on a grid which
resolves each block, using the speed profile for the homogenized blocks. See Figures 5
and 11. Accurate results can be obtained with a modest number of grid points on
each block; see section 5.2.
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2. Paths and fronts in an inhomogeneous medium. In this section we
review front propagation in an inhomogeneous and anisotropic medium from the per-
spective of the optimal control theory. We discuss the least time perspective, and the
related eikonal equation for the distance.

We recall the derivation of the Hamilton–Jacobi equation for the distance func-
tion. The distance function is interpreted as the first arrival time for a front given as
the envelope of particles moving along the optimal paths at speed given by c. The
normal speed of a front is not the same as the particle speed. However, we make the
observation in 2.9 that the particle speed function defines a norm, and that the HJ
equation for the distance is a generalized eikonal equation in the dual norm.

These different interpretations of HJ equations are later used in section 3 to derive
an efficient method for homogenization.

2.1. Summary of notation and relationship between the variables.
• x is a generic point in R

n representing position.
• p, q are generic vectors in R

n representing velocity.
• β is a generic vector in R

n satisfying |β| ≤ 1.
• α is a generic unit vector in R

n representing direction.
• c(x, α) is the particle speed in the direction α.
• f(x, α) gives the particle velocity in the direction α, f(x, α) = αc(x, α).
• F (x, n) gives the speed for a front with normal n.
• b(x, q) is the cost at x to move with velocity q.
• The vectogram Vc(x) = {f(x, β) | |β| ≤ 1} is a set of all permissible velocities
at the point x.

• The Hamiltonian H(p, x) = |p|F (x, p/|p|).
• The Lagrangian L(q, x) = 0 if q ∈ Vc(x), and ∞ otherwise.

The normal speed F and particle speed c are related by the homogeneous Legendre
transform [31]. The Hamiltonian H and the Lagrangian L are related by the Legendre
transform; see section 2.5. The particle speed c and the metric cost function b are
one-sided inverse functions; see section 2.8. For each fixed x, the metric cost function
b and the Hamiltonian H are norms on R

n. These are dual norms; see section 2.9.

2.2. The speed function, vectograms. Consider a medium which allows par-
ticle motion at limited speeds. Let x denote the position, and β denote the control
value. Write ẋ(s, β(s)) := d

dsx(s, β(s)). The admissible paths x(s, β(s)) satisfy the
controlled ordinary differential equation

(ODE) ẋ(s, β(s)) = f(x(s, β(s)), β(s)),

where β(·) ∈ B := {β(·) : [0,∞) → R
n, |β| ≤ 1, measurable} is the control.

We restrict to the special case where the control is the choice of direction:

(2.1) f(x, β(s)) = c

(
x,

β(s)

|β(s)|
)
β(s).

The speed function c : Rn×S
n−1 → [0,+∞) gives the maximum speed allowed in the

direction α, where α = β(s)|β(s)|−1 is a unit vector. We assume that c is convex in
its second argument and satisfies the small-time controllability condition:

(2.2) 0 < c1 ≤ c(x, α) ≤ C1 < +∞ for every x ∈ R
n, |α| = 1.

The function c is homogeneous if it is independent of x, c(x, α) = c(α), isotropic if it
is independent of the direction α, c(x, α) = c(x), and symmetric if

(2.3) c(x,−α) = c(x, α).
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We assume symmetry to ensure that the resulting distances on R
n, Tc(x1, x2) are

symmetric, although the assumption can be dropped at the expense of some additional
bookkeeping (we would need to distinguish between arrival times and times to reach
a target; some of the formulas will have minus signs in the velocities (see [31]), and
norms are replaced by asymmetric norms).

For fixed x ∈ R
n, the speed function c is a mapping of the unit sphere S

n and
also defines a vectogram Vc ⊂ R

n:

Vc =
{
c
(
x, β|β|−1

)
β
∣∣ |β| ≤ 1

}
.

Vectograms [23] provide a simple way to illustrate the speed profile for each point x.
See Figures 3 and 8.

2.3. The arrival time function. We can define a distance on R
n using the

minimum time needed to move between two points along the admissible paths:

(2.4) Tc(x1, x2) = inf
x(·) admissible

{t | x(0) = x1, x(t) = x2}.

It is easy to show that Tc defines a metric on Rn, where the symmetry property results
from the fact that any admissible path from x1 to x2 can be retraced backwards taking
the same amount of time (using (2.3)). The small-time controllability condition (2.2)
can be used to show that the infimum is attained and that an optimal (not necessarily
unique) control β(s) actually exists. Moreover, since the goal is to minimize the
time, it is clear that along any optimal path the particle should be moving with the
maximum allowable speed for the current direction; i.e., |β(s)| = 1 and f(x(s), β(s))
is on the boundary of the vectogram Vc a.e. in [0, t]. Thus, the same distance function
can be defined by using the class of admissible controlsA := {α(·) : [0,∞) → R

n, |α| =
1, measurable}.

2.4. The Hamilton–Jacobi equation. In this section we show directly that
the first arrival time function satisfies the Hamilton–Jacobi equation, using the dy-
namic programming principle [5]. Here we give a formal proof (assuming the solution
remains smooth) for the reader’s convenience and to establish consistent notation. A
rigorous treatment (using viscosity solutions to handle the nonsmoothness) as well as
the proof of uniqueness for similar equations can be found in [18] and [5].

Lemma 2.1. The arrival time to the origin, T (x) = Tc(x, 0), is the viscosity
solution to the Hamilton–Jacobi equation

(HJ) H(∇T, x) = 1, T (0) = 0,

where the Hamiltonian H(p, x) is given by (1.1).
Proof. Assume that T (x) is smooth and consider all paths which start from x

and move in the constant direction α for a small time h. Define yα = x + hc(x, α)α.
Then

T (x) = min
α

{T (yα) + h+ o(h2)}
= min

α
{T (x) + c(x, α) (α · ∇T (x)) + h+ o(h2)}.

Subtracting T (x), dividing by h, and taking the limit h → 0 gives

−1 = min
α

{c(x, α) (α · ∇T (x))},

or max|α|=1{c(x,−α) (α · ∇T (x))} = 1 as in (1.1), where we have used the symmetry
of the speed (2.3).
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2.5. The Lagrangian. An equivalent way to define the distance (2.4) is using
the Lagrangian,

(2.5) L(q, x) =

{
0 q ∈ Vc,

∞ otherwise.

Then the definition of distance (2.4) can be rewritten as the Hopf–Lax formula [18]
for the arrival time function

(2.6) T (x) = inf

{
t+

∫ t

0

L(ẋ(s), x(s)) ds

∣∣∣∣ x(0) = 0, x(t) = x

}
,

where the infimum is over W 1,1 ((0, t);Rn). For consistency, we verify that the Hamil-
tonian H(p, x) is obtained from the Lagrangian via the Legendre transformation [18]:

H(p, x) = L∗(p, x) = max
q

{p · q − L(q, x)}
= max

q∈Vc

{p · q}
= max

|α|=1
{(p · α) c(x, α)}.

2.6. Special cases: Isotropic and homogeneous speeds. The optimal par-
ticle trajectories are given by the characteristics of the Hamilton–Jacobi equation. In
the anisotropic case, the normal speed F (x, n) is given by (1.1):

F (x, n) = max
|α|=1

{(n · α) c(x,−α)}.

When c(x, α) = c(x) is isotropic, then F (x, n) = c(x) and H(p, x) = |p|c(x) = 1,
which is an eikonal equation. In this case, the characteristic curves coincide with the
gradient lines of the viscosity solution, yielding

n =
∇T (x)

|∇T (x)| .

On the other hand, in the special case where the speed function is homogeneous,
c(x, α) = c(α), the optimal paths are straight lines, and the arrival time to a point is
simply given by the ratio of the distance to the speed:

(2.7) T (x) =
|x|

c(x/|x|) , when T (0) = 0 and c(x, α) = c(α).

For the more general boundary condition T (x) = g(x) on Γ, we obtain

(2.8) T (x) = min
y∈Γ

{
|x− y|
c( x−y

|x−y|)
+ g(y)

}
.

2.7. The geodesic distance. We review the notion of geodesic distance in this
context, and below we will relate it to Hamilton–Jacobi equations. The link between
Hamilton–Jacobi equations and metrics has been observed before. We refer to [32]
and the references therein.
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We are given a metric cost function, b(x, q), which is positively 1-homogeneous in
the second variable:

(2.9) b(x, tq) = tb(x, q) for every (x, q) ∈ R
n × R

n and t > 0.

This will ensure that the distance defined below is invariant under change of parame-
terizations of the path. In addition, we assume that b is convex in the second variable
and satisfies the growth condition:

(2.10) c2|q| ≤ b(x, q) ≤ C2|q| for every (x, q) ∈ R
n × R

n,

with 0 < c2 ≤ C2 < +∞. Under assumptions (2.9) and (2.10), the cost function
defines a norm on R

n for each x:

(2.11) ‖q‖b = b(x, q).

We also assume that b(x, q) = b(x,−q), which ensures that the distance is symmetric,
db(x1, x2) = db(x2, x1).

Given a path x(·) ∈ W 1,1 ((0, t);Rn), the total cost of the path is

(2.12) J [x(·)] =
∫ t

0

b (x(s), ẋ(s)) ds.

The geodesic distance between two points is the minimal cost

(2.13) db(x1, x2) = inf {J [x(·)] | x(0) = x1, x(t) = x2},
where the infimum is over x(·) ∈ W 1,1 ((0, t);Rn).

Remark (Riemannian and Finslerian metrics). If the cost function is given by
the square root of a convex quadratic function, i.e.,

b(x, α) =
√
gij(x)αiαj

for g(x) a symmetric positive definite matrix, the resulting metric, db, is Riemannian.
(In that case the vectograms Vc are ellipses.) Otherwise, db is a Finslerian metric [32].

Remark (nondifferentiable geodesics). In a Finslerian metric, geodesics need not
be differentiable, as is the case for the octagon norm. See [12, 4] for more information
on Finslerian metrics. The distance function may also be nondifferentiable.

2.8. Relating the geodesic metric and the arrival time. So far we have
defined two distances. The arrival time Tc(x1, x2), (2.4), is the arrival time using
paths which move at a speed admissible by the speed function c(x, α). The geodesic
distance db(x1, x2), (2.13), is the minimal cost of paths, where the cost is measured
using the metric cost function b(x, p). The two distances are equal if the metric cost
function and the particle speed function are (one-sided) inverses.

Lemma 2.2. The distances defined by (2.4) and (2.13), respectively, are equal,
i.e.,

(2.14) Tc(x1, x2) = db(x1, x2),

provided that the speed function c and the cost function b are related by

(2.15) b(x, c(x, α)α) = 1 for all |α| = 1, x ∈ R
n,
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with the remaining values of b determined by homogeneity (2.9).
Proof. We argue formally, assuming the infimum in the definitions is achieved

by differentiable paths. The proof can be made rigorous by approximation. Given
x1, x2 ∈ R

n, suppose Tc(x1, x2) = t and db(x1, x2) = s.
First let

x(·) : [0, t] → R
n, x(0) = x0, x(t) = x1,

be an admissible curve for the speed function c. Then x(·) satisfies (ODE), and
Tc(x0, x1) = t. Compute the integral in the definition (2.13) using the path x(·).
Then by (ODE), ẋ(s) ∈ Vc. Furthermore, we can assume that ẋ(s) ∈ ∂Vc, since
otherwise the curve could be made faster. Thus by (2.15), b(x, ẋ) = 1, so s ≤ t.

Next let x(·) be a curve from x1 to x2 for which the cost J [x(·)] = s. We can find a
parameterization of the path by arclength, i.e., a path y(·), for which b(y(s), ẏ(s)) = 1.
Then by (2.15), ẏ(s) ∈ Vc, the vectogram at y(s), so y(·) is an admissible path for the
distance function Tc. Thus t ≤ s.

A similar proof of this property can be also found in [33].

2.9. Dual norms, the eikonal equation. We recall that (HJ) can be rewritten
as an eikonal equation in a suitable (x-dependent) norm. This relates the speed or
cost functions to the normal velocity.

We refer to [7, Appendix 1.1.6] for material on norms and dual norms. A closed,
bounded set with nonempty interior, e.g., Vc, can be used to define a norm (by using
the set as the norm ball and extending by homogeneity) provided the set is symmetric
about the origin and convex. Convexity of the set ensures the triangle inequality for
the norm.

Given a norm ‖ · ‖ on R
n, the dual norm ‖ · ‖∗ is defined as

(2.16) ‖x‖∗ = max{x · y | ‖y‖ = 1}.

Then ‖x‖∗∗ = ‖x‖.
Example. The p-norms ‖x‖p = (

∑n
i=1 |x|p)1/p are dual to the q-norms, with

1/p + 1/q = 1 for 1 ≤ p ≤ ∞. This follows from Hölder’s inequality on R
n, x · y ≤

‖x‖p‖y‖q. In particular this is true for p = 1 and p = ∞, where the norm balls are
diamonds and squares. Generalizing this case, dual polygonal norms can be obtained
as well. For example, the dual of the norm ‖x‖ = max(|x1|, |x2|, |x1+x2|) is the norm
‖x‖∗ = max(|x1|, |x2|, |x1 − x2|).

Write, for fixed x, the dual norm

‖p‖b∗ := max{p · q | ‖q‖b = 1}
= max

|q|=1
{p · q c(x, p)}

by (2.15). Thus (1.1) is equivalent to

H(∇T (x), x) = ‖∇T (x)‖b∗.

If we are given the Hamilton–Jacobi equation H(p, x) which is positive 1-homoge-
neous in p for each x, we can recover the cost function by taking the dual

(2.17) ‖q‖b = max
p

{q · p | H(p, x) = 1}.
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The Legendre transform of the norm ‖ ·‖b∗ is the dual norm unit ball [7, p. 93], which
gives the vectogram.

Remark. In general it is not true that homogenizing and squaring commute, by
which we mean that if the Hamiltonian S(p, x) = H2(p, x), it may not be the case
that S̄(p) = H̄(p)2, even assuming both homogenize. However, if H(p, x) is a metric
Hamiltonian, then that last formula does hold. This result can be seen by using the
variational interpretation and noting that the Legendre transform of a norm is the
indicator set of the dual norm, while the Legendre transform of a norm squared is
the dual norm squared (see [7, examples 3.26 and 3.27]). Thus the results of [13] (for
eikonal squared) and [14] (for eikonal) can be translated from one to the other.

3. Homogenization. We provide an overview of homogenization results and
different variational perspectives in sections 3.1–3.5. Combining these different inter-
pretations and the Hopf–Lax formula (2.7), we derive Theorem 3.2 in section 3.6. This
theorem serves as a basis for the efficient numerical methods described in section 4.

3.1. Homogenization background. Theoretical works on homogenization pro-
vide existence results and convergence rates for the solution of the homogenization
problem. We mention the early unpublished work [25] for Hamilton–Jacobi equations,
and refer to the textbooks [26] for linear equations and [8, pp. 142–145] for homoge-
nization of HJ equations and Riemannian metrics. A list of more detailed references
can be found in the review [17].

Variational interpretations for the homogenization problem, and a series of explicit
analytic solutions can be found in [13] and [14]. Both works find explicit solutions
by homogenizing the Lagrangian; refer to sections 3.4 and 2.5. The first work used
Hamiltonians which are homogeneous order two in p, (H(p, x)2 in our notation), and
so the resulting Lagrangian was also homogeneous order two in p. The second work
used a time-dependent equation, with a Hamiltonian similar to the one herein. In
both cases, the Lagrangian is related to the Hamiltonian by the Legendre transform.

The cell problem (section 3.3) can be solved numerically to compute H̄(p). This
was done for front propagation in [24] and [11] and for more general Hamiltonians
in [27] and [28]. There are other methods for computing H̄(P ); see [19]. Theoretical
justification for some of the numerical approaches can be found in [1, 9].

3.2. Homogenization in one dimension.

Example. For the case of front propagation in a one-dimensional periodic medium,
it is not difficult to show that the homogenized speed function is the harmonic mean of
the speed function over a periodic cell. Suppose our one-dimensional domain consists
of ε-intervals with the speed alternating between 1 and 5. Then the travel times in
these materials are 1 and 1/5, so the total time for the front to traverse the entire
domain is 3/5, and the average speed is 5/3, the harmonic mean of 1 and 5.

To obtain this result formally for the Hamilton–Jacobi equation, we go through
the following procedure: (i) rewrite c(x)|Tx| = 1, as |Tx| = c(x)−1, (ii) average the
reciprocal of the speed function, and (iii) divide by the averaged coefficient to obtain

1

average of c(x)−1
|Tx| = 1.

Remark. This heuristic is quite similar to the one used when homogenizing linear
equations, but it is not directly applicable to HJ equations in higher dimensions. To
obtain the total cost to travel from x0 to x1, the cost is integrated along the optimal
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trajectory (which need not be a straight line). The homogenized cost for that direction
is then obtained by dividing the total cost by |x0 − x1|. The cost has units of inverse
speed; the average cost is the time divided by the distance.

3.3. The cell problem for Hamilton–Jacobi equations. In this section we
outline the cell problem. A precise statement of a typical theorem can be found, for
example, in [10] or in the review [17]. The cell problem is derived using a formal
asymptotic expansion, typical examples of which can be found in Chapter 5 of [21].

Let H (p, x) be a Hamiltonian which is periodic on the cube [−1, 1)n. Let T ε(x)
be the solution of

H
(
∇T ε(x),

x

ε

)
= 1

with T ε(0) = 0. We are interested in the limit ε → 0. Formally expand the solution,
T ε, in ε: T (x) = T 0(x, x/ε) + εT 1(x, x/ε) + O(ε2). Additional arguments which we
skip show that we can assume

T ε(x) = T 0(x) + εT 1(x/ε) +O(ε2).

Inserting the expansion into the equation and collecting terms of O(1) give

H
(∇xT

0 +∇yT
1, y

)
= 1,

where y = x/ε. The variable in this last equation is y, so ∇xT
0 = p, an unknown

constant. The left-hand side of the previous equation is a function of y, while the
right-hand side is constant. Thus we have a solvability condition: we need to find a
periodic function, v(y), and a vector, p, which solve the cell problem

H(p+∇v, x) = 1.

Then we can define

H̄(p) = 1

for that particular value p and extend H̄ to other values along the line q = tp by
homogeneity. According to the theorem, T ε converges (uniformly on compact subsets)
to the solution of

H̄(∇T ) = 1.

3.4. Variational formulation for fronts. For time-dependent fronts, a vari-
ational formulation of the homogenization problem was used in [14]. This is based
on the Lagrangian formulation of the problem, and the convergence is in the sense of
Γ-convergence [8]. The variational problem takes the form

L̄(q) = lim inf
T→∞

1

T
inf

φ∈H1
0 (0,T )

∫ T

0

L(qt+ φ(t), q + φ̇(t)) dt.

In this case, the minimization is performed for each value of q, and the Hamiltonian
H̄(p) is recovered via the Legendre transform. The resulting Hamiltonian is homoge-
neous of order one in the gradient, and the Lagrangian is a characteristic function, as
in (2.5). We note that the discontinuous nature of the Lagrangian limits the usefulness
of this approach for numerical approximation.
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Fig. 6. The arrival time T ε(x) using the periodic cost function b(x/ε, p) converges to the arrival
time T (x) with the homogenized cost b̄(p).

3.5. Homogenization of metrics. In this section, we review a homogenization
result for the geodesic distance functional.

We use the result from [3]. Consider the metric cost functional (2.12). In addition
to (2.9) and (2.10), in this section we also assume that b(·, q) is [−1, 1)n periodic for
every q ∈ R

n. Then for every ε > 0, set

Jε[x(·)] =
∫ t

0

b

(
x(s)

ε
, ẋ(s)

)
ds.

According to the theorem from [3], Jε Γ-converges on W 1,1 ((0, t);Rn) (in the L1-
topology) to the function defined by

J [x(·)] =
∫ t

0

b̄(ẋ(s)) ds.

Here b̄ : Rn → [0,+∞) is a 1-homogeneous convex function which also satisfies (2.10)
and is given by

(3.1) b̄(q) = lim
ε→0+

inf
x(·)

{∫ t

0

b

(
x(s)

ε
, ẋ(s)

)
ds | x(0) = 0, x(t) = q

}
,

where again the infimum is over x(·) ∈ W 1,1 ((0, t);Rn).

3.6. Main homogenization result. It is too costly to use the formula (3.1)
which requires the solution of a path minimization problem for each direction q. How-
ever, if we knew the homogenized Hamiltonian, we could read it off from the solution
of the equation for the first arrival time to the origin (HJ). But we can approximate
this solution by the solution of the inhomogeneous small ε equation (HJε). This
results in an efficient method for H̄(p). We record this result in Theorem 3.2. See
Figure 6 for an illustration of the result, taken from a computation.

Definition 3.1. The Hamiltonian H(p, x) : Rn ×R
n → R is a metric or gener-

alized eikonal Hamiltonian if for each fixed x, H(·, x) : Rn → R satisfies the following:

H(·, x) is convex,

H(tp, x) = tH(p, x) for all t ≥ 0,

c2|p| ≤ H(p, x) ≤ C2|p|
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with 0 < c2 ≤ C2 < +∞.
Remark. The next theorem begins by collecting different formulations of the

Hamiltonian. The metric formulations allows us to avoid solving a cell problem for
each value p. Instead, (3.4) can be used to solve only one high resolution problem,
from which the entire homogenization Hamiltonian can be recovered.

Theorem 3.2. Let H(p, x) be a metric Hamiltonian which is periodic on the unit
hypercube. Then

H(p, x) = max
|α|=1

{(p · α)c(x, α)} = ‖p‖b∗,

where c(x, α) is the particle speed, b(x, p) is the metric cost function, and the subscript
∗ indicates the dual norm.

The viscosity solutions T ε(x) of the Hamilton–Jacobi equation

(HJε)

{
H

(∇T ε(x), x
ε

)
= 1,

T ε(0) = 0

converge uniformly on compact subsets to the viscosity solution T (x) of

(HJ)

{
H̄(∇T (x)) = 1,

T (0) = 0.

H̄(p) is also a metric Hamiltonian, given by

(3.2) H̄(p) = max
‖α‖=1

{(p · α)c̄(α)} = ‖p‖b̄∗,

where c̄(α) and b̄ are the homogenized speed and cost functions, respectively. These
functions can be obtained from the arrival time function in the homogenized metric

(3.3) b̄(q) =
1

c̄(q)
=

T (q)

|q| ,

and are approximated by

(3.4) b̄(q) =
1

c̄(q)
=

T ε(q)

|q| +O(ε),

where T ε is the solution of (HJε).
Remark (convergence rate). The formal analysis used to obtain the convergence

rate (3.4) gives the error as a power series in ε, c1ε + O(ε2). This last fact, which
we do not address here, allows the use of Richardson extrapolation in ε to better
approximate T (x).

This result is obtained from translating freely between the various formulations
of the front propagation problems, as summarized in section 2.1 and explained in the
earlier sections.

Proof. We begin with the definition of H in terms of the particle speed (1.1):

H(p, x) := max
‖α‖=1

{(p · α)c(x, α)}.

Since H(p, x) is a metric Hamiltonian, we can recover the cost function b(x, p) from
the Hamiltonian using the dual norm formula (2.17)

b(x, q) = ‖q‖b = max
p

{q · p | H(p, x) = 1}.
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By Lemma 2.1, the solution T ε(x) of the Hamilton–Jacobi equation (HJε) is the
arrival time from the origin using admissible speeds cε, given by (2.4):

T ε(x) = inf
x(·)

{t | x(0) = 0, x(t) = x, x(·) admissible for cε(x, α)}.

Using Lemma 2.2 in section 2.8, this is equal to the distance in the bε metric:

T ε(x) = inf
x(·)

{∫ t

0

bε (x(s), ẋ(s)) ds

∣∣∣∣ x(0) = 0, x(t) = x

}

for x(·) ∈ W 1,1 ((0, t);Rn).
At this stage, we appeal to the convergence result for metrics [3], which is summa-

rized in section 3.5. The functionals Jε Γ-converge to the homogenized cost functional
J . The cost function bε(x, q) converges to a cost function b̄(q), which is also homoge-
neous of order one. The minimizing paths xε(·) are minimizers of the functionals and
converge in the L1-topology to the minimizer of the homogenized functional. The
distances in the metric T ε(x) are the minimum values of the functional for paths
from the origin to the point x. The values T ε(x) converge (in R) to T (x) over the
minimizing sequences xε as ε → 0.

Again using Lemma 2.2, we can write the distance T (x) in the homogenized metric
b̄ as the solution of the Hamilton–Jacobi equation for the homogenized cost (3.2),
which gives the last equality in (3.2),

H̄(p) = ‖p‖b̄∗.
If we know H̄(p), we can recover the speed function from the cost function using (2.17)
(actually the formula for the inverse), giving the second equality in (3.2),

H̄(p) = max
‖α‖=1

{(p · α)c̄(α)}.

Since these functions are convex, the optimal path is a straight line in the direction
α = x/|x|. Then the travel time for a particle is simply the distance over the particle
speed (2.7),

(3.5) T (x) =
|x|

c̄(x/|x|) ,

which gives the second equality in (3.3).
The convergence of metrics result is useful because it ensures that the H̄ is also

a metric Hamiltonian. However, to obtain the convergence rate (3.4), we appeal to
results which apply in the more general context of homogenization of period Hamilton–
Jacobi equations. We can apply the result of [10] if we transform our equation using
the Kruzkov transformation: T ε(x) = − log(1− vε(x)). The result is the convergence
rate (3.4), T (x) = T ε(x) +O(ε).

Remark. We note that the variational interpretations of the homogenization pro-
cess have been used previously in [13] and [14]. Moreover, the formula for homoge-
nizing b has been recognized as a convenient building block for expressing H̄(p) (see,
for example, formula (3.2) in [14]). However, the novelty of our approach is based on
observing that b̄ can be efficiently approximated for all q’s simultaneously by solving
a single PDE, thus making the approximation of H̄(p) for multiple directions p much
less computationally expensive.
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4. The numerical method. In this section we present our numerical method
for homogenization. For the sake of notational simplicity, the method is described in
two dimensions, but the generalization to higher dimensional problems is straightfor-
ward.

The first step of our algorithm solves (HJε) to obtain an approximation to the
homogenized speed and cost functions, c̄(α), b̄(q), using (3.4) in Theorem 3.2; see
sections 4.1 and 4.3. If we are interested only in solving (HJ), then the solution is
provided by (3.5). If instead, we want to solve H̄(∇T ) = 1 with general boundary
conditions, then the solution can be recovered from (2.8), or it can be obtained numer-
ically. While the analytical formula is useful for evaluating the solution at one point,
it is more efficient to solve the equation numerically on a coarse grid (see section 4.4)
if the values of the solution on a domain are required.

By combining multiscale problems with different homogenized Hamiltonians in
different regions, we solve a toy three-scale problem in section 5.2, with minor modi-
fications of the method outlined in section 4.4.

To summarize, the complete algorithm consists of two steps: the first is to com-
pute the homogenized speed function c̄(α) for all unit vectors α on the small scale,
and the second is to use the homogenized speed function to solve numerically for T (x)
on the large scale.

4.1. Computing the homogenized speed function. Our plan for computing
c̄(α) is based on formula (3.3) in section 3.

• INPUT: speed function cε(x, α).
• OUTPUT: c̄(α), the approximation to the homogenized speed in the direc-
tion α.

(A1) Choose 0 < h � ε � 1. Numerically solve (HJε) on a uniform Cartesian
grid on Q = [−1, 1]2 with spatial resolution h.

(A2) Choose k vectors {qi}ki=1, which lie on the grid and are of length close to
unity, and whose directions αi = qi

|qi| are nearly equally distributed on the circle.

Approximate c̄ on the grid directions, using (3.3):

c̄ (αi) :=
|qi|

T ε(qi)
, i = 1, . . . , k.

(A3) Interpolate the values {c̄(αi)}ki=1 to approximate c̄(α) for all directions α.

4.2. Numerical solution of the HJ equation. Equation (HJε) can be solved
by standard methods. In the isotropic case, cε(x, α) = cε(x), the PDE is eikonal, which
makes both fast marching [29] and fast sweeping [34] methods directly applicable. A
computational comparison of fast marching and fast sweeping approaches to eikonal
PDEs can be found in [22, 20].

Since the discretization of (HJε) uses a relatively fine grid, the computational
efficiency of the method used to obtain the discretized solution is important. The fast
marching method computes the numerical solution in O(M logM) operations, where
the total number of grid points is M = O(h−n) in R

n, regardless of how oscillatory
cε(x) is. On the other hand, the number of sweeps needed in the fast sweeping method
is proportional to the number of times the characteristics switch their direction from
quadrant to quadrant. As a result, the highly oscillatory nature of cε(x) means that
the fast sweeping method will require many more sweeps than in the constant cε case.

In the more general case where cε is anisotropic, the step (A1) can be carried out
using ordered upwind methods [31].
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Fig. 7. Interpolation using ENO. Interpolated circle, using 8, 16, and 24 points. Interpolated
octagon using 16 points.

4.3. ENO interpolation of vectograms. We use a second order essentially
nonoscillatory (ENO) method for interpolation. The ENO method can exactly inter-
polate piecewise quadratic functions. This class matches the shape of the vectograms
corresponding to the homogenized speed functions. See Figure 7. In particular, since
it can capture vectograms with corners, the ENO method is suitable for approximating
not only Riemannian, but also general (Finslerian), metrics.

The second order ENO method works as follows. Order the unit vectors {αi}
in the counterclockwise direction. Interpolate {c̄(αi)αi} between i = j and j + 1 as
follows. Write

c̄(αi)αi = (xi, yi).

We describe the case where xi is the independent variable, which should be applied
where |xj − xj+1| is not too small. The case where yi is the independent variable
follows similarly, where |yj − yj+1| is not too small.

Step 1. Find the interpolating quadratics

h1(x) = a1x
2 + a2x+ a3, h1(xi) = yi, i = j − 1, j, j + 1,

h2(x) = b1x
2 + b2x+ b3, h2(xi) = yi, i = j, j + 1, j + 2.

Step 2. If |a1| < |b1|, choose h1(α) as the interpolating function between c̄(αj)αj

and c̄(αj+1)αj+1. Otherwise, choose h2(α) as the interpolating function.
Remark. We interpolate in Cartesian coordinates, not polar coordinates, even

though the latter appears simpler. This method has the special advantage that it
captures piecewise linear vectograms exactly, which the polar coordinate version does
not.
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Remark. The method is more accurate for anisotropy which is aligned along the
grid directions. More interpolation points along more grid directions can be added
when this is not the case.

4.4. Solving the homogenized equation on a coarse grid. The homoge-
nized PDE can be written as

H̄(∇T ) = max
|α|=1

{(α · ∇T )c̄(α)} = 1.

Given c̄, formula (2.7) provides the solution of this PDE on Ω with the boundary
condition T (0) = 0. As was stated earlier, the solution of H̄(∇T ) = 1 with general
boundary conditions can be recovered from (2.8). However, a good approximation to
T (x) can be obtained more efficiently by solving this PDE numerically on a coarse
grid in Ω.

Remark. The availability of c̄(α) makes semi-Lagrangian discretizations of the
homogenized Hamilton–Jacobi PDE particularly attractive. (Any Eulerian discretiza-
tion would require an extra step of approximating the dual norm to b̄.) Fast nonit-
erative methods are available for many semi-Lagrangian discretizations. If a finite
list of directions of motion is well represented on a large-scale grid, this results in
an auxiliary grid-based graph with positive edge weights. As a result, the shortest
path problem can be solved on that graph using a noniterative Dijkstra’s method (see
section 4.5). A more accurate semi-Lagrangian discretization, spanning all possible
directions of large-scale motion, was also shown to posses similar causal properties,
resulting in related noniterative ordered upwind methods described in [31].

4.5. A graph-based discretization of Ω. We implement a discrete analogue
of the dynamic programming principle, where the optimal path is approximated by
piecewise linear paths on a finite set of nodes in Ω. We embed a network X in Ω
consisting of a finite node set V ⊂ Ω and weighted directed edges E ⊂ V × V . For
each x ∈ V , the neighbors of x form the set

N (x) = {y ∈ V : (x, y) ∈ E}.

We call the set

C(x) = {y − x : y ∈ N (x)}

the local connectivity of X at x ∈ V . Construct X so that for all x, y ∈ V

y ∈ N (x) ⇔ x ∈ N (y)

and, generally,

|v| is small for all v ∈ C(x), x ∈ V .

The latter condition allows for more accurate approximation of the optimal trajecto-
ries (and consequently of the value function) by piecewise linear paths. Naturally, the
metric between two adjacent nodes are assigned as the (directed) edge weights. The
shortest path problem on a network can then be efficiently solved using Dijkstra’s
method [16] or by a variant of a fast sweeping method.

• INPUT: c̄(α) from phase one of the algorithm.
• OUTPUT: T̃ , the discrete approximation to the T (x) defined on V .
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(B1) For each ei = (x, y) ∈ E assign a positive edge weight

wi = w(x, y) = |y − x|/c̄
(

y − x

|y − x|
)
.

(B2) Initialize:

T̃ 0(x) =

{
g(x) if x ∈ V ∩ Γ,

∞ if x ∈ V \Γ.

(B3) Use either Dijkstra’s algorithm or the fast sweeping method to compute the
value function T̃ (x) (i.e., the least cost to travel from V ∩ Γ to a node x using the
edges in E) for all x ∈ V \Γ.
The value function satisfies the following system of discretized equations:

(4.1) T̃ (x) = max
y∈N (x)

{
w(x, y) + T̃ (y)

}
for all x ∈ V \Γ.

IfM = |V \Γ| and k = max |N (x)|, Dijkstra’s method solves this system inO(kM logM)
operations.

Choice of grid directions qi and network X. Using Dijkstra’s algorithm
(B1)–(B3) to approximate the value function, step (A3) may be omitted by carefully
choosing the grid directions qi (in (A2)) and network X .

For example, consider the network where the vertices V are given by uniform
Cartesian discretization of Ω with refinement h, and for each interior node, the neigh-
bors are the eight closest nodes,

C = C(x) = {(±h, 0), (±h,±h), (0,±h)}.
Then by choosing the grid directions

qi = vi/h, where vi ∈ C, i = 1, . . . , 8,

in step (A2), we can avoid the interpolation step (A3), since the values at the grid
directions are the only values needed to compute the weights in (B1).

However, this introduces an additional error, because the paths used for comput-
ing the metric in (3.1) are being restricted to those which are piecewise linear with
slopes corresponding to the grid directions. This error can be reduced by using more
grid directions.

Alternatively, the use of a more accurate semi-Lagrangian discretization described
in [31] will automatically minimize over all possible directions of motion, but with that
approach step (A3) becomes unavoidable.

Extension to piecewise-periodic problems. Our algorithm generalizes nat-
urally to problems with multiple regions, each with different periodic structure. Sup-
pose Ω =

⋃k
i=1 Ωi is a (finite) partition of the domain, where each Ωi is equipped with

a speed function cεi(x, α). By repeating (A1)–(A3) in each domain, we approximate
c̄i(α) for each i. Define the piecewise constant (in x) speed function on Ω by

c̄(x, α) = c̄i(α), x ∈ Ωi.

Then proceed as before with the weights assigned as in (B1) using the globally defined
speed function c̄(x, α). A numerical example of this kind is considered in section 5.2.
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Remark. In the periodic medium, the characteristics of the homogenized PDE will
be straight lines. In the piecewise-periodic case, the effective Hamiltonian is discontin-
uous, and the characteristics might change the direction upon crossing the boundary
between Ωi and Ωj . Nevertheless, for a reasonably small number of subdomains k,
the fast sweeping approach will be even more efficient than Dijkstra’s method here,
since the characteristics rarely switch direction from quadrant to quadrant.

5. Numerical results. Numerical results and validation are presented in this
section. We present homogenization results in several cases where an analytic solution
is known. The methods and parameters used in our implementation are described.
We numerically validate the first order convergence in ε. Finally, we present a result
for the three-scale problem.

5.1. Homogenized speed functions. In this section we compute homogenized
speed functions for homogeneous periodic materials, usually piecewise constant with
speeds 1 and 2. Analytical values of H̄(p) given various c(x) can be found in [14, 13]
for most examples, and a full description of the checkerboard example can be found
in [2].

We compared our numerically computed values b̄ with the analytical values of
H̄(p) by performing the dual norm calculation numerically using (2.17)

‖q‖b̄ = sup
|p|=1

{q · p | H̄(p) = 1},

over a discrete set of unit vectors.
All the speed functions are defined on [−1, 1]2 and extended periodically.
Example (checkerboard).

cch(x, y) =

{
c0 xy ≥ 0,

1 otherwise.

The exact solution is an octagon for c0 ≥ c∗0,

H̄(p1, p2) =
c0

(
√
2− 1)min(|p1|, |p2|) + max(|p1|, |p2|)

, c0 ≥ c∗0,

and for c0 ∈ [1, c∗0] the solution interpolates between a circle and an octagon [2]. The
plot is for c0 = 2.

Example (stripes).

cst(x) =

{
1 x2 ∈ [0, 1),

2 otherwise.

The exact solution for the general stripes pattern can be found in [14]. We explain
a simple heuristic for computing the cost in this case. The total cost for crossing a
large number of stripes is the same even if the pattern is rearranged so that all of
the slow parts come first and the fast parts second. Then, given a path with slope
m, the optimal path will have a corner at the interface and slopes m1,m2 in the slow
and fast parts, respectively. The optimal path for this configuration can be found by
solving for the optimal slopes, which results in Snell’s law of refraction.

Example (squares).

csq(x) =

{
1 x1 = 0 or x2 = 0,

1/2 otherwise.
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The exact solution is readily seen to be given by a diamond shaped vectogram, since
the optimal paths move only in the vertical and horizontal directions.

Example (circles).

ccir(x) =

{
1 ‖x‖ ≤ 1,

2 otherwise.

The exact solution is in [13, 14]:

H̄(p1, p2) = max

{
|p1|, |p2|, 2

π
(|p1|+ |p2|)

}
.

The optimal paths are made of segments which are either vertical lines, horizontal
lines, or quarter circles.

The numerically computed homogenized vectograms are shown in Figure 8, over-
laid on the exact result. We also compared the error for a fixed pattern (checkerboard
or stripes) but different speed ratios c in the material. The error was computed for a
fixed direction as a function of c, and also as a function of the direction for fixed c.
See Figures 9 and 10.

Fig. 8. Period domains and computed vectograms: checkerboard, stripes, squares, and circles.

Fig. 9. Results using the checkerboard pattern for speeds in ∈ [1, 5]. Left: c̄(α) for α = (1, 1).
Right: maximum error over all sampled directions.
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Fig. 10. Results using the horizontal stripes pattern for various speeds in [1, 5]. Left: c̄(α) for
the direction α = (0, 1). Right: maximum error over all sampled directions.

5.2. The toy three-scale problem. In this section we consider the model
problem from section 1.4. Consider the following speed function:

c(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cch(x) for x ∈ [−1,− 1

3 ]
2 ∪ [− 1

3 ,
1
3 ]

2 ∪ [ 13 , 1]
2,

cst(x) for x ∈ [−1,− 1
3 ]× [− 1

3 ,
1
3 ] ∪ [− 1

3 ,
1
3 ]× [ 13 , 1],

cvert(x) for x ∈ [− 1
3 ,

1
3 ]× [−1,− 1

3 ] ∪ [ 13 , 1]× [− 1
3 ,

1
3 ],

csq(x) otherwise,

where cvert is the horizontal stripes cst rotated by 90◦. We solve for u0(x) in (HJε),
in [−1, 1]2 with starting point (−0.7,−0.7). The numerically computed homogenized
value function is shown in Figure 11.

Fig. 11. Level sets of the homogenized solution T (x). The dotted lines are the interfaces where
the periodic pattern changes.

5.3. Methods and parameters used. We used the first order fast marching
method to solve the boundary value problem (HJε) for grid size n = 1200 and 2400
(so the refinements are h = 1/600 and 1/1200). Then we applied Richardson’s ex-
trapolation on h, the spatial resolution, to obtain second order accuracy. The grid
directions {qi} were chosen to be the 24 directions on a 7× 7 stencil; see Figure 12.

For the connectivity C of the network, first note that the weights for nodes on
the edges of the 7 × 7 stencil (marked by circles in Figure 12) are known. Then,
the weights for all other stencil nodes can be interpolated along the grid direction
rays (the weight at the origin is zero), except for nodes not on the grid direction
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Fig. 12. The grid directions {qi}.

rays. Subsequently, for (B1)–(B3), the local connectivities of the uniformly Cartesian
network X were chosen to be

C = {(ah, bh) : a, b ∈ {0,±1,±2,±3}}− {(ah, 2bh), (2ah, bh) : a, b ∈ {±1}}.

The shortest path problem on X was computed using the fast sweeping method.
The main script was written in MATLAB, and the fast marching method was

implemented in C, using code downloaded from [6]. The computations took a few
seconds on a desktop computer. The default ratio of fast and slow speed in the cells
was 2.

5.4. Cell and domain resolutions. In practice, computations were performed
for finite values of ε. More accurate numerical results were obtained by using Richard-
son extrapolation for two small values of ε. In this situation, there is a trade-off be-
tween the number of periodic cells on the domain, and the number of grid points in
each cell.

We found that accurate results could be obtained by resolving each periodic cell
very well, even if a relatively small number of cells were used. Finally, we extrapolated
in the spatial resolution h as well. Table 1 compares the errors resulting from different
extrapolation choices. Extrapolation in both parameters yields the best accuracy.

Given n (n2 is the number of grid points used in step (A1)) and ε, define the cell
refinement by

nε := nε.

The accuracy of our algorithm depends on two parameters, ε and nε. We observed
that the convergence rate depends more strongly on nε than on ε.

Table 1

Errors in c̄(α) using extrapolation in: h only; h and ε (ε small); h and ε (ε large).

Pattern
Exact
c̄(α)

Error for
h = ε/25, ε/50

ε = 1/24

Error for
h = ε/25, ε/50
ε = 1/12, 1/24

Error for
h = ε/100, ε/200

ε = 1/3, 1/6

Checkerboard 1 -2.46E-02 -1.64E-02 -3.25E-03

Squares 1/
√
2 9.70E-04 9.65E-04 6.54E-05

Circles 0.90031 -5.10E-02 -4.74E-02 -1.70E-02
Stripes 0.70051 -2.58E-03 -1.53E-02 -1.60E-06
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Fig. 13. Convergence rate in ε for various cell resolutions nε.

Figure 13 shows the convergence rate (of the numerically computed c̄(α) to its
exact value) as a function of ε. We used α = (cos(3π/4), sin(3π/4)) for the circle
pattern in section 5.1. Similar results were observed for the other patterns.

In conclusion, the best accuracy is achieved when the two values of ε are chosen
to be the two largest cell sizes such that the grid directions {qi} all lie on corners of
periodic cells, and Richardson’s extrapolation is applied. When we used 24 directions,
{qi}, the best choice was ε = 1/3 and 1/6.

5.5. Front propagation in random media. We now consider a random media
example. Consider a random checkerboard structure, where in each cell the speed

c(x) =

{
1 with probability 0.5,

c0 > 1 with probability 0.5.

In this section, computations were performed using higher resolution, but plots use
coarser computations for visualization purposes. Sample optimal paths are shown
in Figure 4 for two different values of c0 and with ε = 1/40. Experimentally, the
homogenized speed c̄(α), averaged over several realizations, is isotropic; the vectogram
is a circle. Computations were performed averaging over 20 trials and sampling 24
sampled directions.

The mean and variance of c̄ were computed as a function of c0. In each case, the
variance was less than 10−3. Figure 14 shows the averaged c̄(α) for ε = 0.01 on a
20002 grid (but plotted on an 802 grid) and the ENO interpolated vectogram with
24 sampled directions, averaged over 20 trials. The dependence of c̄ on the value c0
is also plotted, It was more informative to plot b̄ = 1/c̄ as a function of 1/c0; see
Figure 14.

Remark (average cost in the random case). An upper bound for the homogenized
cost is the average of the costs in each cell. This is achieved by paths moving in a
straight line in the direction α. But since optimal paths can wander to lower cost
cells, the actual computed cost is lower. Better upper bounds can be achieved by
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Fig. 14. Illustration of the homogenized speed/cost in the random case. Left: computed vec-
togram, averaged over several trials, for c = 1, 1/2 with probability 1/2. Right: computed homoge-
nized cost b̄ as a function of the random cost b = 1, or b = b0 = 1/c0 with probability 1/2.

estimating the probability that a neighboring cell is low cost. We are not aware of
any known formulas for the homogenized speed in this case.

6. Conclusions. We have introduced a new efficient method for approximating
front propagation in periodic multiscale media. Our approach is based on homogeniza-
tion of static convex Hamilton–Jacobi equations. We discuss the relationship between
several interpretations of such PDEs (from front propagation to time-optimal control
to geodesic distance computations). The effective Hamiltonian, resulting from the
homogenization, is homogeneous. In more general settings it may vary slowly on the
large scale. We include a brief overview of prior methods for homogenization based
on solving the cell problem for each direction of front propagation. In contrast, our
new technique uses a single auxiliary boundary value problem to approximate the
homogenized speed of particle motion for all directions. The method takes advantage
of the special structure of the Hamiltonian, and the relationship to the Finsler metric,
to compute the homogenized metric and then recover the homogenized Hamiltonian.
The homogenized metric cost function and the homogenized particle speed function
are related to dual norms; an equivalent way to relate front speeds and particle speeds
is via the homogeneous Legendre transform. The added advantage is the ease of use
of semi-Lagrangian numerical schemes on the large scales.

We have illustrated our method with a number of examples of periodic, piecewise-
periodic, and random checkerboards. All of these examples start with an isotropic
front propagation on the small scale, but still result in anisotropic speeds of front
propagation after homogenization. Our numerical algorithm uses a fast marching
method [30] to solve an auxiliary (isotropic, highly oscillatory) problem to approxi-
mate the homogenized particle speeds for a finite number of directions, then applies
ENO-type interpolation to complete the speed profile. With the anisotropic particle
speed profile in hand, we then use a variant of the fast sweeping method to solve the
semi-Lagrangian discretization of the homogenized Hamilton–Jacobi PDE.

Four extensions of the above approach will be of interest in applications. First,
if the small-scale propagation is anisotropic, we would need to use ordered upwind
methods [31] to approximate the homogenized speed profiles. Second, if the small-
scale behavior is described by a nonconvex Hamiltonian, then our homogenization
results do not apply directly, and new methods are required. Third, if additional
length scales are present in the problem, our methods must be generalized. The toy
three-scale problem considered in this paper is piecewise-periodic, so one homogenized
speed profile was computed for each periodic piece. If, instead, the homogenized
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profile varies continuously on some intermediate scale, any efficient computation on
the large scale would require additional interpolation of homogenized speed profiles.
Fourth, further exploration of the random case, where we are not aware of analytical
solutions. Numerical results suggest the profile is isotropic and give the homogenized
speed as a function of the ratio of the slow and fast speeds for a range of speeds. We
intend to address these extensions in the near future.
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