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ANISOTROPIC CHALLENGES IN PEDESTRIAN FLOW MODELING∗

ELLIOT CARTEE† AND ALEXANDER VLADIMIRSKY‡

Abstract. Macroscopic models of crowd flow incorporating individual pedestrian choices present
many analytic and computational challenges. Anisotropic interactions are particularly subtle, both in
terms of describing the correct “optimal” direction field for the pedestrians and ensuring that this field
is uniquely defined. We develop sufficient conditions, which establish a range of “safe” densities and
parameter values for each model. We illustrate our approach by analyzing several established intra-
crowd and inter-crowd models. For the two-crowd case, we also develop sufficient conditions for the
uniqueness of Nash Equilibria in the resulting non-zero-sum game.
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1. Introduction
Modeling the dynamics of crowds is a very active area in traffic engineering. A good

overview and classification of most popular approaches can be found in [5]. For some
of the macroscopic models incorporating individual choices of pedestrians, significant
efforts have already been invested to build efficient implementations and conduct exten-
sive numerical experiments (e.g., [12, 19, 26, 28, 31, 36–40, 57, 61]), despite the fact that
some of the theoretical underpinnings are still missing. This includes both the well-
posedness of PDE systems and the convergence under grid refinement of approximate
solutions. Some practitioners may even argue that the issues of numerical convergence
are not particularly relevant [28] since these PDEs are only approximations of crowd dy-
namics valid in intermediate asymptotics and the actual traffic engineering applications
assume a specific length-scale. In the absence of rigorous error estimates, the models are
judged instead phenomenologically – based on the perceived realism of their numerical
predictions and on their ability to generate some of the self-organized behavior (e.g.,
“lane formation”) observed in real crowds. This tendency seems problematic given the
blurring of boundaries between qualitative and quantitative models. The former should
be used to highlight the underlying mechanisms, while the latter are useful to make
specific predictions or even change the shape of the environment – to avoid stampedes
or to improve the chances of a successful evacuation.

In macroscopic models the crowd is represented as a density function ρ(x,t), whose
evolution is described by a conservation law. A typical (hyperbolic) version is

ρt(x,t) + ∇·(ρ(x,t)V (x,t)) = 0, x∈Ω⊆R2, t>0, (1.1)

where V is the velocity of motion for all pedestrians located at x∈Ω at the time t.
The initial density ρ(x,0) is assumed to be known and additional boundary conditions
are used to specify the obstacles and inflow/outflow rates at the boundary. In many
approaches, the velocity field V is obtained by modeling pedestrians’ individual choices
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– they plan their paths taking into account the current (and possibly future) crowd
density on different parts of Ω; see, for example, [19, 31, 40]. This path optimization
is performed by solving a nonlinear Hamilton-Jacobi equation coupled to (1.1). The
well-posedness of the resulting PDE systems is far from trivial and is an area of active
research [3, 22, 51]. Our goals in this paper are much more modest: we simply aim to
verify the internal consistency, by which we mean that the velocity field V should be
uniquely defined almost everywhere on Ω.

The internal consistency requirement is trivially satisfied when the pedestrians’ ve-
locities are isotropic; i.e., they can choose to move in any direction with the same speed
dependent on ρ at the current position (x,t). This is precisely the setting described by
Hughes [33] and reviewed in Section 2. However, anisotropic velocities arise naturally in
many generalizations: due to the landscape (e.g., walking on a steep hill), or interactions
of multiple crowds (e.g., [26,38–40]), or non-local dependencies on ρ (e.g., [19]). Regard-
less of the source of anisotropy, the notion of “optimal direction of motion” becomes
far more delicate and can result in subtle mistakes in computational implementations.
A velocity profile V(x,t) represents the set of all velocities that a pedestrian can use
at a specific time and location; its formal definition is included in Section 3, where we
show that its geometric properties determine the optimal pedestrian choices. We also
show that the strict convexity of V is needed to guarantee that anisotropic models are
internally consistent.

Unfortunately, computational experiments by themselves are insufficient to un-
cover model inconsistencies, since they might be masked by the implementation details.
Throughout this paper, we conduct a review of implicit assumptions in prior models.
However, our real focus is on developing minimal consistency conditions, which should
be easy to verify – either beforehand or in conjunction with any numerical implemen-
tation. Whether or not our conditions are actually satisfied in existing models depends
on the crowd densities and parameter values. This brings us to a discussion of some of
the experimental work to determine the latter (see Section 3.1).

With two interacting crowds, we argue that models are consistent only if there is no
need to specify which crowd “goes first” in choosing its velocity field. This is essentially
the requirement for the uniqueness of a Nash equilibrium in a non-zero-sum differential
game, and in Section 4 we derive the sufficient conditions to guarantee it.

In Section 5 we discuss the challenges of building efficient numerical algorithms
for anisotropic models. For a single crowd with non-local interactions, we propose a
new approach to decrease the computational cost by using a linear approximation of
crowd density. For two-crowd models, we discuss the use of iterative solvers for a coupled
system of Hamilton-Jacobi-Isaacs PDEs and include the results of several computational
experiments. We conclude by discussing several desirable extensions in Section 6.

2. Optimal control formulation

Finding time-optimal trajectories to a target is one of the most studied problems in
optimal control theory. Here we provide a brief overview of the dynamic programming
approach, focusing on the geometric interpretation and referring readers to [4, 8] for
a detailed treatment. Suppose one’s local velocity depends on one’s location and the
chosen control value; i.e., v : Ω̄×U 7→R2, where U is a suitable compact set of control
values. In our context, it will be enough to identify controls as the pedestrians’ preferred
directions of motion; i.e., U =S1 ={u∈R2 | |u|= 1}. We will focus on two types of
pedestrian velocities:

v(x,u) = v(x,u)u, (2.1)
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where v>0 is the speed of motion through x in the direction u; and

v(x,u) = u+wi(x,u), (2.2)

where wi is a known “interactional velocity” perturbation.

The dynamics are governed by y′(t) =v(y(t),u), and we want to choose a feedback
control function u=u(y(t)) to minimize the time of travel to the target Γd. The
value function ϕ(x) is defined to be the minimum time to target from the starting
position y(0) =x∈Ω, and it can be recovered as the unique viscosity solution [17] of
the Hamilton-Jacobi-Bellman PDE

max
u∈U
{−∇ϕ(x) ·v(x,u)}=1, x∈Ω (2.3)

ϕ(x) =0, x∈Γd

with additional boundary conditions (e.g., ϕ= +∞ on ∂Ω\Γd) to ensure that all tra-
jectories stay inside Ω. The characteristics of this PDE are in fact the time-optimal
trajectories, and a time-optimal feedback control is obtained by choosing u(x) from the
argmax set of Equation (2.3).

The above describes path-planning for a pedestrian whose velocity is only affected
by the current location and the chosen direction. But the dependence on crowd density
can be treated similarly; e.g., with the speed v(ρ,u) monotone decreasing in ρ. If the
rest of the crowd is not moving and the current density ρ̂ is known, our pedestrian can
simply use v(x,u) =v(ρ̂(x),u) to plan her path to Γd. We will refer to this approach
as “stroboscopic” since in reality all pedestrians are moving using the same logic, but
our planning is based on the current snapshot of the crowd density instead of trying to
predict the correct/updated density at each point on the trajectory1. So, the current ϕ
is only good enough to choose the initial direction of motion and has to be continuously
recomputed as the density changes. Putting this all together, our system of PDEs is

ρt(x,t) +∇·(ρ(x,t)V (x,t)) = 0, (2.4a)

max
u∈U
{−∇ϕ(x,t) ·v(ρ(x,t),u)}= 1, (2.4b)

u∗(x,t) ∈ argmax
u∈U

{−∇ϕ(x,t) ·v(ρ(x,t),u)} , (2.4c)

V (x,t) =v(ρ(x,t),u∗(x,t)), (2.4d)

with the specified initial density ρ(x,0) =ρ0(x) and ϕ(x,t) = 0 on Γd×R.
In the isotropic case (where v(ρ,u) =v(ρ)), each ϕ(·,t) is a solution of the Eikonal

equation:

|∇ϕ(x,t)|v(ρ(x,t)) = 1 (2.5)

and the crowd velocity is V (x,t) =−v(ρ(x,t)) ∇ϕ(x,t)
|∇ϕ(x,t)| =−v

2(ρ(x,t))∇ϕ(x,t). (A typical

isotropic evolution of crowd density on a domain with a single obstacle is shown in
Figure 2.1.) This is essentially the set up considered in the influential paper by Hughes
[33], who was among the first to model the influence of pedestrian’s choices on the
macroscopic dynamics2. In [33] the equations for “the potential” ϕ were derived based

1The latter approach is also present in the literature [10,19,29,30,43,51] and is related to the Mean
Field Games [24, 25, 32, 44, 45]. Many of the issues we discuss are relevant in that context as well, but
we focus on the stroboscopic models for the sake of simplicity.

2The equation introduced by Hughes was slightly more general than the time-optimal path planning
– it allowed for an additional high-density-discomfort/penalty factor in the Eikonal equation. We omit
it here for the sake of simplicity.
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Fig. 2.1: Simulation of a single (isotropic) crowd evacuating through a doorway (shown in black) on
the right edge of the domain. Contour plots of ρ for various time-slices (in a,b,c) and a quiver plot

of u∗ in d. The speed function is v(ρ) =e−0.075ρ2 . Computed on a 100 x 100 grid with a timestep
∆t= 0.5.

on a physical analogy: “Pedestrians have a common sense of the task (called potential)
they face to reach their common destination such that any two individuals at different
locations having the same potential would see no advantage to either of exchanging
places. There is no perceived advantage of moving along a line of constant potential.
Thus, the motion of any pedestrian is in the direction perpendicular to the potential
[level sets].” However, this suggestive analogy is somewhat misleading. After all, the
gradient of the potential indicates the direction of forces/accelerations, while we are
choosing the direction for the velocity.

Hughes further claims that “Many physical situations are potentially both
anisotropic and inhomogeneous. Fortunately, [this] does not change the derivation of
the equations of motion and [the equivalent of V (x,t) =−v2(ρ(x,t))∇ϕ(x,t)] with [the
speed] redefined for the new arguments, remains valid.” But it is easy to see that this
is not quite correct: in the general anisotropic setting, the optimal direction can be

different from −∇ϕ(x,t)
|∇ϕ(x,t)| . (Consider the example of someone trying to swim to the oppo-

site shore of a river of finite width and infinite length. Then, by symmetry, ∇ϕ points
directly across the river from one shore to the other. However, the optimal path of
the swimmer is to move in a diagonal direction, with the flow of the river, rather than
fighting against the flow to go straight across. See also a detailed discussion and Figure
3.1 in Section 3.1.) Even though anisotropic problems were not considered by Hughes
in [33], we believe that this comment may have led to the misidentification of optimal
directions in several subsequent papers.

3. Optimal directions and velocity profiles

To evolve the crowd density ρ, it might seem natural to require that the velocity
field V should be uniquely defined for all (x,t). However, the argmax approach for
choosing the optimal direction of motion assumes that ∇ϕ is well-defined everywhere
on Ω, which is usually not the case. Unfortunately, Equation (2.3) typically does not
have a smooth/classical solution, and admits infinitely many weak solutions. Additional
criteria based on test functions were introduced by Crandall and Lions in [17] to select
the unique viscosity solution, coinciding with the value function of the corresponding
control problem. For starting points where∇ϕ is undefined, it is easy to see that optimal
trajectories are usually non-unique. Suppose {x̃n} and {x̂n} are two sequences converg-
ing to the same point x, but p̃= limn→∞∇ϕ(x̃n) is different from p̂= limn→∞∇ϕ(x̂n).
Then it is clear that the optimal direction of motion starting from x will depend on
whether we use p̃ or p̂ in place of ∇ϕ in Equation (2.3). Luckily, mild technical con-
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ditions on v guarantee that the viscosity solution is Lipschitz-continuous (and, as a
result, differentiable almost everywhere). Since the crowd density ρ is assumed to be
in L1, it is sufficient to have V uniquely defined almost everywhere, making the above
complications less relevant.

Wherever ϕ is differentiable, the optimization in (2.3) has a simple geometric struc-

ture: if we view n= ∇ϕ(x)
|∇ϕ(x)| as a known/fixed unit vector, u∈U is simply chosen to

maximize the projection of v(x,u) onto (−n). Two important consequences of this are
related to the shape of the velocity profile V(x) ={v(x,u) |u∈U}:

(1) The argmax in (2.3) is a singleton if and only if the curve V(x) is strictly convex.

(2) If the curve V(x) is smooth, each u∈U is optimal for at most one unit vector
n.

(The latter property becomes “if and only if” for convex velocity profiles.)

In the isotropic case v(x,u) =v(x)u and the velocity profile V(x) is just a circle
centered at the origin. Thus, the optimal direction of motion is just u∗(x) =−n=
−∇ϕ(x)
|∇ϕ(x)| , as noted in the previous section for the Eikonal equation. But as shown in

Figure 3.2, this is not the case for general velocity profiles.

The lack of strict convexity for V(x) implies that, for some nbad there are at least
two different optimal directions of motion; e.g., see Figure 3.2d. Unlike the p̂ 6= p̃ sce-
nario discussed earlier, this presents a significant problem since this nbad might be in
effect on a large part of Ω.

In Subsections 3.1-3.2 we focus on two sources of anisotropy in pedestrian path
planning. The first is to consider the case of two pedestrian crowds (A and B) moving
towards different exits, with their speed depending on the angle between the directions
of motion of the two crowds (uA and uB). Examples of such models can be found in
[26,38–40,57,61]. Another source of anisotropy is to have the velocity of the pedestrians
depend on the density of the crowd in a non-local, non-radially symmetric way, as in [19].

3.1. Inter-crowd anisotropy. Hughes’ paper used isotropic pedestrian speed
functions based on the classical Lighthill and Whitham model for vehicular flow [48];
e.g., v(ρ,u) = v̄ (1−ρ/ρmax), where v̄ and ρmax are positive constants. Other monotone
non-increasing functions of ρ have been similarly explored; e.g., the control-theoretic
reinterpretation of Hughes’ work in [31] used a version of Drake’s fundamental diagram
[20]

v(ρ,u) = v̄e−αρ
2

. (3.1)

Hughes also considered multi-crowd scenarios, with each crowd distinguished by
its desired destination and a different value of v̄. However, in his models the density
induced slow-downs were due to the total density only. E.g., given two crowds A and B,
their speeds are specified by vc(ρ,u) = v̄c (1−ρ/ρmax) , where c∈{A,B} and ρ=ρa +ρb.
This yields a total of four PDEs for (ρa,ϕa,ρb,ϕb), with the coupling between the crowds
based on ρ only. Importantly, these models are still isotropic and the equations for both
ϕa and ϕb are Eikonal; i.e., the differences in the directions chosen by two crowds have
no effect on their speeds even when they are passing through each other.

More recent work by Jiang et al. [40] aimed to penalize for such directional dif-
ferences explicitly by extending Formula (3.1). The same approach was later adopted
in [38, 39, 57, 61] and served as a background in [35]. Assuming that ua and ub are
the crowds’ respective directions and the angle between them is ψ= arccos(ua ·ub), the
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“disagreement penalty” factor is defined as

f(ρ̄,ψ) =e−β(1−cosψ)ρ̄2 , (3.2)

where ρ̄ is the density of the “other” crowd. With this notation the new crowd speeds
are defined as

va (ρa,ρb,ua,ub) = v̄e−α(ρa+ρb)2f(ρb,ψ) and vb (ρa,ρb,ua,ub) = v̄e−α(ρa+ρb)2f(ρa,ψ)
(3.3)

for motion in the respective crowd directions ua and ub; see the “geometric velocity”
Definition (2.1). The idea is that f = 1 when both crowds move in unison, and f
monotonically decreases with both ρ̄ and ψ, reaching the minimum when crowds move
in opposite directions.

The values of parameters v̄= 1.034, α= 0.075, and β= 0.019 were selected based on
the physical experiments described in [60] (crowds of pedestrians asked to pass through
each other at oblique angles with their aggregate speeds determined by video cameras).

The dependence on ψ clearly introduces a game-theoretic aspect: both crowds
choose their directions simultaneously and their decisions affect each other immediately.
Significant technical complications resulting from this strong coupling are discussed in
Section 4.1. But for now we note that even if ub

∗ is already chosen and known, the task
of selecting an optimal ua

∗ is inherently anisotropic: the value function ϕa satisfies a
version of the Hamilton-Jacobi Equation (2.3)

max
ua∈U

{−∇ϕa(x,t) ·va (ρa(x,t),ρb(x,t),ua,ub
∗)} = 1.

Figure 3.2 illustrates the anisotropy in velocity profiles of ϕa. In [40] and the more recent
extensions [35, 38, 39, 57, 61] this anisotropic effect was ignored partly due to rewriting
the above equation in “Eikonal-type” notation and partly due to the interpretation of
ϕa as a “potential”, mirroring the original model by Hughes. This led them to take
−∇ϕa

|∇ϕa| as the “optimal” direction, which in general can be quite different from the correct

ua
∗.

However, it is worth noting that at these parameter values, the problem is very
nearly isotropic at lower densities. At β= 0.019 and ρb = 1, we found the maximum
angular difference between −∇ϕ|∇ϕ| and ua

∗ to be less than 0.02 radians (See Figure 3.2a

for a plot of the nearly circular velocity profile). This might explain why this discrepancy
was not noticed in the numerical experiments reported in [35,38–40,57,61].

To highlight how the optimal direction is in fact ua
∗ and not −∇ϕ

a

|∇ϕa| , let us consider

an example with Crowd A consisting of a single pedestrian (i.e., ρa = 0 everywhere).
Let Crowd B form a “river” of infinite length moving to the right, with density ρb = 1
for 0.3≤y≤0.7, and ρb = 0 everywhere else. Then let us consider the path planning
of our single pedestrian of Crowd A starting at x= 0.3 and y= 0, trying to reach the
upper boundary y= 1 as a target. Then −∇ϕ

a

|∇ϕa| always points directly upward. However,

the optimal path is actually to move diagonally with crowd B while in the “river”. For
parameter values of α= 0.075 and β= 0.347, the exit time for the gradient path planning
is T = 1.21. But with the correct ua

∗ path planning, the exit time is instead T = 1.1762;
see Figure 3.1. For comparison, the individual’s velocity profile while in the “river”
can be found in Figure 3.1b. Here we can see that the largest vertical component of
the speed corresponds to moving diagonally in the orange direction, the direction of
the individual’s path through the “river” in Figure 3.1a. In particular, it has a larger
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Fig. 3.1: Optimal versus gradient path planning in subfigure (a). Corresponding velocity profile while
“in the river” in subfigure (b).

vertical component than would result from moving strictly up (see the red arrow in
Figure 3.1b).

We note that the parameter values used in [40] and subsequent publications seem
highly unrealistic despite the experimental data used for calibration in [60]. For instance,
consider two crowds with densities ρa =ρb = 1 person per square meter. For convenience,
we will define ξ=f(1,0)−f(1,π) = 1−e−2β , which gives the speed reduction resulting
from these crowds moving in opposite directions rather than in unison. At β= 0.019,
if these crowds move in opposite directions, they are only slowed down by ξ≈4.7% of
the full speed achievable when they move in unison. To provide some perspective, the
classical estimate by Navin and Wheeler [50] used to calibrate many traffic engineering
models yields3 a significantly higher β= 0.078. For our example, with ρa =ρb = 1, this
corresponds to a slow down of ξ≈14.5% relative to moving in unison. Even this last
estimate appears rather conservative: anyone who has ever tried to catch a subway train
during rush hour would attest that a speed reduction of ξ∈ [30%,50%] (corresponding
to β∈ [0.178,0.347]) would be much closer to their experience.

For high enough values of ρb or β, the velocity profile of crowd A can actually
become non-convex. This scenario is highlighted in Figure 3.2d. If a pedestrian tries to
maximize the component of ua in the −x direction, then both choices of ua denoted by
the magenta arrows are optimal.

When looking at the velocity profile V, we are concerned with only the smoothness
and convexity of the profile, and not the scaling. Thus we need only look at the “dis-
agreement penalty” factor f(ρb,ψ). Assuming that ρb is fixed, we will further refer to
it as f(ψ) to simplify the notation. For a fixed x, we only need to check that the polar
curve f(ψ) = (f(ψ)cos(ψ),f(ψ)sin(ψ)) is strictly convex, where ψ is the angle between
ua and ub. If we consider its tangent vector T(ψ) = ḟ(ψ), we can then write the deriva-
tive of the tangent vector as T′(ψ) =k(ψ)N(ψ), where k is the curvature, and N is the
unit normal vector. The sufficient condition for strict convexity is that T(ψ)×N(ψ)
does not change sign. This reduces to a simple condition on f and its derivatives:

f(ψ)2 +2f ′(ψ)2−f(ψ)f ′′(ψ)>0, ∀ψ (3.4)

3 Navin and Wheeler [50] have examined the case of two crowds heading in opposite directions with
ρa +ρb = 1 and different ratios of ν=ρa/(ρa +ρb). The case of ν= 1 is equivalent to 2 crowds moving
in unison, while ν= 1/2 yields Ψ =π and ρa =ρb = 1/2. In the latter case they have observed that the
speeds were reduced by 4%.
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Fig. 3.2: Anisotropic velocity profiles for Crowd A at various parameter values. We assume ub
∗=

(1,0).

For the particular model (3.2), this condition simplifies to:

1+βρ̄2 cos(ψ)+βρ̄2 sin2(ψ)>0.

We see that the left hand side is minimized when ψ=π. The sufficient condition
for strict convexity then becomes

βρ̄2<1.

At the parameter values used in [40], we see that we only lose strict convexity at
densities exceeding ρ̄≈7.25 people per square meter – a threshold which is too high to
be relevant in practice. However, as discussed previously, their value of β is rather small
and with β= 0.078 (consistent with Navin and Wheeler’s data [50]), we instead get that
we can lose strict convexity when the density of either crowd exceeds a more physically
relevant threshold of ρ̄=

√
1/0.078≈3.57.

We summarize the results of using different values of β in Table 3.1. The first
two columns are for β values consistent with Wong et al. [60] and Navin et al. [50]
respectively. The third and fourth columns correspond to a slowdown of ξ= 0.3 and 0.5
respectively. In each case we list the critical density ρ̂ at which the velocity profile loses
strict convexity. We note that different “disagreement penalty factors” can be studied
similarly. For example, a model considered in [26] is based on using ρ̄ rather than ρ̄2;
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β 0.019 0.078 0.178 0.347
ξ 0.037 0.144 0.3 0.5

critical density ρ̂ for the βρ̄2 model 7.25 3.58 2.37 1.70

critical density ρ̂ for the βρ̄ model 52.6 12.8 5.62 2.88

Table 3.1: Critical densities for two disagreement penalty models and various β values.

i.e.,

f(ρ̄,ψ) =e−β(1−cosψ)ρ̄, (3.5)

with the advantage that it scales more consistently for pairwise interactions of multiple
crowds. The critical ρ̂ values for this alternative model are reported in the last row of
Table 3.1.

3.2. Intra-crowd anisotropy. Up until now we have only discussed models
with localized interactions of pedestrians. But it is often reasonable to let the velocity
V (x,t) depend on values of ρ(·,t) in some region containing x, rather than on a local
ρ(x,t) only. For multiple crowds, such non-local models present additional analytic
challenges even if the direction field is specified in advance instead of chosen by indi-
vidual pedestrians [16]. If individual choices are also included, non-local interactions
give rise to anisotropy. In this section we show that this anisotropy may result in model
inconsistency even for a single crowd.

In the paper by Cristiani, Priuli, and Tosin [19], the velocity is no longer chosen
directly. Instead, it is the sum of a chosen behavioral velocity u∈S1, and an interaction
velocity perturbation wi that is determined based on the density of pedestrians inside
some sensory region S(x,u). This sensory region is usually modeled by a sector (of angle
α and radius R) centered at x and with the orientation determined by u; see Figure
3.3. The key idea is that each pedestrian is only influenced by others roughly ahead
of her, and not the ones behind. The model developed in [19] defines the interaction
velocity wi as follows:

wi=

∫
S(x,u)∩Ω

F(y−x)ρ(t,x)dy; F(r) =

{
−Fr
|r|2 , |r|> 1

C ,
−FCr
|r| , |r|≤ 1

C ,
(3.6)

where F and C are positive constants, with the latter functioning as a “cutoff”. Since
the interaction velocity perturbation has a non-local dependence on the current ρ, it
would be accurate to denote it wi [ρ(·,t)](x,u), but we will at times abbreviate this as
wi(x,u) or even wi. The overall velocity is

v [ρ(·,t)](x,u) = u +wi [ρ(·,t)](x,u), (3.7)

which is a version of formula (2.2). Modulo this change from v (ρ(x,t),u) to
v [ρ(·,t)](x,u), the functions ρ and ϕ satisfy the same system of PDEs (2.4).

We will now investigate the convexity of the velocity profiles for the case of intra-
crowd anisotropy. Since this model depends non-locally on the density, we will only
analyze this under some assumptions on the density function.

3.2.1. Linear density. First, let us consider the case of a density distribution
that is linear in x at some fixed time t. Without loss of generality, we may assume that
this density distribution is of the form:

ρ(x,y) =ρ0 +ρxx
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α

Rx

u
S(x,u)

Fig. 3.3: An example of sensory region S(x,u) for intra-crowd anisotropy.

In this case, we can evaluate the integral found in (3.6), which is done in Appendix A.
We note that for very high densities, the velocity profile may not actually contain

the origin, as the interaction velocity can dominate the behavioral velocity. We show in
Appendix B that as long as the density is linear in x and the velocity profile contains
the origin, then we have convexity for all α such that α>3sin(α). This condition
is satisfied for all α>≈130.57◦, including the value of α= 170◦ used by Cristiani et
al [19]. Otherwise, it may be possible to find a linear density function, and values for
the parameters such that the velocity profile will not remain convex. For example,
consider the case of α= 20◦,F = 1,R= 1, ρ0 = 2, and ρx=−3/2. A plot of this velocity
profile can be found in Figure 3.4a.
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(b)

Fig. 3.4: Left: Non-convex velocity profile for intra-crowd anisotropy and linear density with α=
20◦,F = 1,R= 1,ρ0 = 2,ρx=−3/2 on the left. Right: three “shifted circle” versions corresponding to
different/fixed wi choices. Magenta arrows show the resulting velocity corresponding to u= (1,0) in
each profile. One of them coincides with the correct resulting velocity in subfigure (a).

This linear density example is also good for illustrating another general pitfall in
anisotropic modeling. In [19] the dynamics are given in the form:

y′(t) =u(t)+wi[ρ(τ,·)](t)

However, this misleadingly suggests that wi is independent of the choice of u. To
illustrate this point, we show the correctly computed velocity profile in Figure 3.4a with
three different versions of u in green and the corresponding wi vectors in red. Choosing
any one of these wi’s to be used for all u directions will yield a “shifted circle” velocity
profile with very different resulting velocities; see Figure 3.4b. Moreover, it is not clear
which of these shifts would be a reasonable choice. This limits the validity of the
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Fig. 3.5: Non-convex velocity profiles for discontinuous density: F = 0.4, R= 1, ρ1 = 1.5, ρ2 = 1,
α= 20◦ in (A) and the same except for α= 90◦ in (B).

simplified equation proposed in [19]

|∇ϕ| −∇ϕ ·wi[ρ(τ,·)] = 1

to radially symmetric sensing regions (i.e., with α= 360◦ only). Based on personal
communications with the authors, the actual numerical tests in [19] have used a correct
semi-Lagrangian discretization of the general HJB equation (2.4b).

3.2.2. Piecewise constant density. We also considered piecewise constant
density functions of the form:

ρ(x,y) =

{
ρ1, x>0

ρ2, x≤0

Here we find that both convexity and smoothness can also fail at x= 0 for some
parameter values, see the examples in Figure 3.5.

4. Nash equilibria
Returning to the problem of two-crowd interactions with ρ= (ρa,ρb), let us consider

a speed function of the form:

va(ρ,ua) =f(ρb,ψ)

with the corresponding velocity

va(x,ua) =uaf(ρb(x),ψ)

where ua and ub are the directions of motion of each crowd and ψ is the angle between
them.

In this case, the decision-making of the two crowds is modeled as a non-zero-sum
game. We then look for a solution to the following coupled system of Hamilton-Jacobi-
Isaacs (HJI) equations:

max
ua∈S1

{
(∇ϕa(x) ·(−ua)va(ρa(x),ua,ub)

}
= 1 (4.1)

max
ub∈S1

{
(∇ϕb(x) ·(−ub)vb(ρb(x),ub,ua)

}
= 1. (4.2)
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This notation is slightly misleading: each of the two PDEs involves maximizing in
only one variable (ua or ub), with the other one participating as a parameter. Both
maximizations are assumed to be performed simultaneously, yielding the optimal pair
of direction fields (ua

∗,u
b
∗). A different pair of PDEs could be obtained by assuming that

one of the crowds has an advantage of selecting its direction second (once the other
crowd’s direction is already known). In general, the solution might change depending
on which crowd we select to “go first”. This feature is disconcerting from a modeling
perspective since the notion of “going first” is harder to motivate when the replanning
is done continuously in time (with changing densities ρa and ρb). So, it is desirable to
guarantee that the order of decision making is irrelevant, making the system (4.1, 4.2)
meaningful as written above. The sufficient condition for this is the uniqueness of the
two-player Nash equilibrium (NE), a concept which we review below for general games.

We assume that player A chooses strategies a∈A to maximize Ja(a,b) and player
B chooses strategies b∈B to maximize Jb(a,b). In the non-zero-sum setting (when
Ja 6=−Jb) the well-posedness of the game is non-trivial even when A and B are discrete
sets. NE is defined as a pair of strategies (a∗,b∗)∈A×B such that there is never an
incentive to change unilaterally. More precisely, (a∗,b∗) is said to be NE if both of the
following hold:

Ja(a∗,b∗)≥Ja(a,b∗), ∀a∈A,

Jb(a∗,b∗)≥Jb(a∗,b), ∀b∈B.

If the game has a unique NE, then we can always assume that both players make their
decisions simultaneously – if both players are rational, there is no longer any advantage
to “go second.”

The existence of NE for infinite continuous games has been proved under some very
general assumptions, at least in the class of mixed policies [23]. For zero-sum-games, the
possible non-uniqueness is not a major issue and requires no coordination between the
players. If both (a∗,b∗) and (a],b]) are NE, then so are (a∗,b]) and (a],b∗); moreover,
Ja will have the same value for each of these pairs (and Jb =−Ja). So, who goes first
and which NE they aim for still does not matter. However, none of this holds in the
case of non-zero-sum games. In Section 4.2 we will show examples where the value
of multiple NE is different, players disagree about their relative merits, and choosing
simultaneously without coordination can easily lead to a non-Nash outcome.

In the case of zero-sum HJI games, the notions of “upper value” and “lower value”
are used to capture what happens when one of the players goes first. A separate “Isaacs
criterion” on the Hamiltonian ensures that these two values are always equal, enabling
simultaneous decision-making by the players. Additional mild technical conditions guar-
antee that a NE exists among pure strategies, making it unnecessary to consider any
relaxed/“chattering” controls [4]. A simple modification of this argument yields the
existence of a pure-strategy NE in (4.1, 4.2) provided both velocity profiles are strictly
convex. However, to claim that this non-zero-sum system has a well-defined value, we
will also need to know that this NE is unique.

We will focus on a fixed x∈Ω, assuming that ρ’s and ϕ’s are known for both crowds
and writing p=∇ϕa(x), q=∇ϕb(x) to simplify the notation:

max
ua∈S1

{
p ·(−ua)va (ρb(x),ua,ub)

}
= 1; max

ub∈S1

{
q ·(−ub)vb (ρa(x),ua,ub)

}
= 1.
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Furthermore, to focus on the geometric aspects we will use ∆ to denote the angle
between p and q, ψ for the angle between ua and ub, and (a,b) for the angles that ua

and ub make with (−p) and (−q) respectively.
From the Definition (3.3), we note that the anisotropic speeds va and vb have a

common isotropic factor which does not affect the choice of optimal direction. Denote
fa(ψ) =f(ρb,ψ), fb(ψ) =f(ρa,ψ), recall that ψ=a−b+∆, and our new task is to show
the uniqueness of the NE for all (p,q) in the equivalent game

max
a∈[0,2π]

{
cos(a)fa(a−b+∆)

}
= 1, max

b∈[0,2π]

{
cos(b)fb(a−b+∆)

}
= 1. (4.3)

We will assume that the velocity profiles for both crowds are smooth and strictly
convex. The strict convexity ensures that the argmaxa∈[0,2π] is unique for every b,
making the “best reply” map Φa(b) well-defined. Since fa is smooth, the first-order
optimality condition

0 =
d

da

[
cos(a)fa(a−b+∆)

]
=−sin(a)fa(a−b+∆)+cos(a)

∂

∂a

[
fa(a−b+∆)

]
(4.4)

should hold for a= Φa(b). If we denote the right hand side as g(a,b), then

∂g

∂a
=−cos(a)fa(ψ)−2sin(a)

dfa

dψ
+cos(a)

d2fa

dψ2
;

∂g

∂b
=−sin(a)

dfa

dψ
+cos(a)

d2fa

dψ2
.

Noting that (4.4) implies sin(a) = cos(a)
dfa

dψ

fa(ψ) , we can now simplify the derivative

dΦa

db
=
−gb
ga

=
−
(
dfa

dψ

)2

+fa(ψ)d
2fa

dψ2

−fa(ψ)2−2
(
dfa

dψ

)2

+fa(ψ)d
2fa

dψ2

. (4.5)

A similar derivation can be repeated for the other crowd’s best reply Φb(a). If we show
that the map a 7→Φa(Φb(a)) is a contraction mapping, the existence and uniqueness of
NE becomes a simple consequence of the Banach fixed-point theorem.

Thus, it is sufficient to show that the derivative is bounded by 1, i.e.∣∣∣∣ dda[Φa(Φb(a))
]∣∣∣∣<1, ∀a∈ [0,2π].

It is generally easier to check the slightly stronger condition following from the Chain
Rule that ∣∣∣∣dΦa

db

∣∣∣∣∣∣∣∣dΦb

da

∣∣∣∣<1, ∀(a,b)∈ [0,2π]× [0,2π]

where the derivatives of the best reply maps can be found in Equation (4.5).

4.1. NE in intercrowd models. In [40], they assume a speed function for
crowd A of the form:

va(ψ) =v0e
−α((ρa)2+(ρb)2)e−β(ρb)2(1−cos(ψ))

where ρ is the density of the other crowd. (Crowd B’s speed function is defined analo-
gously.) Since we are interested only in the shape (rather than scaling) of the velocity
profile, we shall just use:

fa(ψ) =e−β(ρb)2(1−cos(ψ))
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as it is simpler to work with. For ease of notation, we shall also drop the superscripts
on ρ. We calculate that

dfa

dψ
=−βρ2 sin(ψ)e−βρ

2(1−cos(ψ)),

d2fa

dψ2
=β2ρ4 sin(ψ)2e−βρ

2(1−cos(ψ))−βρ2 cos(ψ)e−βρ
2(1−cos(ψ)).

Plugging these into Equation (4.5), we obtain∣∣∣∣dΦa

db

∣∣∣∣=

∣∣∣∣ βρ2 cos(ψ)

βρ2 cos(ψ)+β2ρ4 sin2(ψ)+1

∣∣∣∣ . (4.6)

We see that the denominator is a quadratic polynomial in cos(ψ). If we assume the
necessary and sufficient condition for strict convexity that βρ2<1, then it follows that
the absolute value of this polynomial reaches a minimum of 1−βρ2 at ψ=π. Similarly,
the numerator is maximized in absolute value at ψ=π, so we see that the worst case
scenario is that of ψ=π, where the derivative is bounded by:∣∣∣∣dΦa

db

∣∣∣∣< β(ρb)2

1−β(ρb)2
. (4.7)

The same process works with the crowds switched. So Φa(Φb(a)) is a contraction
mapping (and NE is unique) whenever

β(ρb)2

1−β(ρb)2

β(ρa)2

1−β(ρa)2
<1 or, equivalently, β(ρa)2 +β(ρb)2<1. (4.8)

The models in [40] assume a value of β= 0.019, which means that our condition for
guaranteeing the uniqueness of NE becomes:

(ρa)2 +(ρb)2<
1

β
≈52.632; (4.9)

i.e., NE will be unique for all physically relevant crowd densities. However, this criterion
becomes much more restrictive for higher (more realistic) values of β. For example, at
β= 0.347, the condition is now (ρa)2 +(ρb)2<2.881, which is definitely violated when
ρa +ρb≥2.41 even if max(ρa,ρb)≤ ρ̂≈1.7 and the velocity profiles are convex; see also
Table 3.1 and Figure 4.1. Similarly, for the alternative disagreement penalty model
based on (βρ̄), the corresponding sufficient condition for the uniqueness of NE is ρa +
ρb< 1

β = ρ̂. For β= 0.347, this means that the uniqueness might be lost when the total
density of both crowds exceeds 2.881.

Our numerical experiments show that the above conditions are actually sharp: all
densities from Region 2 in Figure 4.1 seem to yield multiple NE. However, the exper-
iments also show that this only happens when p and (−q) are sufficiently close; e.g.,
at β= 0.5 in the (βρ̄2) model and ρa =ρb = 1.2, we only observe multiple NE when the
angle between p and q is greater than 171 degrees.
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Fig. 4.1: Critical density regions for the β(ρ̄)2 model (subfigure a) and for the βρ̄ model (subfigure
b). Provably unique NE in Region 1; multiple NE observed in Region 2; non-convex velocity profiles
in Region 3.
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Fig. 4.2: −p,−q, and velocity profiles for each NE in Example 1.

4.2. NE examples.

Example 1. Here we consider an example with p= (1,0) and q= (−1,0), with
β= 0.347, ρa = 1.68, and ρb = 0.72 Numerically, we find three NEs at:

(
a
b

)
=

(
3.1416

0

)
,

(
3.0366
0.5208

)
, and

(
3.2466
5.7623

)
.

A plot of −p,−q and the velocity profiles for each NE can be found in Figure 4.2.
The orange arrow is −p and the green arrow is −q. The velocity profile and choice of
direction for crowd A are plotted in red, while the same is plotted in blue for crowd B.

Example 1 is also summarized below in bimatrix form. Both crowds try to maximize
their respective outcomes based on (4.3); each entry contains the payoff for the “row
player” (crowd A) and the “column player” (crowd B). Of course, both of them have
infinitely many options, but we include only those corresponding to Figure 4.2. The
NE outcomes are on the diagonal, and their payoffs are different; so, the “value” of this
game is not well-defined. Moreover, since the crowds do not coordinate, they cannot
know which NE control the other player will choose and this lack of coordination will
frequently result in non-Nash (off-diagonal) outcomes.
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Nash Equilibria payoffs for Example 1

Crowd B
0 0.5208 5.7623

Crowd A
3.1416 0.698, 0.141 0.715, 0.139 0.715, 0.139
3.0366 0.695, 0.142 0.718, 0.147 0.705, 0.133
3.2466 0.695, 0.142 0.705, 0.133 0.718, 0.147

Example 2. Now for an example where p 6=−q. Here we take p=
(cos(π/20),sin(π/20)) and q= (cos(39π/40),sin(39π/40)), with β= 0.347, ρa = 1.68, and
ρb = 1.68. Numerically, we now find two NEs, this time at:(

a
b

)
=

(
2.5470
0.6732

)
, and

(
4.0641
5.4393

)
.

A plot of −p,−q and the velocity profiles for each NE can be found in Figure 4.3
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Fig. 4.3: −p,−q, and velocity profiles for each NE in Example 2.

NE payoffs for Example 2

Crowd B
0.6732 5.4393

Crowd A
2.5470 0.205, 0.205 0.106, 0.105
4.0641 0.105, 0.106 0.328, 0.328

From our numerical experiments, it seems that all cases with p 6=−q and multiple
NEs are qualitatively similar to Example 2. Since p 6=−q, we can think of −p and −q
as splitting the plane into two sections, one where the angle between them is greater
than π, and one where the angle is less than π. We always see two NEs, one in the
section with angle greater than π, one in the other section. The NE on the side where
the angle is less than π then has higher payoffs for both crowds, dominating the other
NE.

Example 3. In the previous examples, we showed that multiple NEs are possible
even if the velocity profile is strictly convex and smooth. In this last example we aim to
illustrate that a strictly convex but non-smooth velocity profile can result in infinitely
many NEs. Let us consider a speed function with “disagreement penalty” of the form:

f(ρ̄,ψ) =e−Cρ̄(π
2−(mod(ψ,2π)−π)2).

The resulting velocity profiles form a strictly convex but non-smooth teardrop-like
shape as seen in Figure 4.4. In the different subfigures of Figure 4.4, we have consistently
chosen C= 0.1 and ρa =ρb = 1, keeping p and q symmetric relative to the x-axis. We
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explore how the NEs change as we decrease the angle θ between (−p) and (−q), which
are shown by the orange and green arrows respectively.
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Fig. 4.4: Example 3: NEs for non-smooth velocity profiles as (−p) in orange and (−q) in green move
closer together. Subfigures (c) and (d) show a few of infinitely many NEs.

Figure 4.4a shows the case θ= 2π/3, with a unique NE, both crowds having distinct
velocity profiles and different choices of optimal directions (shown in red and blue). As p
and q move closer together, we still have a unique NE up until the critical angle θc, when
the velocity profiles of both crowds (and the respective optimal directions) coincide; see
Figure 4.4b. A simple geometric argument shows that θc=π/2−arctan(1/(2πCρ̄)). For
θ∈ [0,θc), the NE is no longer unique even though in each of them both velocity profiles
coincide and both crowds choose the same “optimal” direction corresponding to the
tip of the velocity profile. Note that only some of these NEs are Pareto optimal (the
ones where the tip lies in between (−p) and (−q)), and many others are not; see the
full range of Nash-profiles in Figure 4.4c. It is worth noting that the case p=q can
also be viewed as one crowd artificially divided into two, whose goals/destinations are
actually the same. In order for our model to remain consistent, we would hope that
there is a unique NE corresponding to the optimal choice of direction for the isotropic
(one-crowd) model. Figure 4.4d shows that this is actually not the case and we have
infinitely many NEs even with θ= 0. (However, only one of them, corresponding to the
vertically symmetric velocity profile and the “isotropically optimal” direction of motion
−p
|p| , is now Pareto-optimal). This suggests that the smoothness of the velocity profile

is also a natural consistency condition even for the single crowd models.

5. Numerical implementation and experiments

The fully coupled system (2.4) is typically discretized via explicit time-stepping:
the current density ρ is used to compute ϕ in the current time slice, and the recovered
u∗ is then used to find ρ in the next time-slice via (2.4a, 2.4d). In [31] this approach was
used with WENO-based discretizations for both the conservation law and the isotropic
Eikonal PDE. Our own simpler implementation relies on a Lax-Friedrichs scheme [46]
for the hyperbolic conservation law (2.4a) and a first-order accurate semi-Lagrangian
discretization of the HJB equation (2.4b).

Modeling the choice of optimal directions presents two main challenges. The first is
a choice of suitable discretization for the anisotropic / static HJ PDEs, yielding a large
system of coupled (discretized) equations in each time slice. The second is an efficient
method for solving this discretized system. In the following discussion we primarily focus
on the latter challenge and also emphasize the connection to our consistency criteria
covered in previous sections. We will first discuss the numerical methods for a single
HJB PDE (2.4b) in Section 5.1, followed by a discussion of numerics for two coupled
HJI equations in Section 5.2, and two-crowd simulation results in Section 5.3.
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5.1. Numerical solution of HJB for a single anisotropic crowd. If ρ
is known and t>0 is fixed, then ϕ is the viscosity solution of the Hamilton-Jacobi-
Bellman equation (2.4b), and u∗ can be recovered from (2.4c). In the special case of
isotropic dynamics (i.e. when v(ρ(x,t),u) =v(ρ(x,t))u and u∈S1), this HJB PDE
reduces to an Eikonal Equation (2.5), for which many competing efficient algorithms
have been developed in the last 20 years. Dijkstra-like (“Fast Marching”) methods
[53, 56, 59] provide non-iterative solvers by dynamically recovering the correct ordering
of discretized equations and solving them one at a time. These methods have been
extended to meshes on manifolds [42, 52], higher-order accurate Eulerian [1, 54] and
semi-Lagrangian discretizations [18], and more general anisotropic cases [2, 49, 55]. An
alternative (“Fast Sweeping”) approach is based on alternating through a set of natural
geometric orderings to speed up the convergence of Gauss-Seidel iterations [6, 7, 41, 47,
58, 62–64]. Each of these two approaches is particularly efficient on its own subset of
problems. More recently, hybrid (two-scale) methods have been introduced in [13, 14]
to combine the advantages of both marching and sweeping. These papers also include
a review of several other “fast Eikonal solvers” (mirroring the logic of label-correcting
algorithms on graphs) and their parallel implementations.

Our own simulations use Fast Sweeping – primarily because this approach is easier
to extend to multi-crowd scenarios discussed in Section 5.2.

In principle, the computational cost of solving (2.4b) in each time-slice can be
further reduced by only computing ϕ on the relevant subset of Ω̄. Such “causal domain
restriction” techniques are reminiscent of the classical A* algorithm on graphs [27]
and have been also extended to Eikonal equations; see [15] and references therein. In
pedestrian flow modeling, similar ideas have been used to speed up the “dynamic floor
field” computation in [28].

For the general/anisotropic version of the pedestrian direction field problem, it
usually is not possible to write down the analytic expression for u∗ even if ∇ϕ is already
known. The HJB equation (2.4b) is then most naturally discretized in a semi-Lagrangian
framework [21], with u∗ recovered at each gridpoint through a numerical optimization
over all u∈U .

This numerical optimization often presents a significant computational bottleneck,
particularly so for non-local models, in which evaluating the velocity v for any specific
u is already expensive. We recall that in [19] the velocity is computed as the sum of a
chosen velocity u and an interactional velocity wi; see formula (3.7). Computing the
value of wi requires calculating an integral over a sensory region S(x,u) that changes
with each choice of u. However, if the density is approximately linear within the sensory
region S(x,u), our work in Appendix A shows how to evaluate this integral analytically,
which could be used to speed up the numerics.

Aside from being computationally expensive, the numerical optimization to find u∗
may “mask” some of the possible model inconsistencies: if the argmax in (2.4c) is not
unique (e.g., when the velocity profile is not strictly convex), this can easily go unnoticed
and the simulation results will become dependent on the specific implementation of
optimization on U . To avoid these issues, it is important to verify the convexity of the
speed profile either a priori or at run-time (based on the crowd densities observed in
the simulation).

5.2. Implementation notes for two-crowd models. In Section 4, we dis-
cussed uniqueness of Nash Equilibria for the system of coupled Hamilton-Jacobi-Isaacs
PDEs (4.1) and (4.2). For numerical simulations, the semi-Lagrangian discretization
of these PDEs on the grid results in a pair of coupled optimization problems at each
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gridpoint (i,j):

ϕa
ij = min

ua
ij∈S1

G
(
ρaij ,ρ

b
ij ,u

b
ij ,Nϕ

a
ij

)
, (5.1)

ϕb
ij = min

ub
ij∈S1

G
(
ρaij ,ρ

b
ij ,u

a
ij ,Nϕ

b
ij

)
, (5.2)

where Nϕa
ij refers to the values of ϕa at the neighboring gridpoints to (i,j). Ideally, we

would like to know that the system (5.1-5.2) has a unique Nash Equilibrium regardless
of values of ρaij ,ρ

b
ij ,Nϕ

a
ij , and Nϕb

ij whenever the same is true for (4.1-4.2) regardless
of the vectors ∇ϕa and ∇ϕb. Our numerical experiments confirm this equivalence, but
it has not been proven rigorously so far.

These coupled discretized equations have to be solved at every gridpoint. A natural
approach for doing this is to mimic the structure of the “best reply” map in Section 4.
If ϕ for one of the crowds is assumed to be known, then ϕ for the other crowd can be
solved as in the one-crowd case (e.g., by Fast Sweeping; see Section 5.1). So, we can
alternate through solving Equations (5.1) and (5.2), freezing the current version of ϕa

and ua to recover ϕb and ub, which are then used to update ϕa and ua, and so on.
When the (discretized) best reply map is a contraction, its fixed point is the unique Nash
equilibrium and this iterative process converges to it. The examples in Section 5.3 show
simulations of two crowds computed in this manner which exhibit qualitative behavior
similar to real crowds. If we initialize the discretized best reply map with some initial
choice of directions (e.g. from the previous time step), then the convergence of this map
is proof that both crowds are in fact using Nash equilibrium strategies. However, this
approach is not sufficient to guarantee that this Nash equilibrium is also unique, even
if the simulation appears plausible from a phenomenological perspective.

A more careful approach is to iterate over the gridpoints in the outer loop, freezing(
Nϕa

ij ,Nϕ
b
ij

)
and updating (ϕa

ij ,ϕ
b
ij) simultaneously. We can discretize the control

space S1 (considering a fixed/finite number of directions of motion) and then find the
Nash equilibria for the resulting finite bi-matrix game. One advantage is that we can
directly verify the number of Nash equilibria, though it might also change as we refine
the discretization of S1.

Since the coupled system (4.1-4.2) has to be solved in every time-slice, it is desirable
to speed up the above procedures as much as possible. One heuristic approach is based
on updating the crowd direction fields by measuring the angle Ψ between our currently
chosen direction and the direction used by the other crowd in the previous time-slice.
This idea (similar to the approach used in [40] and the subsequent papers) effectively
decouples the PDEs, speeding up the numerics and side-stepping all Nash-equilibria
issues. However, there is no proof that the resulting evolution of crowd densities is the
same as one would recover from actually solving the coupled system (4.1-4.2).

5.3. Numerical experiments with two crowds. This subsection contains
a few simulation results based on our implementation of the anisotropic two-crowd
model found in [40], discussed previously in Sections 3.1 and 4.1. As a reminder, the
corresponding speed functions are:

va (ρa,ρb,ua,ub) = v̄e−α(ρa+ρb)2f(ρb,ψ) and vb (ρa,ρb,ua,ub) = v̄e−α(ρa+ρb)2f(ρa,ψ)

where f is given by:

f(ρ̄,ψ) =e−β(1−cosψ)ρ̄2 .
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In all examples, we will use α= 0.075 and v̄= 1 meter/second on a 100m by 100m
square domain Ω. Our code also verifies that the models stay consistent throughout the
simulations; i.e., the densities stay in Region 1 defined in Figure 4.1a.

Example 1: Difference in direction fields. This example is meant to highlight
the difference between optimal and gradient path-planning. In Figure 5.1, crowds A and
B are trying to reach exits on the South and North sides of the domain, respectively.
The crowds are initially intermixed and their optimal direction fields (shown in blue)
are different from the gradient fields of their respective value functions (shown in red).
The red directions appear to indicate shorter paths toward the desired exits, but using
them would be suboptimal since the corresponding “disagreement penalty” to the speeds
would be higher. This can be interpreted as a more “organic” version of the example
in Figure 3.1.
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Fig. 5.1: Two interacting crowds aiming for different exits on a domain with a single obstacle.
Subfigures (a) and (b): contour plots of ρa and ρb at t= 1.5 with the respective exits shown in black.
Subfigures (c) and (d): their corresponding optimal direction fields (in blue) and gradient fields (in
red). Computed for β= 0.347 on a 100x100 grid with timestep ∆t= 0.5.

Exmaple 2: Lane formation. This example is meant to illustrate lane formation
of two crowds in an intercrowd model based on [40]. Each crowd flows in from an
entrance on the side of the domain (shown in dark gray), with Crowd A flowing in from
the left at a rate of 0.8 ped ·m−1 ·s−1 and Crowd B flowing in from the right at a rate
of 0.4 ped ·m−1 ·s−1. Each crowd then aims to reach a target on the opposite side of
the domain (shown in black). As can be seen in Figure 5.2, both crowds form lanes to
avoid each other. Since this is similar to behavior of real crowds, such phenomena are
often used to argue for the validity of PDE models. It is worth noting that the lanes do
not separate completely, so correctly resolving the anisotropic interactions here is quite
important. We can quantify this effect by normalizing the two densities and calculating
the overlapping coefficient OVL [34] as follows:

OVL(t) =

∫
Ω

min

(
ρa(x,t)∫

Ω
ρa(x,t)dx

,
ρb(x,t)∫

Ω
ρb(x,t)dx

)
dx.

This overlapping coefficient measures the similarity of the two densities, with OVL = 1
if ρa =ρb and OVL = 0 if the supports of ρa and ρb are disjoint. For the densities in
subfigures 5.2(c-d), the overlapping coefficient is OVL(100) = 0.5841. While some of this
overlap is due to numerical viscosity from solving Equation (2.4)(a) via Lax-Friedrichs,
experimentally we see that OVL does not change significantly under grid refinement.

Example 3: Intersection. As in Example 2, each crowd begins on one side of
the domain and aims to reach a target at the opposite side. However, instead of moving



E. CARTEE AND A. VLADIMIRSKY 1087

0

0.5

1
Crowd A density at t = 40.0

0 50 100

0

20

40

60

80

100

Crowd B density at t = 40.0

0 50 100

0

20

40

60

80

100

Crowd A density at t = 100.0

0 50 100

0

20

40

60

80

100

Crowd B density at t = 100.0

0 50 100

0

20

40

60

80

100

(a) (b) (c) (d)

Fig. 5.2: A simulation of two crowds, taken at time slices of t= 40 and t= 100. Crowd A enters from
the left side of the domain (shown in dark gray) and is trying to reach an exit on the right (shown in
black), while Crowd B enters from the right side of the domain and is trying to reach an exit on the
left. Computed for β= 0.178 on a 100x100 grid with a time step of ∆t= 0.5.
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Fig. 5.3: Two crowds meeting at an intersection (at t= 10 and t= 50). Crowd A begins on the left
side of the domain and is trying to reach an exit on the right side of the domain (shown in black),
while Crowd B begins at the bottom of the domain and is trying to reach an exit at the top. Computed
for β= 0.178 on a 100x100 grid with a timestep of ∆t= 0.5. .

in opposite directions to each other (as in Example 2), they now meet at a right-angle
intersection in the middle of the domain (seen in Figure 5.3).

In subfigures 5.3(c-d) the crowds now again overlap significantly, with an overlap-
ping coefficient of OVL(50) = 0.4538. Moreover, the most of this overlap happens near
the center of Ω, where the difference in direction fields between the gradient and optimal
path planning is the largest, making it important to resolve the anisotropic interactions
correctly.

6. Conclusions

We have reviewed several anisotropic crowd flow models, highlighting the geomet-
ric interpretation of “optimality” in choosing the pedestrians’ direction field. We have
derived internal consistency criteria to guarantee that this direction field is uniquely
defined almost everywhere on Ω and showed that the strict convexity and smoothness
of the velocity profile are sufficient. Anisotropic interactions of multiple crowds lead to
a non-zero-sum-game formulation, and we have developed additional criteria to guar-
antee the uniqueness of a Nash equilibrium for such games. Up until now these issues
were largely ignored in the analysis of some of the more popular models [19, 40], and
we showed that they can in principle lead to ill-posedness for a range of physically
relevant parameter values. However, we emphasize that our primary goal is not to crit-
icize the prior literature, but to advocate the use of new analytic criteria – either as
a pre-processing step or as a run-time “sanity-check” – in future implementations of
anisotropic models.
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We have discussed the numerical implementation of such models and included a
number of two-crowd simulation results. We have further proposed an approach for
decreasing the computational cost of models with non-local interactions. The intra-
crowd anisotropies may arise due to the lack of radial symmetry in sensing regions [19],
making the computation of velocity profiles quite costly in itself. We showed how to do
this efficiently wherever the crowd density is approximately linear.

We hope that our work will shift the focus of model comparison away from purely
phenomenological criteria. E.g., numerical simulations of multiple crowds can produce
“lane formation” even if the underlying model is inconsistent or the anisotropic interac-
tions are resolved incorrectly (using gradient descent in u instead of the optimal direc-
tion field). However, anisotropic interactions might influence the lane-orientation and
are clearly important factors for the behavior of pedestrians in overlapping/interacting
“fringes” of such lanes.

In the future, we would like to investigate several extensions both on the model-
ing/theoretic side and in numerical techniques. First, the uniqueness of Nash equilibria
for general (non-zero-sum) differential games is a challenging question when the play-
ers’ dynamics are not separable [9], and we hope that our criteria can be suitably
generalized. Second, a semi-Lagrangian discretization of the corresponding system of
Hamilton-Jacobi-Isaacs PDEs presents another (discretized) game, and it would be use-
ful to show that similar criteria guarantee the uniqueness of the Nash equilibrium in
it. (Otherwise, the results of numerical simulations are rather hard to interpret [11]).
Finally, we would like to explore the related issues for Mean Field Games (MFG).
Up until now, the MFG-type multi-crowd models have been isotropic (and assumed
the presence of stochastic perturbations in pedestrian dynamics, resulting in “viscous”
second-order terms in PDEs) [43]. While it is easy to write down the corresponding
anisotropic/inviscid equations, we expect them to be similarly affected by questions of
velocity profile convexity and uniqueness of Nash equilibria. Moreover, the standard
MFG framework assumes that each agent’s cost/dynamics are only affected by her own
state and choice of actions + the aggregate state of all other agents [25, 32, 44, 45]. In
contrast, anisotropic multi-crowd models must also account for the direct dependence
on other agents’ current actions, and it is not obvious whether the standard MFG
framework will remain suitable.

Acknowledgements. AV is grateful to Leighton Arnold, whose undergraduate
independent study project served as a starting point for AV’s work on crowd dynamics
modeling. Both authors would like to thank Emiliano Cristiani, Yanqun Jiang, and Chi-
Wang Shu for very helpful discussions of their models. The authors are also grateful to
the anonymous reviewers and the editor for suggestions on improving this paper.

Appendix A. Velocity profile for linear density intra-crowd anisotropy.
In this section, we derive a formula for the velocity profile of the model used in [19],
under the assumption of a linear density distribution within the sensing region. We
recall that for this model of intra-crowd anisotropy, the interactional velocity is given
by:

wi(x,u) =

∫
S(x,u)∩Ω

F(y−x)ρ(t,y)dy.

The original formulation, which can be found in Equation (3.6) in Section 3.2, involved
a cutoff value C in the definition of F(y). To simplify the analysis we shall take C→∞
and use F(y) =

−Fy
|y|2 . Suppose that u= (cos(θ),sin(θ)), S(x,u) is a sector of radius R
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and angle α centered in the direction u. Furthermore, suppose x is far enough away
from ∂Ω so that the sensing region S(x,u)⊂Ω and ρ(x)>0 on S(x,u) for all choices of
u. Then fixing the time t>0, we may assume WLOG that our density ρ is of the form
ρ(x,y) =ρ0 +ρxx, with ρx>0. Our formula for wi then becomes:

wi=

∫
S(θ)

−Fy
|y|2

(ρ0 +ρxx)dy

which we can write in polar coordinates as:

wi=

∫ θ+α/2

θ−α/2

∫ R

0

−F
r2

(
rcos(γ)
rsin(γ)

)
(ρ0 +ρxrcos(γ))rdrdγ.

After computing this integral, we get that the overall velocity v=wi+u is given
as:

v(θ) =

( −FρxR2α
4
0

)
+(1−2Fρ0Rsin(α/2))

(
cos(θ)
sin(θ)

)
− FρxR

2 sin(α)

4

(
cos(2θ)
sin(2θ)

)
.

(A.1)
As long as the pedestrian density is linear within the sensing region, this gives an explicit
form for v(θ).

Appendix B. Convexity for linear density intra-crowd anisotropy. For
convenience, we shall now use C1 = (1−2Fρ0Rsin(α/2)), C2 =FρxR

2 sin(α), and C3 =
FρxR

2α. With this notation, we can write our explicit form for v from Section A as:

v(θ) =

(
v1(θ)
v2(θ)

)
=

(
−C3

4
0

)
+C1

(
cos(θ)
sin(θ)

)
− C2

4

(
cos(2θ)
sin(2θ)

)
. (B.1)

We first note that as long as 0<α<π, i.e. a pedestrian is only slowed down by
other pedestrians in front of them, then we have C3>C2>0.

We will need to put two different conditions on our parameters so that our solutions
can be logically consistent. First, the component of the overall velocity v(θ) in the
direction of the behavioral velocity u= (cos(θ),sin(θ)) is positive for all values of θ. We
calculate this to happen when:

C1−
C2 +C3

4
cos(θ)>0, for all θ∈ [0,2π].

Since C2 and C3 are always positive, this is equivalent to the condition:

C1−
C2 +C3

4
>0. (B.2)

We also need a sufficient condition for the strict convexity of the velocity profile.
As with the inter-crowd case, our velocity profile is given as a parametrized curve, so to
check that it is strictly convex, we must make sure the sign of the cross product T×N
does not change. This condition becomes:

v′1v
′′
2 −v′2v′′1 >0, for all θ∈ [0,2π]. (B.3)

We note that Equation (3.4) is a special case of Equation (B.3) when v1(θ) =f(θ)cos(θ)
and v2(θ) =f(θ)sin(θ). Plugging B.1 into B.3 reduces the latter to



1090 ANISOTROPIC CROWD MODELING

C2
1 +

C2
2

2
+

3

2
C1C2 cos(θ)>0, for all θ∈ [0,2π]. (B.4)

We recall that C2,C3>0. Then as long as Equation B.2 is satisfied, we have C1>0
as well. Looking at Equation B.4, we see that the left hand side is minimized when
θ=π, so the sufficient condition for strict convexity becomes:

C2
1 +

C2
2

2
− 3

2
C1C2 =

(C1−C2)(2C1−C2)

2
>0. (B.5)

The case we want to avoid is when we have a non-strictly-convex velocity profile
that contains the origin, i.e. when Equation (B.2) is satisfied and Equation (B.5) is not.
This can only happen when:

C2>C1>
C2 +C3

4
.

Writing this in terms of the original parameters:

FρxR
2 sin(α)>1−2Fρ0Rsin(α/2)>FρxR

2 (α+sin(α))

4
.

These inequalities can only be satisfied if: sin(α)> α+sin(α)
4 , i.e.

α<3sin(α),

which is true for 0<α<≈130.57◦. This means that if α>≈130.57◦ (as in [19]) and
the velocity profile contains the origin, then the velocity profile will always be strictly
convex.
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