
SIAM J. CONTROL OPTIM. c© 2015 Society for Industrial and Applied Mathematics
Vol. 53, No. 2, pp. 712–744

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND
RESETS∗

R. TAKEI† , W. CHEN‡ , Z. CLAWSON§ , S. KIROV¶, AND A. VLADIMIRSKY‖

Abstract. We consider both discrete and continuous control problems constrained by a fixed
budget of some resource, which may be renewed upon entering a preferred subset of the state space.
In the discrete case, we consider deterministic shortest path problems on graphs with a full budget
reset in all preferred nodes. In the continuous case, we derive augmented PDEs of optimal control,
which are then solved numerically on the extended state space with a full/instantaneous budget reset
on the preferred subset. We introduce an iterative algorithm for solving these problems efficiently.
The method’s performance is demonstrated on a range of computational examples, including optimal
path planning with constraints on prolonged visibility by a static enemy observer.

Key words. hybrid systems, optimal control, reset-renewable resources, contiguous visibility,
integral constraints, Hamilton–Jacobi, discontinuous viscosity solution

AMS subject classifications. 90C29, 49L20, 49L25, 49N90, 65N22, 65K05, 34A38

DOI. 10.1137/110853182

1. Introduction. Dynamic programming provides a convenient framework for
finding provably “optimal” strategies to control both discrete and continuous systems.
The optimality is usually defined with respect to a single criterion or cost (e.g., money,
fuel, or time needed to implement each particular control). Given a set of possible
system configurations Ω, the value function is defined as the cost of such optimal
control for each starting position x ∈ Ω, and the dynamic programming equations are
then solved to recover this value function.

Realistic applications usually involve several different criteria for evaluating con-
trol strategies and the notion of “optimality” becomes more complicated. One natural
approach is to focus on a single “primary” cost to be optimized, while treating all
other (“secondary”) costs as constraints. A typical application of this type is to find
the fastest path to the target subject to constraints on the maximum use of energy
along that path. Another possible constraint is on the maximum total amount of time
that a robot can be visible to an unfriendly observer while moving to a target. Kumar
and Vladimirsky have recently introduced efficient numerical methods for these and
similar constrained-optimal control problems in continuous domains [27]. We will re-
fer to such problems as “budget-constrained” since the original state space will have

∗Received by the editors October 27, 2011; accepted for publication (in revised form) July 7,
2014; published electronically March 19, 2015. The research of the second, third, and fourth authors
was supported in part by the National Science Foundation through the Research Experiences for
Undergraduates Program at Cornell.

http://www.siam.org/journals/sicon/53-2/85318.html
†Department of Electrical Engineering and Computer Sciences, UC Berkeley, CA 94720 (rrtakei@

gmail.com). This author’s research was supported in part by ONR grants N0014-03-1-0071, N00014-
07-1-0810, N00014-08-1-1119, DOE grant DE-FG02-05ER25710, an ARO MURI through Rice Uni-
versity, and the CHASE MURI grant 556016.

‡Department of Mathematics, Cornell University, Ithaca, NY 14853 (wc363@cornell.edu).
§Center for Applied Mathematics, Cornell University, Ithaca, NY 14853 (zc227@cornell.edu).
¶Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

(skirov@andrew.cmu.edu).
‖Department of Mathematics, Center for Applied Mathematics, Cornell University, Ithaca, NY

14853 (vlad@math.cornell.edu). This author’s research was supported in part by the National Science
Foundation grant DMS-1016150.

712

http://www.siam.org/journals/sicon/53-2/85318.html
mailto:rrtakei@gmail.com
mailto:rrtakei@gmail.com
mailto:wc363@cornell.edu
mailto:zc227@cornell.edu
mailto:skirov@andrew.cmu.edu
mailto:vlad@math.cornell.edu

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 713

to be expanded to keep track of the remaining “resource-budget” to satisfy the con-
straint. (For example, two different starting energy-budgets may well result in very
different “constrained time-optimal” paths, even when the starting physical position
is the same.)

This state space expansion leads to a significantly larger system of augmented
dynamic programming equations or a higher-dimensional domain in the continuous
case. Thus, the computational efficiency of numerical methods becomes particularly
important. In many applications it is natural to assume that the resource budgets
are nonrenewable and that every change in the system state results in an immediate
budget decrease. This introduces a natural “causal ordering” on the expanded state
space: the knowledge of energy-constrained time-optimal controls for the starting
energy-budget b1 can be used in computing such constrained-optimal controls for a
higher budget b2 > b1. The efficiency of methods introduced in [27] hinges on this
explicit causality.

In the current paper we focus on a more general situation, where the budget can
be instantaneously reset to its maximum value by visiting a special part of the state
space S ⊂ Ω and the budget is decreasing when moving through the rest of the state
space U = Ω\S. If the limited resource is fuel, S can be thought of as a discrete set
of gas stations. On the other hand, if the secondary cost is the vehicle’s exposure
to an unfriendly observer, the S can be interpreted as a “safe” part of the domain
protected from observation, and the constraint is on the maximum contiguous period
of time that the system is allowed to spend in an “unsafe” (observable) set U . To
the best of our knowledge, our formulation of continuous versions of such problems
is new and no efficient methods for these were previously available. We show that
such “budget-resets” result in a much more subtle implicit causality in the expanded
state space. Nevertheless, under mild technical assumptions, noniterative methods
are available for deterministic (section 2) and even for certain stochastic budget-reset
problems on graphs. Methods for the latter are discussed in an extended version of
this manuscript [37]. In the continuous case, this problem is described by a controlled
hybrid system (section 3), whose value function is a discontinuous viscosity solution
of two different Hamilton–Jacobi PDEs posed on S and U × B, where B is the set of
possible budget levels available to satisfy secondary constraints. The characteristics of
these PDEs coincide with the constrained-optimal trajectories and define the direction
of information flow in the continuous state space. Unfortunately, the most natural
semi-Lagrangian discretization of these PDEs is no longer causal, making iterative
numerical methods unavoidable (section 4).

The key contributions of this paper are the study of properties of the value
functions for budget reset problems (section 3.3) and the fast iterative algorithm
for approximating such value functions (sections 4.2–4.4). Our general approach is
equally efficient even in the presence of strong inhomogeneities and anisotropies in
costs and/or dynamics of the system. In section 5, we provide numerical evidence of
the method’s convergence and illustrate the key properties on several optimal control
examples,1 including prolonged-visibility-avoidance problems.

We note that for budget-reset problems, finding constrained-optimal controls is
significantly harder than just identifying the “reachable” subset of Ω; i.e., the set of
states from which it’s possible to steer the system to the target without violating the
constraints, provided one starts with the maximum budget. A more efficient algorithm

1 MATLAB/C++ codes used to produce all experimental results in this paper are available from
http://www.math.cornell.edu/∼vlad/papers/b reset/.

http://www.math.cornell.edu/~vlad/papers/b_reset/

714 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

for the latter problem is included in [37]. We conclude by discussing the limitations
of our approach and the future work in section 6.

2. Deterministic SP on graphs with renewable resources. The classical
problem of finding the shortest path (SP) in a directed graph with nonnegative arc-
lengths is among those most exhaustively studied. Fast iterative (“label-correcting”)
and fast noniterative (“label-setting”) methods for it are widely used in a variety of
applications.

Consider a directed graph on a set of nodes X = {x1, . . . ,xM ,xM+1 = t}, where
the last node t is the target. For each node xi ∈ X , there is a set of immediate
neighbors Ni = N(xi) ⊂ X\xi and for each neighbor xj ∈ Ni there is a known
transition cost Cij = C(xi,xj) ≥ 0. For convenience, we will take Cij = +∞ if
xj �∈ Ni. We will further assume that our graph is relatively sparse; i.e., maxi |Ni| ≤
κ � M. If y = (y0 = xi,y1, . . . ,yr = t) is a path from xi to the target, its total cost

is defined as J (y) =
∑r−1

k=0 C(yk,yk+1). The value function Ui = U(xi) is defined as
the cost along an optimal path. Clearly Ut = 0 and for all other nodes the Bellman
optimality principle yields a system of M nonlinear coupled equations:

(2.1) Ui = min
xj∈Ni

{Cij + Uj} ; i ∈ I = {1, . . . ,M}.

(This definition makes Ui = +∞, whenever there is no path from xi to t, including
the cases where Ni = ∅. Throughout this paper, we will use the convention that
the minimum over an empty set is +∞.) Dijkstra’s classical method [18] can be
used to solve the system (2.1) noniteratively in O(M logM) operations. A detailed
discussion of this and other label-setting and label-correcting algorithms can be found
in standard references; see, e.g., [1, 8].

In many applications, a natural extension of this problem requires keeping track of
several different types of cost (e.g., money, fuel, time) associated with each transition.
The goal is then either to find all Pareto optimal paths or to treat one criterion/cost
as primary (to be minimized) and all others as secondary, providing the constraints to
restrict the set of allowable paths. (For example, what is the quickest path given the
current amount of fuel in our tank?) A number of algorithms for such multiobjective
dynamic programming are also well-known [24, 29, 25].

One natural approach to bicriterion problems involves finding a simple, single-
criterion optimal path but in an expanded graph with the node set X̂ = X × B.
We begin with a similar technique adopted to our “constrained resources” scenario.
Our description emphasizes the causal properties of the model, also reflected by the
numerical methods for the continuous case in section 4. We assume the secondary
resource-cost for each transition is specified as cij = c(xi,xj), whereas the primary
cost of that transition will be still denoted as Cij . For simplicity we assume that the
secondary costs are conveniently quantized; e.g., cij ∈ Z.

We will use B > 0 to denote the maximal allowable budget and B = {0, . . . , B}
to denote the set of allowable budget levels. In the extended graph, a node xb

i ∈ X̂
corresponds to a location xi ∈ X with the resource budget b. The use of resources
occurs when cij > 0, and the renewal/recharge of resources corresponds to cij < 0. If
we are starting from xi with a secondary-budget b and decide to move to xj ∈ Ni, in

the expanded graph this becomes a transition from xb
i to x

b−cij
j .

We now define the value function W b
i = W (xb

i) as the minimum accumulated
primary-cost from xi to t, but minimizing only among the paths along which the

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 715

budget always remains in B:

W b
i = min

y∈Y b(xi)
J (y),

where Y b(xi) is the set of “b-feasible paths” (i.e., those that can be traversed if starting
from xi with resource budget b).

Feasible paths should clearly include only those along which the resource budget
remains nonnegative. But since we are allowing for secondary costs cij of arbitrary
sign, this requires a choice between two different “upper budget bound” interpreta-
tions:

(1) Any attempt to achieve a budget higher than B makes a path infeasible; i.e.,
since we are starting from xi with budget b ∈ B,

Y b(xi) =

{
y = (y0 = xi, . . . ,yr = t) | 0 ≤

(
b −

s−1∑
k=0

c(yk,yk+1)

)
≤ B, ∀s ≤ r

}
.

In this case, the optimality principle would yield a system of equations on the ex-
panded graph:

W b
i = min

xj∈Ni

{
Cij +W

b−cij
j

}
; ∀b ∈ B; ∀i ∈ I;

with the following “boundary conditions”:

W b
t = 0; ∀b ∈ B; W b

i = +∞, ∀b �∈ B, ∀xi ∈ X.

In practice, the latter condition can be omitted if we minimize over N b
i = {xj ∈ Ni |

(b− cij) ∈ B} instead of Ni.
(2) An interpretation more suitable for our purposes is to assume that any re-

sources in excess of B are simply not accumulated (or are immediately lost), but the
path remains allowable. If we define a left-associative operation α�β = min(α−β,B),
then

Y b(xi) =
{
y = (y0 = xi, . . . ,yr = t) | (b � c(y0,y1)� · · · � c(ys−1,ys)

) ≥ 0, ∀s ≤ r
}
,

and the optimality principle on the expanded graph can be expressed as follows:

(2.2) W b
i = min

xj∈Nb
i

{
Cij +W

b�cij
j

}
; ∀b ∈ B; ∀i ∈ I,

with W b
t = 0 for all b ∈ B and N b

i = {xj ∈ Ni | cij ≤ b}. Unlike the previous
interpretation, this definition ensures that the value function is nonincreasing in b
(since the set of feasible paths is nondecreasing as we increase the budget). Thus, we
will also similarly interpret the “upper budget bound” in section 3.

Remark 1. It is natural to view the expanded graph as (B + 1) “b-slices” (i.e.,
copies of the original graph) stacked vertically, with the transitions between slices
corresponding to cij ’s. (Though, since the total costs of feasible paths do not depend
on the budget remaining upon reaching the target, it is in fact unnecessary to have
multiple copies of t in the expanded graph; see Figure 2.) We note that the signs
of the secondary costs strongly influence the type of causality present in the system
as well as the efficiency of the corresponding numerical methods. We consider three
cases:

716 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

1. Since the primary costs are nonnegative, the system (2.2) can always be solved
by Dijkstra’s method on an expanded graph regardless of the signs of cij ’s. The

computational cost of this approach is O(M̂ log M̂), where M̂ = M × (B + 1) is the
number of nodes in the expanded graph (not counting the target). We will refer to
this most general type of causality as implicit.

2. However, if cij ’s are strictly positive, Dijkstra’s method becomes unnecessary
since the budget will strictly decrease along every path. In this case W 0

i = +∞ for
all xi ∈ X\{t} and each W b

i depends only on nodes in the lower slices. We will refer

to this situation as explicitly causal since we can compute the value function in O(M̂)
operations in a single sweep from the bottom to the top slice.

3. On the other hand, if the secondary costs are only nonnegative, the budget
is nonincreasing along every path and we can use Dijkstra’s method on one b-slice
at a time (again, starting from b = 0 and advancing to b = B) instead of using it
on the entire expanded graph at once. This semi-implicit causality results in the
computational cost of O(M̂ logM).

Remark 2. The sign of secondary costs also determines whether the value function
W b

i actually depends on the maximum allowable resource level. For example, suppose
the solution W b

i was already computed for all b ∈ B = {0, . . . , B} and it is now
necessary to solve the problem again, but for a wider range of resource budgets B̃ =
{0, . . . , B̃}, where B̃ > B. Assuming that W̃ solves the latter problem, a useful
consequence of explicit and semi-implicit causality is the fact that W̃ b

i = W b
i for all

b ∈ B; thus, the computational costs of this extension are decreased by concentrating
on the set of budgets {B + 1, . . . , B̃} only. Unfortunately, this convenient property
does not generally hold for implicitly causal problems. (For example, when refueling
is allowed, two cars with different capacity of gas tanks might have different optimal
driving directions even if they are starting out with the same amount of gas.)

2.1. Safe/unsafe splitting without budget resets. The framework presented
so far is suitable for fairly general resource expenditure/accumulation models. In this
paper, we are primarily interested in a smaller class of problems, where the state space
is split into “safe” and “unsafe” components (i.e., X\{t} = S ∪U) with the secondary
cost not accrued (i.e., the constrained resource not used at all) while traveling through
S. A simple example of this is provided in Figure 1.

In the absence of “budget resets” this safe/unsafe splitting is modeled by simply
setting cij = 0 whenever xi ∈ S, yielding semi-implicit causality; see Figures 2 and
3. To make this example intuitive, we have selected the primary costs Cij to be such
that the “primary-optimal” path (described by U ; see (2.1)) always proceeds from xi

to xi+1, etc. However, the budget limitations can make such primary-optimal paths
infeasible. For example, when B = 3 and no resets are allowed, the best feasible
path from x4 is (x4,x5,x8, t), resulting in W 3

4 = 6 > 5 = U4; see Figure 3. Still, all
constrained-optimal paths travel either on the same b slice or downward, resulting in
a semi-implicit causality.

Since for large B the expanded graph is significantly bigger than the original one,
it is useful to consider “fast” techniques for pruning X̂. We note that the W 0

i = ∞ for
all xi ∈ U and so the “0-budget” copies of U nodes can always be safely removed from
the extended graph. A more careful argument can be used to reduce the computational
domain much further.

To begin, we describe the resource-optimal paths by defining another value func-
tion Vi = V (xi) to be the minimum resource budget b needed to reach the target from
xi. For the described model, cij ≥ 0 and it is easy to show that this new “resource

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 717

x1 x2 x3 x4 x5 x6 x7 x8 t
1

7

1

1

1

1

4

1

1

1

4

1 1 1

Fig. 1. Diamond-shaped nodes are in S and circle-shaped ones are in U . The primary costs Cij

are specified for each link, while the secondary costs are cij = 1 if xi ∈ U and cij = 0 if xi ∈ S. The
arrow types (solid, dashed, or dotted) also correspond to different values of primary transition costs.
To build a concrete illustration, we will assume that B = 3 is the maximum number of “unsafe”
(circle-shaped) nodes we can go through.

x1 x2 x3 x4 x5 x6 x7 x8

b = 3 x3
1 x3

2 x3
3 x3

4 x3
5 x3

6 x3
7 x3

8

b = 2 x2
1 x2

2 x2
3 x2

4 x2
5 x2

6 x2
7 x2

8

b = 1 x1
1 x1

2 x1
3 x1

4 x1
5 x1

6 x1
7 x1

8

b = 0 x0
1 x0

2 x0
3 x0

4 x0
5 x0

6 x0
7 x0

8 t

Fig. 2. Budget-constrained shortest path (no “resets”). For every node except for the target,
the superscript denotes the remaining unsafe-node budget at that node. Transition on the same level
from a safe node, down to the next level if going from an unsafe one. The primary transition costs
are indicated by the type of arrow; see Figure 1.

value function” would have to satisfy

(2.3) Vi = min
xj∈Ni

{cij + Vj} , i ∈ I = {1, . . . ,M}.

We will further define Ṽi as the minimum resource budget sufficient to follow a
primary-optimal path from xi. The equation for Ṽi is similar to (2.3), but with the
minimum taken over the set of optimal transitions in (2.1) (instead of minimizing
over the entire Ni). Analogously, we can define Ũi to be the primary cost along the
resource-optimal trajectories.

Definitions of these four functions are summarized in the caption of Table 1. The
left side of this table shows the values of U, Ṽ , V, and Ũ for the example presented in
Figure 1. We note the following:

(1) W b
i = Ũi for b = Vi. We will refer to the set of such xb

i nodes as the Minimum

Feasible Level since W β
i = ∞ for any β < Vi.

(2) W b
i = Ui for any b ≥ Ṽi, since the primary-optimal trajectories are feasible

there.
These two observations can be used to strongly reduce the extended graph on

718 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

x1 x2 x3 x4 x5 x6 x7 x8

b = 3 9 8 7 6 4 3 2 1

b = 2 10 11 ∞ ∞ 5 3 2 1

b = 1 ∞ ∞ ∞ ∞ ∞ ∞ 2 1

b = 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

Fig. 3. Semi-implicit causality: run Dijkstra’s algorithm slice-by-slice on the expanded graph
(from bottom to top). The number inside each node represents the minimum cost from xb

i to the
target. (If there are no “safe cycles,” the causality becomes explicit and there is no need for Dijk-
stra’s.)

which we solve the system (2.2). For example, in Figure 3, this pruning excludes
all nodes except for {x3

1,x
3
2}. In examples where Vi � B � Ṽi for most nodes,

this remaining subset of X̂ will generally be much larger, but the pruning is still
worthwhile since U, Ṽ , V, and Ũ can be computed on a much smaller (original) graph.
A similar procedure for the continuous case is described in section 4.4.

Table 1

Various “optimal” costs for the example in Figure 1 with B = 3. Primary-optimal cost (U),
resource-optimal cost (V), resource cost along primary-optimal path (Ṽ), and primary cost along
resource-optimal path (Ũ) for the no-reset and budget-reset problems. Note that for the latter problem
we can also define Ṽ (x3) = ∞ since B = 3.

Without budget resets. With budget resets.
x1 x2 x3 x4 x5 x6 x7 x8

U 8 7 6 5 4 3 2 1

Ṽ 5 5 5 4 3 2 1 1
V 2 2 3 3 2 2 1 1

Ũ 10 11 7 6 5 3 2 1

x1 x2 x3 x4 x5 x6 x7 x8

U 8 7 6 5 4 3 2 1

Ṽ - - 4 3 2 1 - 1
V - - 1 2 2 1 - 1

Ũ - - 9 10 4 3 - 1

2.2. Safe/unsafe splitting with budget resets. Our main focus, however,
is on problems where the budget is also fully reset upon entering S. To model that,
we can formally set cij = −B < 0, ensuring the transition from xb

i to xB
j , when-

ever xi ∈ S. Since we always have a maximum budget in S, there is no need to
maintain a copy of it in each b-slice. This results in a smaller expanded graph with
(|S|+B|U|+ 1) nodes; see Figure 4. Unfortunately, the negative secondary costs
make this problem implicitly causal, impacting the efficiency. Moreover, unlike the
no-resets case, the projections of constrained-optimal trajectories onto the original
graph may contain loops. For example, starting from x4 with the resource budget
b = 2, the constrained-optimal trajectory is (x4,x3,x2,x3,x6,x7,x8, t) and the first
two transitions are needed to restore the budget to the level sufficient for the rest of the
path. Note that, if we were to re-solve the same problem with B = 4, the constrained-
optimal path from the same starting location and budget would be quite different:

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 719

(x4,x3,x2,x3,x4,x5,x6,x7,x8, t), resulting in a smaller W 2
4 = 9; see Remark 2.

x1 x2 x3 x4 x5 x6 x7 x8

b = 3 9 8 7 5 4 3 2 1

b = 2 7 10 4 3 1

b = 1 9 ∞ ∞ 3 1 0

Fig. 4. The problem with budget resets for B = 3. (The b = 0 slice is omitted simply because
W 0

i = ∞ for any xi ∈ U .) Implicit/monotone causality: run Dijkstra’s algorithm on the entire

expanded graph. The number inside each node represents the minimum cost from xb
i to the target.

We show in bold font the values different from the “no resets” case.

Unfortunately, the domain restriction/pruning techniques outlined in the previ-
ous subsection are no longer directly applicable. For the current example, the values
of functions U , Ṽ , V , and Ũ are provided in the right half of Table 1, but their inter-
pretations (and algorithms needed to compute them) are more subtle. For example,
the function Vi is naturally interpreted as the minimum starting budget sufficient to
reach t starting from xi. Thus, Vi is not defined on “safe” nodes (since on S the
budget is always equal to B), and for xi ∈ U the value of Vi is B-dependent. If
b̄ = Vi, then Y b̄(xi) �= ∅ (i.e., there exists a b̄-feasible path from xi), but Y

b(xi) = ∅
for all b < b̄. If y = (y0 = xi, . . . ,yr = t) ∈ Y b̄(xi) and s is the smallest index such

that ys ∈ S, then b̄ =
∑s−1

k=0 c(yk,yk+1).
As a result, we could also interpret Vi as the minimum “resource cost” of traveling

from xi through U to reach Ŝ = {xj ∈ S | WB
j < ∞}.

Unfortunately, this definition does not allow for efficient computations on the
original graph, since Ŝ is not known a priori.

If the values WB
j were already known for all the “Safe” nodes xj ∈ S, we could

efficiently compute Vi for all xi ∈ U (thus restricting the computational domain);
moreover, all W b

i could then be computed in a single upward sweep (from the slice
b = 1 to the slice b = B). This observation serves as a basis for the iterative method
summarized in Algorithm 1. Intermediate stages of this algorithm applied to the
above example are depicted in Figure 5.

Since the primary costs Cij ’s are positive, the value function can still be computed
noniteratively—by using Dijkstra’s method on the full expanded graph without at-
tempting any domain restriction techniques. It is possible to find examples on which
the advantages of restricting the domain outweigh the noniterative nature of Dijk-
stra’s method. But our main reason for describing the iterative Algorithm 1 is its
applicability to the problems of section 3, where Dijkstra-like methods are generally
inapplicable.

3. Continuous problems with budget reset.

3.1. Continuous optimal control formulation. We begin with a brief review
of the basic exit time optimal control problem in the absence of resource constraints.
Given an equation for controlled motion in Ω, the objective is to characterize op-
timal paths (and their associated optimal costs) from every point in a domain Ω

720 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

1 Initialization:

2 Wt := 0;

3 WB
j := ∞ ∀ xj ∈ S;

4 W b
i := ∞ ∀ xi ∈ U , b ∈ B.

5 Compute Ui for all xi ∈ X .

6 Main Loop:

7 repeat

8 Phase I:

9 Using the current WB
j values to specify Ŝ, compute Vi and Ũi for each

xi ∈ U .

10 foreach b = 1, . . . , B do
11 foreach xi ∈ U do

12 if b ≥ Vi then

13 if b = Vi then

14 W b
i := Ũi;

15 else

16 if W b−1
i = Ui then

17 W b
i := Ui;

18 else

19 Compute W b
i from equation (2.2).

20 end

21 end

22 end

23 end

24 end

25 Phase II:

26 Run Dijkstra’s method on S only to (re)compute WB
j ’s for all xj ∈ S.

27 until all WB
j ’s stop changing ;

Algorithm 1: Iterative algorithm for the DSP problem with budget resets.

to the boundary ∂Ω. The static Hamilton–Jacobi–Bellman (HJB) PDE discussed
in this subsection is fairly standard and we focus only on the details important for
the subsequent discussion. For a comprehensive treatment of more general resource-
unconstrained problems, we refer interested readers to the monograph [4] and the
references within.

Consider an open bounded set Ω ⊂ Rn. Let A ∈ Rn be a compact set of control
values and A the set of admissible controls

(3.1) A = {measurable functions a : [0,+∞) → A}.

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 721

Initialize: W 3
1 = W 3

2 = W 3
7 = ∞.

Fix “Safe” and solve on “Unsafe”:

x1 x2 x3 x4 x5 x6 x7 x8

b = 3 ∞ ∞ ∞ 6 5 ∞ ∞ 1

b = 2 ∞ ∞ 5 ∞ 1

b = 1 ∞ ∞ ∞ ∞ 1 0

Fix “Unsafe” and solve on “Safe”: W 3
7 = 2.

Fix “Safe” and solve on “Unsafe”:

x1 x2 x3 x4 x5 x6 x7 x8

b = 3 ∞ ∞ 7 5 4 3 2 1

b = 2 7 ∞ 4 3 1

b = 1 ∞ ∞ ∞ 3 1 0

Fix “Unsafe” and solve on “Safe”: W 3
1 = 9; W 3

2 = 8.

Fix “Safe” and solve on “Unsafe”:

x1 x2 x3 x4 x5 x6 x7 x8

b = 3 9 8 7 5 4 3 2 1

b = 2 7 10 4 3 1

b = 1 9 ∞ ∞ 3 1 0

Fig. 5. The problem with budget resets for B = 3 (specified in Figure 4) solved by an iterative
Algorithm 1. Note that the MFL for x3 and x4 is not correctly determined until the last iteration.

722 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

Let y : [0,∞) → Ω represent the time-evolution of a particle state governed by the
dynamical system

(3.2)

dy

dt
(t) = ẏ(t) = f(y(t),a(t)),

y(0) = x,

where f : Ω× A → Rn represents the velocity. We refer to all y(·) that satisfy (3.2)
with admissible controls A as admissible paths. For notational simplicity, we have
suppressed explicitly writing the dependence of y(·) on the control a ∈ A and the
initial state x ∈ Ω.

Define K : Ω → R as the running cost and q : ∂Ω → R to be the terminal cost
when the state reaches a point on the boundary.2 Thus, the total cost associated with
an initial state x ∈ Ω and an admissible control a(·) ∈ A is

(3.3) J (x,a(·)) =
∫ T

0

K(y(s),a(s)) ds + q(y(T)),

where T = min{t | y(t) ∈ ∂Ω}. Then the value function u : Ω → R is the minimal
total cost to the boundary ∂Ω starting at x:

(3.4) u(x) = inf
a(·)∈A

J (x,a(·)).

By Bellman’s optimality principle [7], for every sufficiently small τ > 0,

(3.5) u(x) = inf
a(·)∈A

{∫ τ

0

K(y(s),a(s)) ds+ u(y(τ))

}
.

A Taylor series expansion about x yields the Hamilton-Jacobi-Bellman equation:

(3.6) min
a∈A

{K(x,a) +∇u(x) · f(x,a)} = 0.

Note that, since the minimization is taken over a compact set A, the infimum be-
comes a minimum. From the definition, the boundary condition on the value function
is

(3.7) u(x) = q(x), x ∈ ∂Ω.

For the functions f ,K, q introduced above, we make the following assumptions:
(A1) f and K are Lipschitz continuous.
(A2) There exist constants K1,K2, such that 0 < K1 ≤ K(x,a) ≤ K2 for all

x ∈ Ω and a ∈ A.
(A3) The velocity f : Ω×A �→ Rn is bounded (i.e., ‖f‖ ≤ F2) and the motion in

every direction is always possible; i.e.,

∀x ∈ Ω, and all unit vectors v ∈ Rn,

∃a ∈ A s.t. v · f (x,a) = ‖f(x,a)‖ ≥ F1 > 0.

Moreover, we assume that the scaled vectogram {f(x,a)/K(x,a) | a ∈ A} is
strictly convex at each x ∈ Ω.

2In many applications, the objective is to optimally steer towards a prescribed closed target set
T ⊂ Ω. This fits into our formulation by setting the domain to be Ω\T with the terminal cost q = ∞
on ∂Ω and q finite on ∂T .

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 723

(A4) q is lower semicontinuous and min∂Ω q < ∞.
The assumption (A3) yields the small-time controllability property [3] which guaran-
tees the continuity of the value function u on Ω. In general, even under the aforemen-
tioned assumptions, classical solutions to the PDE (3.6) usually do not exist, while
weak (Lipschitz-continuous) solutions are not unique. Additional selection criteria
were introduced by Crandall and Lions [15] to recover the unique weak solution (the
so called viscosity solution), coinciding with the value function of the control problem.

Several important classes of examples will repeatedly arise in the following sec-
tions. We will refer to problems as having geometric dynamics if

(3.8) A = {a | ‖a‖ = 1}, f(x,a) = af(x,a).

For control problems with geometric dynamics and unit running cost (K(x,a) = 1),
the PDE (3.6) reduces to

(3.9) max
‖a‖=1

{f(x,a) (−a ·∇u(x))} = 1.

This models a particle which travels through the point x in the direction a ∈ A at
the speed f(x,a). For zero terminal cost q = 0, the value u(x) equals the minimum
travel time of such a particle from x to ∂Ω. If we further assume isotropic speed
f(x,a) = f(x), (3.9) simplifies to the Eikonal equation:

(3.10) f(x)‖∇u(x)‖ = 1.

Finally, for the unit speed with q = 0, the viscosity solution to (3.10) is the distance
function to ∂Ω.

Under the assumptions (A1)–(A4), the value function u can be used to extract
the optimal feedback control a∗ = a∗(x), provided u is smooth at x ∈ Ω. For the
Eikonal case (3.10), for instance, it can be shown that a∗(x) = −∇u(x)/|∇u(x)|
(note that ∇u �= 0 under the assumptions (A2)); the points where ∇u does not
exist are precisely those where the optimal control is not unique. Subsequently, the
optimal trajectory y∗(·) from x ∈ Ω can be computed as the solution to the initial
value problem (3.2) with a(t) = a∗(y(t)). It is easy to show that y∗(·) coincides with
the characteristic curve to x from the boundary ∂Ω, but traveling in the opposite
direction. Furthermore, the optimal control will be unique at y∗(t) for all t > 0 until
this trajectory reaches ∂Ω.

3.2. Augmented PDE for the budget constrained problem. The problem
of budget constrained optimal paths was proposed in [27], where general multicriterion
optimal control problems were reduced to solving an augmented PDE on an expanded
state space. For the purpose of this paper, we shall briefly describe this method for
the single budget constraint.

Define the extended space Ωe = Ω×(0, B], where B > 0 is a prescribed maximum
resource budget. We shall call a point in (x, b) ∈ Ωe an extended state. Here, b
represents the current resource budget. We represent a path parametrized by time
t ≥ 0 in the extended domain as z(t) = (y(t), β(t)) ∈ Ωe.

Next, define the secondary cost K̂ : Ω × A → R, strictly positive, which is the
decrease rate of the budget. We shall assume that K̂ is Lipschitz continuous and there
exist constants K̂1, K̂2 such that

(3.11) 0 < K̂1 ≤ K̂(x,a) ≤ K̂2, ∀x ∈ Ω,a ∈ A.

724 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

Then the equations of motion in Ωe are

(3.12)
ẏ(t) = f(y(t),a(t)), y(0) = x,

β̇(t) = −K̂(y(t),a(t)), β(0) = b.

For an arbitrary control a ∈ A, define the terminal time starting at the extended
state (x, b) as

T̂ (x, b,a) = min{t | y(t) ∈ ∂Ω, β(t) ≥ 0}.

Define the set of all feasible controls for paths starting at the extended state (x, b)
as

Â(x, b) = {a ∈ A | T̂ (x, b,a) < ∞}.

We shall call paths corresponding to feasible controls as feasible paths. Then the
value function is

w(x, b) = inf
a(·)∈Â(x,b)

J (x,a(·)).

The boundary condition is

(3.13) w(x, b) =

{
q(x), x ∈ ∂Ω, b ∈ [0, B],

∞, x ∈ Ω, b = 0.

Note that w(x, b) ≥ u(x), since in the unconstrained case the set of controls is larger.
Moreover, if the starting budget b is insufficient to reach the boundary, the set Â(x, b)
is empty and w(x, b) = ∞. Wherever the value function is finite on Ωe, Bellman’s
optimality principle similarly yields the HJB equation

(3.14) min
a∈A

{
∇xw · f(x,a)− K̂(x,a)

∂w

∂b
+K(x,a)

}
= 0.

Here ∇x denotes the vector-valued operator of partial derivatives with respect to x.
For the case of isotropic velocity and unit running cost K = 1, and K̂(x,a) = K̂(x),
the latter equation reduces to

(3.15) f(x)|∇xw|+ K̂(x)
∂w

∂b
= 1.

The (augmented) velocity function (f (x,a),−K̂(x,a)) in (3.12) no longer sat-
isfies the assumption (A3). This implies the lack of small time controllability in Ωe

and possibly discontinuities in the corresponding value function w. While the original
definition of viscosity solutions required continuity, a less restrictive notion of discon-
tinuous viscosity solutions applies in this case; see [4, Chapter 5], [36], [30] and the
references therein.

The assumption (3.11) on K̂ implies that the characteristics move in strictly
monotonically increasing b-direction (see also Property 3.2). Thus, the value function
w is explicitly causal in b: the value function at a fixed point x′ ∈ Ω, b′ ∈ (0, B]
depends only on the value function in {(x, b) | b < b′}. Moreover, since K̂ > 0, by
rearranging the PDE (3.15)

∂w

∂b
=

1

K̂(x)
(1− f(x)|∇xw|) ,

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 725

the problem can be viewed as a “time-dependent” Hamilton–Jacobi equation, where
b represents the “time.” In [27], this explicit causality property of (3.14) yielded an
efficient numerical scheme involving a single “sweep” in the increasing b-direction (see
section 4.3). We note the parallelism with the discrete problem formulation, described
in case 2 of Remark 1.

Remark 3. Before moving on to the budget reset problem, we briefly discuss a
slight generalization to the budget constrained problem in [27]. Suppose we relax the
lower bound in (3.11) to allow K̂ = 0 on some closed subset S ⊂ Ω. The set S can
be interpreted as a “safe” set, on which the resources are not used. (In this setting,
the problem previously considered in [27] corresponds to U = Ω.)

Clearly, explicit causality no longer holds when S ∩ Ω �= ∅; rather, w has a semi-
implicit causality property : for any fixed point x′ ∈ Ω, b′ ∈ (0, B], the value function
w(x′, b′) can only depend on the values {w(x, b) | x ∈ Ω, b ∈ (0, b′]}. This possible
interdependence between values on the same b level makes it impossible to trans-
form the PDE into a time-dependent Hamilton–Jacobi equation (as with the explicit
causality case). Instead, the value function satisfies a separate Eikonal equation on
the int(S) part of each b-slice:

(3.16) min
a∈A

{∇xw(x, b) · f(x,a) +K(x,a)} = 0, ∀b ∈ [0, B],x ∈ int(S).

We again note the parallelism with the discrete formulation, described in case 3 of
Remark 1; see also Figures 2 and 3.

3.3. A PDE formulation for the budget reset problem. We now consider
a continuous analogue of the problem in section 2.2 and Figure 4.

Partition the closure of the domain Ω̄ = U ∪ S, where U is open (thus, ∂Ω ⊂ S).
Here, U represents the “unsafe” set, where the budget decreases at some Lipschitz
continuous rate K̂,

(3.17) 0 < K̂1 ≤ K̂(x,a) ≤ K̂2, ∀x ∈ U ,a ∈ A,

and S represents the “safe” set, where the budget resets to its maximum. We denote
the interface between the two sets in the interior of the domain as Γ = ∂U ∩ Ω. We
will further assume that the set S \ {x ∈ ∂Ω | q(x) < ∞} consists of finitely many
connected components.

To model the budget reset property, the budget β(t) is set to B in S. Thus,
equations (3.12) are modified accordingly in S, and the resulting dynamics is described
by a hybrid system:{

ẏ(t) = f (y(t),a(t)),

β̇(t) = −K̂(y(t),a(t))
if y(t) ∈ U ,(3.18) {

ẏ(t) = f (y(t),a(t)),

β(t) = B
if y(t) ∈ S,(3.19)

with initial states

(3.20) β(0) =

{
b if y(0) ∈ U ,
B if y(0) ∈ S.

Similarly to section 3.2, we define the terminal time for a control a ∈ A as

T̃ (x, b,a) = min{t | y(t) ∈ ∂Ω, β(τ) ≥ 0 ∀ τ ∈ [0, t]},

726 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

where the paths y(·) satisfy (3.18)–(3.20).

Let Ã(x, b) = {a ∈ A | T̃ (x, b,a) < ∞} be the set of all feasible controls for the
budget reset problem. Then the value function is defined as

w(x, b) = inf
a(·)∈Ã(x,b)

J (x,a(·)).

For the budget reset problem, a path z(·) = (y(·), β(·)) in the extended domain
never visits points {(x, b) | x ∈ S, b < B}. Thus, we consider the reduced extended
domain

Ωr = ΩU ∪ΩS ⊂ Ωe,

where

ΩU = U × (0, B],

ΩS = S × {B}.

This reduction of the extended state space is analogous to the discrete example de-
scribed in Figure 4. The corresponding HJB equation for this hybrid control problem
in Ωr can be described separately in ΩU and ΩS . To distinguish between the value
functions in these two domains we write

w(x, b) ≡
{
w1(x, b), (x, b) ∈ ΩU ,
w2(x), x ∈ S.

As in the no-resets case, the value function w is usually infinite on parts of Ωr (if
the starting budget is insufficient to reach the boundary even with resets); see also
section 4.4. Bellman’s optimality principle can be used to show that, wherever w is
finite, it should satisfy the following PDEs:

min
a∈A

{
∇w1(x, b) · f(x,a)− K̂(x,a)

∂w1

∂b
(x, b) +K(x,a)

}
= 0, (x, b) ∈ ΩU ,(3.21)

min
a∈A

{∇w2(x) · f(x,a) +K(x,a)} = 0, x ∈ int(S).(3.22)

We note the similarity between the previously defined PDE (3.16) and (3.22).
But while the latter is solved on one b-slice only (for b = B), the former is actually a
b-parametrized family of static PDEs, which are coupled to each other only through
the boundary with ΩU .

This difference is a direct consequence of the budget reset property.
The boundary conditions on w are

(3.23) w(x, b) =

{
q(x), x ∈ ∂Ω ⊂ S,
∞, x ∈ Ω, b = 0.

In addition, the following compatibility condition (motivated below by Proposition
3.3) holds between w1 and w2, wherever w is finite on Γ = ∂U ∩ Ω:

(3.24) lim
x′→x
x′∈U

w1(x
′, b) = w2(x), ∀x ∈ Γ, b ∈ (0, B].

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 727

We now list several properties of the value function w. The proofs of the first two
of them are omitted for brevity.

Property 3.1. In ΩU , the b-coordinate is monotonically decreasing along every
trajectory when traversing forward in time.

Property 3.2. If b1 ≤ b2 ≤ B, then w1(x, b1) ≥ w1(x, b2) for all x ∈ U .
From here on we will use SR = {x ∈ S | w2(x) < ∞} to denote the “reachable”

part of the safe set. We note that every connected component of S \ {x ∈ ∂Ω | q(x) <
∞} is either fully in SR or does not intersect it at all. As a result, the number of
connected components in the latter set is also finite.

Lemma 3.1. w2 is locally Lipschitz continuous on SR\∂Ω.
Proof. We will use the notation Bε(x) = {x′ ∈ Rn | ‖x − x′‖ < ε}. Choose a

point x ∈ SR\∂Ω, and an ε > 0 sufficiently small so that Bε(x) ⊂ Ω and

(3.25)
ε

F1
<

B

K̂2

.

Take any x′ ∈ Bε(x) ∩ (SR\∂Ω). Then, a straight line path from x to x′ will take
at most ‖x− x′‖/F1 time to traverse. Furthermore, by (3.25), such a path must be
feasible. Thus, Bellman’s optimality principle gives w2(x

′) ≤ K2/F1‖x−x′‖+w2(x).
By swapping the roles of x and x′ we have |w2(x

′) − w2(x)| ≤ K2/F1‖x − x′‖, as
desired.

A consequence of Lemma 3.1 is that w2 is bounded on each connected component
of SR, excluding ∂Ω. Since SR consists of finitely many connected components,
wmax

2 = supx∈SR\∂Ω w2(x) is also finite.
Lemma 3.2. For a point x ∈ U such that w1(x, B) < ∞, let y∗ be an optimal

feasible path from x to ∂Ω. Let T (x) be the first arrival time of y∗ to ∂Ω. Then,

(3.26) T (x) ≤ B

K̂1

+
wmax

2

K1
.

Proof. Let t∗ > 0 be the first instance in time such that y∗(t∗) ∈ S. We subdivide
y∗ into two segments, the first from x to y∗(t∗) and the second from y∗(t∗) to the
final point y∗(T (x)) ∈ ∂Ω. The time taken to traverse the first segment is bounded by
B/K̂1 to satisfy the budget feasibility constraint, and the time on the second segment
is bounded by wmax

2 /K1.
Proposition 3.3. The compatibility condition (3.24) holds on ∂SR\∂Ω for b ∈

(0, B).
Proof. Fix a point x ∈ ∂SR\∂Ω. Choose an ε1 > 0 sufficiently small so that

Bε1(x) ⊂ Ω and ε1 < bF1/K̂2. If we choose x′ ∈ U such that ‖x′ − x‖ < ε1, by
arguments similar to the proof of Lemma 3.1, the straight line path from x′ to x is
feasible. Thus, by Bellman’s optimality principle,

(3.27) w1(x
′, b) ≤ w2(x) + ε1K2/F1 for b ∈ (0, B].

Suppose now that b ∈ (0, B). Choose ε2 > 0 so that Bε2(x) ⊂ Ω and ε2 < (B−b)F1

K̂2
.

Assume x′ ∈ U and ‖x − x′‖ < ε2, and consider the straight line path from x to
x′. Suppose the resource cost and time required to traverse this path is b′ and τ ,
respectively. Since τ ≤ ε2/F1, our choice of ε2 ensures that b′ ≤ τK̂2 ≤ (ε2/F1) K̂2 <
B − b, or equivalently, b < B − b′.

Thus, by Bellman’s optimality principle,

(3.28)
w2(x) ≤ w1(x

′, B − b′) + ε2K2/F1

≤ w1(x
′, b) + ε2K2/F1 for b ∈ (0, B),

728 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

where the second inequality follows from Proposition 3.2. Therefore, (3.27) and (3.28)
imply that if ‖x′ − x‖ < ε = min{ε1, ε2}, then |w1(x

′, b) − w2(x)| ≤ εK2/F1 for
x′ ∈ U , b ∈ (0, B); this proves the compatibility condition (3.24) for b ∈ (0, B).

Proposition 3.4. Assume the running costs and the dynamics are isotropic;
i.e., K(x,a) = K(x), K̂(x,a) = K̂(x), and f(x,a) = af(x), ‖a‖ = 1. Then the
compatibility condition (3.24) holds on ∂SR\∂Ω for b = B.

Proof. Fix x ∈ ∂SR\∂Ω. We prove that w2(x) − limx′→x w1(x
′, B) ≤ 0. Note

that (3.24) follows, since the proof of (3.27) also covered the current case (b = B).
Take a sequence {xj} ⊂ U converging to x, such that w1(xj , B) is finite for each

j. Suppose for each j that a∗
j ∈ Ã(xj , B) is an optimal feasible control and y∗

j is the
corresponding feasible path such that Tj = min{t | y∗

j (t) ∈ ∂Ω}. Let Tmax = supj{Tj}
and for each j, set y∗

j (t) = y∗
j (Tj) for t ∈ [Tj , Tmax]. Note that by Lemma 3.2, Tmax

is finite. Also, condition (A3) yields uniform boundedness and equi-continuity of the
paths y∗

j . Therefore, the Arzela–Ascoli theorem ensures that (upon reindexing in

j) a subsequence y∗
j converges uniformly to a path y∗ in Ω corresponding to some

admissible control a∗ ∈ A.
Next, we show that a∗ ∈ Ã(x′, B); i.e., y∗ is a feasible path. Define T ∗

j (and T ∗)
to be the first instance in time when y∗

j (respectively, y∗) reaches ∂SR. Let T̃ be

the infimum limit of the sequence {T ∗
j } and consider its subsequence such that, upon

reindexing in j, T̃ = limj→∞ T ∗
j . Since ∂SR is closed, y∗(T̃) = limj→∞ y∗

j (T
∗
j) ∈

∂SR, and thus T̃ ≥ T ∗. This implies that limj→∞
∫ T∗

j

T∗ K̂(y∗
j (s))ds ≥ 0. Using this

observation and the Lipschitz continuity of K̂, we have

∫ T∗

0

K̂(y∗(s))ds−
∫ T∗

j

0

K̂(y∗
j (s))ds =

∫ T∗

0

K̂(y∗(s))− K̂(y∗
j (s))ds−

∫ T∗
j

T∗
K̂(y∗

j (s))ds

≤
∫ T∗

0

∣∣∣K̂(y∗(s))− K̂(y∗
j (s))

∣∣∣ ds− ∫ T∗
j

T∗
K̂(y∗

j (s))ds

≤ L

∫ T∗

0

∥∥y∗(s)− y∗
j (s)

∥∥ ds− ∫ T∗
j

T∗
K̂(y∗

j (s))ds,

where L is the Lipschitz constant for K̂(·). Since the last expression has a nonpositive
limit as j → ∞ and each y∗

j is feasible, this shows that on the interval [0, T ∗] the
trajectory y∗ is feasible as well:∫ T∗

0

K̂(y∗(s))ds ≤ lim
j→∞

∫ T∗
j

0

K̂(y∗
j (s))ds ≤ B.

If y∗(t) does not remain in SR after t = T ∗, a similar argument can be used to prove
the feasibility of all other “unsafe segments” of the trajectory. (Alternatively, ap-
pending the optimal trajectory corresponding to y∗(T ∗) ∈ SR yields another feasible
trajectory, which is at least as cheap with regard to the primary running cost K.)

Applying the same argument to the total running cost (3.3) and recalling that q
is lower semicontinuous, we obtain J (x,a∗) ≤ limj→∞ w1(xj , B). This completes the
proof since, by definition of the value function, w2(x) ≤ J (x,a∗).

4. Numerical methods for continuous budget reset problems. Through-
out this section, we assume the following setup: let G be a set of gridpoints on the
domain Ω̄. While a similar formulation can be constructed for arbitrary unstructured
meshes, we restrict our description to a uniform Cartesian grid G with grid spacing h.

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 729

We denote GU = G∩U and GS = G∩S. To simplify the treatment of boundary condi-
tions, we assume that ∂Ω and Γ are well-discretized by the gridpoints in ∂G ⊂ G and in
∂GS , respectively. We also assume that the set of allowable budgets [0, B] is discretized
into equispaced intervals partitioned by gridpoints B = {bj = jΔb | j = 0, 1, . . . , Nb},
where Δb > 0 is fixed ahead of time.

4.1. Discretization of the unconstrained case. To begin, we briefly discuss
the usual semi-Lagrangian discretization techniques for static HJB equations of the
form (3.6). Denote U(x) to be the numerical approximation to u(x) at the gridpoint
x ∈ G. Suppose the current system state is x ∈ G ∩Ω and the constant control value
a is to be used for a short time τ > 0. Assuming that K and f are locally constant,
the new position is approximated by xa(τ) = x + τf (x,a) and the approximate
accumulated transition cost is K(x,a)τ . For small τ , this yields a first-order semi-
Lagrangian discretization

(4.1)
U(x) = min

a∈A
{τK(x,a) + U(xa(τ))}, ∀x ∈ G\∂G,

U(x) = q(x), ∀x ∈ ∂G

of Bellman’s optimality principle (3.5). Since xa(τ) is usually not a gridpoint, U(xa(τ))
needs to be interpolated using adjacent grid values.

Many different variants of the above scheme result from different choices of τ .
Falcone and coauthors have extensively studied the discretized systems3 which use
the same τ > 0 for all x and a; see [3, 19, 20] and higher-order accurate versions
in [21]. Alternatively, τ can be chosen for each a to ensure that xa(τ) lies on some
prespecified set near x. For example, in a version considered by Gonzales and Rofman
[23], the motion continues in the chosen direction until reaching the boundary of an
adjacent simplex. For example, on a Cartesian grid in R2, if xs and xw are two
gridpoints adjacent to x and f(x,a) is some southwest-ward direction of motion,
then τ is chosen to ensure that xa(τ) lies on a segment xsxw, and U(xa(τ)) is
approximated by a linear interpolation between U(xs) and U(xw). Interestingly, in
the case of geometric dynamics (3.8), this type of semi-Lagrangian scheme is also
equivalent to the usual Eulerian (upwind finite difference) discretization. A detailed
discussion of this for isotropic problems on grids can be found in [40] and for general
anisotropic problems on grids and meshes in [35, Appendix]. In addition, both types
of semi-Lagrangian schemes can be viewed as controlled Markov processes on G; this
earlier approach was pioneered by Kushner and Dupuis in [28]; see also a more recent
discussion in [41] on applicability of label-setting algorithms.

We note that (4.1) is a large coupled system of nonlinear equations. If Ψ is
an upper bound on U , this system can, in principle, be solved by fixed point itera-
tions starting from an initial guess U = Ψ on G\∂G. However, this approach can be
computationally expensive, and an attractive alternative is to develop a Dijkstra-like
noniterative algorithm. For the fully isotropic case, two such methods are the Tsitsik-
lis’ algorithm [40] and the Sethian Fast Marching Method [31]. An overview of many
(isotropic) extensions of this approach can be found in [33]. Ordered Upwind Methods
[34, 35] have similarly handled the anisotropic case; a recent efficient modification was
introduced in [2]. Similar fast methods were introduced for several related PDEs by
Falcone and collaborators [16, 10, 11, 12].

3Some of the papers cited in this subsection have considered related but slightly different PDEs,
including those for finite-horizon and infinite-horizon optimal control, but the fundamental idea
remains the same.

730 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

An alternative approach is to speed up the convergence of iterative solver for (4.1)
by using Gauss–Seidel iterations with an alternating ordering of gridpoints. Such
“Fast Sweeping” algorithms [9, 39, 42, 26] are particularly efficient when the direction
of characteristics does not change too often. A comparison of various noniterative and
fast-iterative approaches (as well as a discussion of more recent hybrid algorithms)
can be found in [13].

We emphasize that, for the purposes of this paper, any one of the above ap-
proaches can be used modularly, whenever we need to solve (3.22). The discretization
of (3.21) is explained in subsection 4.3. But before dealing with these technical details,
subsection 4.2 addresses the main computational challenge of budget reset problems:
the a priori unknown boundary condition on Γ, which results in an implicit interde-
pendence of gridpoints in ΩU and ΩS .

4.2. Iterative treatment of the budget reset problem. First, we note that
the simpler case of Ω = U (i.e., the constrained optimal control problem presented in
section 3.2) can be solved by a single upward sweep in the b-direction, as described
in [27]. This is a direct consequence of the explicit causality property of the value
function when K̂ is strictly positive on Ω. Moreover, without budget resets, relaxing
K̂ to be nonnegative (i.e., introducing a safe subset S where K̂ = 0) still yields
semi-implicit causality; see Remark 3.

In contrast, the introduction of budget resets on a safe subset S ⊂ Ω breaks
this causal structure. If the values on Γ were a priori known, we could efficiently
solve (3.22) on S by either Marching or Sweeping techniques, at least in the case
of geometric dynamics. But since the values on Γ are not provided, there are no
known noniterative algorithms to numerically solve this problem on Ωr. Therefore,
we propose solving the PDEs (3.21) and (3.22) (with boundary conditions and the
compatibility condition (3.24)) by an alternating iterative process. We construct a
sequence of functions wk

1 and wk
2 for k = 0, 1, 2, . . . , which converge to w1 and w2,

respectively, as k → ∞.

We begin with a recursive definition for these new functions on ΩU and ΩS . Of
course, the actual implementation in section 4.4 relies on their numerical approxima-
tions; the resulting method is summarized in Algorithm 2. Initially, set

w0
1(x, b) = ∞, (x, b) ∈ ΩU ,

w0
2(x) = ∞, x ∈ S.

Then for k = 1, 2, . . . , we have the following phases:

Phase I. Find wk
1 as the viscosity solution of (3.21) with boundary conditions

(4.2) wk
1 (x, b) =

⎧⎪⎪⎨⎪⎪⎩
q(x), x ∈ ∂Ω, b ∈ (0, B],

lim inf
x′→x
x′∈S

wk−1
2 (x′), x ∈ Γ, b ∈ (0, B],

∞, x ∈ U , b = 0.

Phase II. Find wk
2 as the viscosity solution of (3.22) with boundary conditions

(4.3) wk
2 (x) =

⎧⎨⎩q(x), x ∈ ∂Ω,

lim inf
x′→x
x′∈U

wk
1 (x

′, B), x ∈ Γ.

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 731

We note that the lim infs in the above definition are primarily for the sake of
notational consistency (since solving (3.22) on int(S) does not really specify wk

2 ’s
values on Γ ⊂ ∂S. Alternatively, we can solve the PDE on S, treating boundary
conditions on Γ “in the viscosity sense” [4]. This is essentially the approach used in
our numerical implementation.

Intuitively, wk
1 and wk

2 can be interpreted as answering the same question as w1

and w2, but with an additional constraint that no trajectory is allowed to reset the
budget (by crossing from U to S) more than (k − 1) times. As a result, for many
problems convergence is attained (i.e., wk

1 = w1 and wk
2 = w2) after a finite number of

recursive steps. For example, in the simplest case where K and f are constant on Ω,
K̂ > 0 is constant on U , and all connected components of S\∂Ω are convex, then any
optimal trajectory might enter each connected component at most once. See Table 2
for the experimental confirmation of this phenomenon.

4.3. Discretization of wk
2 , w

k
1 . LetW k

1 (x, bj) be an approximation ofwk
1 (x, bj)

for all (x, bj) ∈ GU × B; similarly, let W k
2 (x) be an approximation of wk

2 (x) for all
x ∈ GS . The “natural” boundary conditions are implemented as follows:

W k
1 (x, bj) = q(x), x ∈ ∂G ∩ Ū , bj ∈ B,(4.4)

W k
2 (x) = q(x), x ∈ ∂G ∩ S.(4.5)

Additional boundary conditions on Γ stem from the recursive definition of wk
2 and wk

1

(yielding the compatibility condition (3.24) in the limit). In Phase I, we use

(4.6) W k
1 (x, bj) = W k−1

2 (x), x ∈ GS , bj ∈ B,

and then solve the discretized system (4.8) on the relevant subset of GU × B; see the
discussion below and in section 4.4.

In Phase II, the numerical compatibility condition is enforced on the set of grid-
points GΓ

U = {x ∈ GU | x is adjacent to some x′ ∈ S}. We set

(4.7) W k
2 (x) = W k

1 (x, B), x ∈ GΓ
U ,

and then recover W k
2 by solving the system of equations equivalent to (4.1) on the

entire GS (including on G∩Γ). As explained in subsection 4.1, this can be accomplished
by many different efficient numerical algorithms.

To derive the system of equations defining W k
1 on GU ×B, we adapt the approach

introduced in [27]. Property 3.1 is fundamental for the method’s efficiency: the
characteristic curves emanating from ∂SR all move in increasing direction in b. Thus,
we need only a single “upward” sweep in the b direction to capture the value function
along the characteristics. We exploit this result in the semi-Lagrangian framework
as follows. For x ∈ G ∩ U , bj ∈ B, τ > 0, write xa(τ) = x + τf (x,a) and ba(τ) =

bj − τK̂(x,a). If we choose τ = τa,x = (Δb)/K̂(x,a), this ensures that ba(τ) = bj−1,
and the semi-Lagrangian scheme at (x, bj) becomes

(4.8) W k
1 (x, bj) = min

a∈A

{
τK(x,a) +W k

1 (xa(τ), bj−1)
}
.

For each j = 1, 2, . . . , we solve (4.8) for W k
1 (x, bj) at each x ∈ GU based on the

(already computed) W k
1 values in the bj−1 resource-level.

For an arbitrary control value a ∈ A, the point xa(τ) usually is not a gridpoint; so,
W k

1 (xa(τ), bj−1) has to be approximated using values at the nearby gridpoints (some

732 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

of which may be in GS). Since our approximation of xa(τ) is first-order accurate, it is
also natural to use a first-order approximation for its W k

1 value. Our implementation
relies on a bilinear interpolation. For example, for n = 2, suppose the gridpoints
x1,x2,x3,x4 ∈ G are the four corners of the grid cell containing xa(τ), ordered
counterclockwise with x1 on the bottom left corner. If (γ1, γ2) = (xa(τ) − x1)/h,
then the bilinear interpolation yields

W k
1 (xa(τ), bj−1) = γ1

(
γ2Wk(x3, bj−1) + (1− γ2)Wk(x2, bj−1)

)
+ (1− γ1)

(
γ2Wk(x4, bj−1) + (1− γ2)Wk(x1, bj−1)

)
,

where Wk(x, b) = W k
1 (x, b) if x ∈ GU and Wk(x, b) = W k−1

2 (x) if x ∈ GS . The
resulting approximation is inherently continuous, while w1 usually is not. The is-
sue of convergence of semi-Lagrangian schemes to discontinuous viscosity solutions is
discussed in Remark 4.

The direct discretization of (3.21) and (3.22) could also be interpreted as defining
the value function of the corresponding Stochastic Shortest Path problem on (GU ×
B) ∪ GS ; see section 3 in [37]. In this framework, the iterative algorithm presented in
this section can be viewed as a Gauss–Seidel relaxation of value iterations on GU ×B
alternating with a Dijkstra-like method used on GS .

4.4. Domain restriction techniques. The value function w(x, b) is infinite at
points that are not reachable within budget b. Since the dimension (n + 1) of the
domain where w1 is solved is typically large, a reduction of the computational domain
to its reachable subset usually yields substantial saving in computational time. In
[27] such a reduction was achieved by an efficient preprocessing step, which involved
computing the minimum feasible level, i.e. the interface that separates the reachable
and unreachable parts of Ωe. Here we use a similar technique to find the “lower”
boundary of the reachable subset of ΩU .

Note that, by Property 3.2, for any x ∈ U , w1(x, b1) < ∞ implies w1(x, b) < ∞
for all b ∈ [b1, B]; and w1(x, b2) = ∞ implies w1(x, b) = ∞ for all b ∈ [0, b2]. We
formally define the minimum feasible level (MFL) in the unsafe set as the graph of

(4.9) v(x) = v[w1](x) = min{b | w1(x, b) < ∞}, x ∈ U ,

and in the safe set S, as a graph of

(4.10) v(x) =

{
0, x ∈ SR,

∞, x ∈ S\SR.

The goal is to recover the MFL from some cheaper (lower-dimensional) compu-
tation. We note that on U , v(x) can be interpreted as the value function of another
resource-optimal control problem, and as such it can be recovered as the viscosity
solution of a similar HJB equation

(4.11) min
a∈A

{
K̂(x,a) +∇v(x) · f (x,a)

}
= 0, x ∈ U ,

coupled with the boundary conditions (4.10). We note that SR could be identified
through an iterative process on Ω (rather than on the higher-dimensional ΩU∪ΩS) [37].
So, in principle, v(x) can be fully computed without increasing the dimensionality of
Ω. However, to use the MFL as the “lowest budget” boundary condition for (3.21), we

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 733

also need to know the values of w1 on the MFL. This corresponds to the “constrained
optimal” cost ũ along resource-optimal trajectories defined by v; see Table 1 for a
similar example in the discrete setting. The function ũ is formally defined below;
here we note that it can also be computed in the process of solving (4.11) provided
w2 is a priori known on ∂SR. This is indeed the case when no resets are possible;
i.e., U = Ω and SR ⊂ S = ∂Ω, precisely the setting previously considered in [27].
Unfortunately, for the general case (U �= Ω), we do not know of any (fast, lower-
dimensional) algorithm to compute w2 on ∂SR. (Note that in a similar discrete
example depicted in Figure 5, the values of the safe nodes continue changing until
the last iteration.) Instead, we proceed to recover the values on the MFL iteratively,
using values of wk

2 on ∂SR.
To describe this iterative process, we first define the kth approximation of the

reachable subset of S given by Sk
R = {x ∈ S | wk

2 (x) < ∞}. Then, MFLk, the kth
approximation of the MFL, is a graph of vk(x) = v[wk

1](x), which can be computed
by solving (4.11) with boundary conditions (4.10) where SR is replaced by Sk−1

R .
The numerical approximation V k(x) can be efficiently computed using the methods
discussed in section 4.1.

Once vk is known, we can define the subset of U that is reachable at the kth
iteration as Uk

R =
{
x ∈ U | vk(x) ≤ B

}
, and a function ũk : Uk

R → R as

(4.12) ũk(x) =

{
wk

1 (x, v
k(x)), x ∈ Uk

R,

wk−1
2 (x), x ∈ ∂U .

Since we intend to use ũk as a “lower boundary” condition for wk
1 , we must compute

ũk using only the information derived from wk−1
2 , already computed at that stage of

the algorithm. For this purpose, it is possible to represent ũk as a value function of
another related control problem on Uk

R.
Let T = T (x, b,a) = min{t | y(t) ∈ Sk−1

R }. Define Ãk(x) to be the set of all

“vk-optimal” controls, i.e., the controls which lead from x to Sk−1
R through Uk

R using
exactly vk(x) in resources. For most starting positions x ∈ Uk

R, this set will be a
singleton, but if multiple feasible controls are available, their corresponding primary
costs can be quite different. Then ũk can be characterized as

(4.13) ũk(x) = inf
a(·)∈Ãk(x)

∫ T

0

K(y(t),a(t)) dt+ wk−1
2 (y(T)).

By Bellman’s optimality principle, (4.13) yields

(4.14) ũk(x) = lim
τ→0+

min
a∈Ak(x)

{τK(x,a) + ũk(x+ τf (x,a))},

where Ak(x) ⊂ A is the set of minimizing control values in (4.11).
If Ũk(x) is the approximation to ũk(x) at a gridpoint x ∈ GU , a natural semi-

Lagrangian scheme based on (4.14) is

(4.15) Ũk(x) = min
a∈Ak(x)

{τK(x,a) + Ũk(x+ τf (x,a))}, x ∈ Uk
R,

where Ũk(x+ τf(x,a)) is interpolated, and the corresponding boundary condition is

(4.16) Ũk(x) = W k−1
2 (x), x ∈ G ∩ Sk−1

R .

734 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

Since the set Ak(x) has to be found when solving (4.11), it is also natural to solve
(4.15) at each gridpoint as soon as its V k becomes available.

As discussed above, Ũk acts as a numerical boundary condition on the surface
b = V k(x) for the update scheme (4.8). However, in general, V k(x) �∈ B.

In our implementation, we set W k
1 (x, bj) = Ũk(x), where j is the smallest integer

such that V k(x) ≤ jΔb. This introduces additional O(Δb) initialization errors at the
MFL. An alternative (more accurate) approach would require using cut-cells when
interpolating near the MFL.

The resulting iterative method is summarized in Algorithm 2. We note that the
following properties are easy to prove inductively using the comparison principle [4]
on the PDEs (3.21), (3.22), and (4.11).

1 Initialization:
2 W 0

1 (x, b) := ∞, ∀ x ∈ GU , b ∈ B;
3 W 0

2 (x) := ∞, ∀ x ∈ GS\∂Ω;
4 W 0

2 (x) := q(x), ∀ x ∈ ∂Ω;

5 Compute U(x) for all x ∈ G;

6 Main Loop:

7 foreach k = 1, 2, . . . until W k
1 and W k

2 stop changing do

8 Using W k−1
2 to specify G ∩ Sk−1

R , compute V k and Ũk for each x ∈ GU .

9 Phase I:
10 foreach b = Δb, 2Δb, . . . , B do

11 foreach x ∈ GU do

12 if b ≥ V k(x) then

13 if b < (V k(x) + Δb) then

14 W k
1 (x, b) := Ũk(x);

15 else
16 if W k

1 (x, b−Δb) = U(x) then

17 W k
1 (x, b) := U(x);

18 else

19 Compute W k
1 (x, b) from equation (4.8);

20 end

21 end

22 end

23 end

24 end

25 Phase II:

26 Compute W k
2 on GS ;

27 end
Algorithm 2: The budget reset problem algorithm.

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 735

We note that the following properties are easy to prove inductively using the compar-
ison principle [4] on the PDEs (3.21), (3.22), and (4.11).

Proposition 4.1. The iterative method is monotone in the following sense:
1. wk+1(x, b) ≤ wk(x, b) for each (x, b) ∈ Ωr and k = 0, 1, 2,

2. Sk
R ⊆ Sk+1

R for each k = 1, 2,

3. vk+1(x) ≤ vk(x) for each x ∈ Ω and each k = 1, 2,
Remark 4. We briefly discuss the convergence of W2 and W1 to w2 and w1,

respectively, as h,Δb → 0. Under the listed assumptions, the value function w2 is
Lipschitz continuous on int(S) and can be approximated by the methods described
in section 4.1; these approximations will induce errors depending on h only, since W2

is approximated only in the top slice b = B. For example, standard Eulerian type
(first-order upwind finite difference) discretizations are O(h) accurate, provided the
solution has no rarefaction-fan-type singularities on the influx part of the boundary.
(The latter issue is illustrated by the convergence test in section 5.1.)

On the other hand, the value function w1 can be discontinuous on ΩU and a
weaker type of convergence is to be expected as a result. In the absence of resets (i.e.,
with U = Ω), if we focus on any compact K ⊂ ΩU on which w1 is continuous, then
the semi-Lagrangian scheme (4.8) has been proven to converge to w1 on K uniformly,
provided h = o(Δb) as h,Δb → 0; see [5, 6]. To the best of our knowledge, there are
no corresponding theoretical results for convergence to discontinuous viscosity solu-
tions of hybrid control problems (e.g., (3.21)). Nevertheless, the numerical evidence
strongly supports the convergence of described schemes (section 5.1). In [27] it was
empirically demonstrated that without resets the L1-norm convergence (or L∞-norm
convergence away from discontinuities) can often be attained even with a less restric-
tive choice of h = O(Δb). In section 5.1, we show that this also holds true even if
budget resets are allowed.

Finally, we note two additional sources of “lower boundary” errors: due to an
approximation of the MFL and due to an approximation of w1 = ũ on it; the first of
these is O(Δb) while the latter is O(h).

The optimal paths in Ωr can be extracted from the value function in a manner
similar to the description in section 3.1. The only additional computation is in the
b-direction for the parts of trajectory in ΩU ; for example, in the isotropic case, the
budget β along the optimal path y∗ decreases by K̂(y∗(t)). For each (x, b), the
optimal control value a∗ can be found either from an approximation of ∇xU or by
solving the local optimization problem similar to (4.8). Once a∗ is known, the system
(3.18) can be integrated forward in time by any ODE solver (our implementation uses
Euler’s method).

5. Numerical results. For the sake of simplicity, we will assume that the dy-
namics are isotropic (i.e., f(x,a) = af(x)), the primary running cost is K ≡ 1 with
the zero exit cost on the target (making the value function equal to the total time
along the optimal trajectory), and K̂ ≡ 1 (constraining the maximum contiguous time
spent in U) in all of the examples.

In addition to a numerical convergence test of Algorithm 2 (section 5.1), we will
illustrate the effects of geometries of U , S, spatial inhomogeneity of the speed f and
different maximum budgets B. For each example we show the level curves of the
value function at the top b-slice (i.e., w(x, B)). In subsections 5.3 and 5.4, we also
show constrained-optimal paths, starting at some representative point x ∈ U with
the maximum starting budget b = B. We emphasize that, for other starting budgets
b < B, the constrained-optimal paths can be quite different, but all the data needed

736 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

to recover them is also a by-product of Algorithm 2.
The numerical solutions are computed on Ω = [−1, 1]2 discretized by a uniform

N × N Cartesian grid. In all examples except for the convergence tests in section
5.1, we use N = 300, h = 2/(N − 1), and the budget direction is discretized with
Δb = B/round

(
B

0.8h

)
; resulting in Nb = |B| = (B/Δb) + 1 = O(1/h). The main loop

in Algorithm 2 was terminated when both ‖W k
1 −W k−1

1 ‖∞ and ‖W k
2 −W k−1

2 ‖∞ fell
below the tolerance threshold of 10−8.

All tests were performed in MATLAB (version R2010b) with most of the imple-
mentation compiled into MEX files. The tests were conducted on a 2.6 GHz MacBook
computer under Mac OS X with 4 GB of RAM. On average, the computations took
approximately one minute of processing time, but we emphasize that our implemen-
tation was not optimized for maximum efficiency.

5.1. Convergence test. We test the convergence of Algorithm 2 with S =
{(x, y) ∈ Ω | x ≤ 1/3} ∪ ∂Ω. Assume isotropic, unit speed and costs f(x,a) = a,
K = K̂ = 1, A = S1, with maximum budget B = 1. We consider the case of a point
“target” T = (1, 0) by choosing the boundary conditions

(5.1) w(x, y, b) =

{
0, (x, y) = T ,

+∞, (x, y) ∈ ∂Ω\{T }.

Note that the problem is symmetric with respect to the x axis; moreover, an explicit
formula for the exact solution can be derived from simple geometric considerations.

To simplify the notation, we define a few useful geometric entities on the domain
(see Figure 6 for a diagram):

(5.2)

L = the vertical line segment at x =
1

3
for −

√
5

3
≤ y ≤

√
5

3
.

P1, P2 = the upper and lower end points of L, respectively.

P (x, y) =

{
P1 if y ≥ 0,

P2 otherwise.

We shall only describe an optimal (feasible) path from an arbitrary point x = (x, y)
to T , since w(x, y, b) is simply the length of that path. For convenience we will use
the notation “x ⇀ y” as a shorthand for “a (directed) straight line segment from x
to y”.

We begin by describing the optimal path from x ∈ S. If x ⇀ T passes through
L, this line segment is precisely the optimal path. If the line does not pass through L,
the optimal path is x ⇀ P (x) ⇀ T . Next, we describe the optimal path from x ∈ U
with initial budget b. Clearly, if x ∈ U is more than b distance from both x = 1

3 and
T , then w(x, b) = +∞. Also, if x is within b distance from T , the optimal path is
x ⇀ T . Otherwise, the optimal path will have to first visit S (and reset the budget
to B), before moving to T . This situation can be further divided into two cases:
Case 1. If x ∈ U is within b distance from L, the optimal path is to move from

x ⇀ y ⇀ T , where y is a point on L such that ‖x − y‖ ≤ b minimizing
‖x− y‖+ ‖y − T ‖.

Case 2. The optimal path is x ⇀ z ⇀ P (x) ⇀ T , where z is the closest point on the
line x = 1

3 to P (x) such that ‖x− z‖ ≤ b.
From the above, it should be clear that for each b > 0 the value function will have a
discontinuous jump on D(b) = {(x, b) ∈ Ωe | x ∈ U , ‖x− T ‖ = b}.

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 737

We compare the numerically computed solution to the exact solution in the L1

and L∞ norms. For the L∞ norm, we compare the solutions on a subset Ωε
e ⊂ Ωe

where the w is known to be continuous:

(5.3) Ωε
e = {(x, b) ∈ Ωe | ‖x− y‖ > ε, ∀(y, b) ∈ D(b)}.

In particular we investigate the L∞ norm errors for ε = ε(h) = 3h and ε = 0.1 (inde-
pendent of h). The L1 errors are computed over the whole computational domain.

The errors are reported in Table 2. A contour plot of the numerical solution on
the top b-slice is shown in Figure 6.

The convergence observed in Table 2 is actually stronger than predicted in theory.
First, in this numerical test we always chose Δb = h, whereas the theory (even for the
no resets case) guarantees convergence for h = o(Δb) only; see Remark 4. Second, the
L∞-norm convergence is guaranteed on any fixed compact set away from discontinuity,
but the choice of ε = 3h goes beyond that.

At the same time, the observed rate of convergence (in all norms) is less than one
despite our use of the first-order accurate discretization. This is not related to any
discontinuities in the solution, but is rather due to the “rarefaction fans” (characteris-
tics spreading from a single point) present in this problem. Indeed, this phenomenon
is well known even for computations of distance function from a single target point:
a cone-type singularity in the solution results in much larger local truncation errors
near the target, thus lowering the rate of convergence. A “singularity factoring” ap-
proach recently introduced in [22] allows one to circumvent this issue at the target,
but we note that there are two more rarefaction fans spreading from points P1 and
P2; see Figure 6. (Intuitively, this is due to the fact that optimal trajectories from
infinitely many starting points pass through P1 or P2 on their way to T .) Since,
in general examples, the locations and types of such rarefaction fans are a priori
unknown, “factoring methods” similar to those in [22] are not applicable.

5.2. Geometry of S and the number of iterations. We illustrate how the
information propagates within the main loop of Algorithm 2. Since the reachable part
of the safe set (SR) is obtained iteratively, it might seem natural to expect that the
iterative process stops once all the reachable components of S are already found (i.e.,
once Sk

R = SR, also ensuring that MFLk = MFL). Here we show that this generally
need not be the case and the value function W k might require more iterations to
converge after that point. Roughly speaking, this occurs when the order of traversal
of some optimal path through a sequence of connected components of SR differs from
the order in which those components were discovered. Mathematically, the extra
iterations are needed because the correct values of W k

2 are not yet known on Γ, and
the values of W k+1

1 on the MFL are still incorrect as a result.
Consider the following “pathological” example (shown in Figure 7): S consists of

eight square blocks S1, S2, . . . , S8 with side lengths 0.4, enumerated counterclockwise,

Table 2

Errors measured against the exact solution for various grid sizes N .

N h L1(Ωe) Rate L∞(Ωε
e), ε = 3h Rate L∞(Ωε

e), ε = 0.1 Rate

61 1/30 0.0612 - 0.0681 - 0.0681 -
121 1/60 0.0309 0.99 0.0513 0.41 0.0416 0.71
241 1/120 0.0151 1.03 0.0401 0.36 0.0255 0.71
481 1/240 0.0076 0.99 0.0265 0.60 0.0151 0.76
961 1/480 0.0039 0.96 0.0162 0.71 0.0090 0.75

738 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

T

P1

P2

L

S U 4

Fig. 6. Left: an illustration of the domain. The darker region is S and the lighter region is
U . The target is T = (1, 0). The black dotted line is the circle of radius B = 1 centered about T in
U . Right: a contour plot of the numerical solution of w(x, y, 1) for grid size N = 961. The vertical
white dotted line is the interface between S and U at x = 1/3.

S (shaded) & U (unshaded)

8

6

4

2

S
1 S

2
S

3

S
4

S
5

S
6

S
7

S
8

Speed function

6

4

2

0

2

4

6

8

1

2

3

4

5

6

7

8

9

10

Fig. 7. Left: The sets S, U and the target T = (−0.5,−0.5) shown by a black cross. The
eight connected components S1, S2, . . . , S8 of S are labeled. Right: the speed function. Note the slow
speed in the corridor C8 between the S1 and S8.

with T ∈ S1. To simplify the discussion, we assume that S9 := S1 and introduce the
notation for “unsafe corridors” between the safe squares:

Ci = convex hull(Si ∪ Si+1) ∩ U , i = 1, . . . , 8.

We set

f(x) =

{
10, x ∈ S ∪ C1 ∪C2 ∪ · · · ∪C7,

0.1 otherwise.

Note that f = 0.1 in C8. The target is T = (−0.5,−0.5) and the maximum
budget is B = 1.5. Note that for all the starting positions in S2, . . . , S8, the cor-
responding constrained optimal trajectories will run toward S1 clockwise (to avoid

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 739

crossing through the slow region in C8). The same is true for all starting positions in
C1, . . . , C7 and even for points in C8 that are significantly closer to S8.

This problem was specifically designed to illustrate the difference between the
evolution of the reachable set Ωk

R = Uk
R∪Sk

R and the evolution of the “fully converged”
set Fk = {x | wk(x) = w(x)}, on which the value function is correct after the kth
iteration. Both sets eventually contain all Si’s and Ci’s, but a careful examination
of Figure 8 reveals the difference. For the reachable set, Ω1

R = S1 initially, and the
algorithm iteratively discovers the reachable Si’s (and Ci’s) simultaneously in both the
clockwise and counterclockwise directions. More than one Si can be “discovered” per
iteration in each direction; e.g., at iteration k = 3, Phase I of the algorithm discovers
that C2 ∪ C3 ⊂ U3

R owing to a feasible path that “passes through the corner” shared
by C2 and C3; this subsequently leads to Phase II discovering that S3 ∪ S4 ⊂ S3

R.
The same argument implies that C6 ∪ C7 ⊂ U3

R and S6 ∪ S7 ⊂ S3
R. After one more

iteration we already see that S5 ⊂ S4
R and another iteration is sufficient to recover

the entire reachable set ΩR = Ω5
R.

However, on a large part of ΩR the value function is still quite far from correct
at that point; e.g., a comparison of level curves in C5 and S5 shows that C5 �∈ F5.
Since T ∈ S1 ⊂ S and S1 is convex, we have S1 ⊂ F1. It is similarly easy to see that
(Fk−1 ∪Ck−1 ∪Sk) ⊂ Fk for k = 2, . . . , 8. Thus, it takes eight iterations to correctly
compute w on the entire safe set and one more iteration to cover those unsafe points
(including a part of C8), whose optimal trajectories take them first to S8 and then
clockwise (through the “fast belt”) toward S1. We note that, as iterations progress,
the value function need not be converged on recently discovered components of SR,
even if the level sets already show the generally correct (clockwise) direction of opti-
mal trajectories. For example, it might seem that S8 ∈ F6, but a careful comparison
of level curves shows that the value function is still incorrect even on C6 and S7. (This
is due to the fact that the reachability of S8 is discovered by feasible trajectories pass-
ing through a common corner of C6 and C7.) Figure 9 confirms this by showing the
∞-norm of the value changes after each iteration. We observe two key events:

• the initial drop in value changes when ΩR is fully discovered after iteration five
(at which point the errors are still independent of h and Δb);

• and the convergence (i.e., the drop of value changes to the machine precision)
after iteration nine.

5.3. Optimal paths and the effect of varying B. We now consider two
examples with inhomogeneous speed functions. The first scenario involves a discon-
tinuous speed function that is slow in the safe set:

f(x) =

{
1, x ∈ U ,
0.3, x ∈ S.

This example presents a curious dilemma: any good path will try to avoid S to travel
faster to T , but it must visit S at least every B distance to keep the budget from
depleting. The numerical test for B = 0.4 is shown in the center plot of Figure 10.
The computed “optimal path” tends to travel along the interface Γ on the U side
while occasionally making short visits into S to reset the budget.4 We have added

4Since Γ ⊂ S, it is not really possible to quickly travel on the Γ itself. As a result, an optimal
control does not exist, though the value function w1 is still well-defined. This lack of optimal

740 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

k = 1 k = 2 k = 3

k = 4 k = 5 k = 6

Fig. 8. The first six iterations (each after Phase II) of W k on b = B. The contour lines are
scaled logarithmically to avoid bunching in the slow regions of U .

1 2 3 4 5 6 7 8 9 10

10
−15

10
−10

10
−5

10
0

iteration

||W
ik −

 W
ik−

1 || ∞

W
1

W
2

Fig. 9. The max-norm difference between consecutive W k
1 and W k

2 . The numerical convergence
tolerance is shown by the thick horizontal dotted line. Both W 0

1 and W 0
2 were set to 103.

small white circles to the plot in Figure 10 (center) to identify the locations of these
“reentry” points.

The second example illustrates the robustness of the numerical scheme to non-
trivial speed functions in U : we set B = 0.4 and

f(x) = 1− 0.5 sin(5πx) sin(5πy).

control does not contradict the compatibility condition (3.24) (i.e., w1 = w2 on Γ). The numerically
recovered “optimal” trajectory shown in Figure 10 is actually “ε-suboptimal,” where ε → 0 under
the grid refinement.

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 741

The computed value function and a sample path are shown in the right plot of Figure
10.

S (shaded) & U (unshaded)

Fig. 10. Sample optimal paths on the “islands” example with inhomogeneous speed functions.

Next, we give numerical examples showing the effects of varying B. Figure 11
illustrates these effects on the “islands” examples (as in Figure 10). The speeds were
set to f = 1 on all of the domains. While the optimal path is computed from the
same initial point (0.8, 0.5), note the large changes in its global behavior.

Fig. 11. Sample optimal paths on the “islands” example for varying B. Left to right: B = 0.3,
0.4 and 0.5, respectively.

5.4. Constrained contiguous visibility time. We apply Algorithm 2 to a
problem involving visibility exposure: suppose the objective is to move a robot to-
wards a target in the shortest time, among opaque and impenetrable obstacles, while
avoiding “prolonged exposure” to a static enemy observer. In our budget reset prob-
lem setting, we impose the prolonged exposure constraint by letting the enemy-visible
region be U and the nonvisible region be S. This is similar to the problem considered
in [27], except that once the robot enters the nonvisible region, it is again allowed to
travel through the visible region up to the time B.

The domain consists of four obstacles which act both as state constraints and as
occluders. The static observer is placed at (0.8, 0.8), and the corresponding visible set
is computed by solving an auxiliary (static and linear) PDE on Ω [38]. We compute
the value function and optimal paths for the same starting location but two different
exposure budgets: B = 0.15 and B = 0.3; see Figure 12. Note that, for small
B, the budget is insufficient to directly travel across the U “corridor” between the

742 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

“shadows” of the larger foreground obstacles; for the larger B this shortcut is feasible,
thus reducing the path length.

S (shaded) & U (unshaded)

Fig. 12. The problem of constrained contiguous visibility time. The static observer location is
shown by an asterisk. Left: the observer-viewable region is white, the occluders/obstacles are black,
and their “shadows” are gray. The objective of is to find the quickest path connecting the two small
squares while avoiding prolonged enemy-exposure. Center and right: contour plots of W at b = B
and the constrained optimal paths with B = 0.15 and 0.3, respectively.

6. Conclusions. In this paper we focused on computational methods for opti-
mal control of budget-constrained problems with resets. In the deterministic case on
graphs, we explained how such problems can be solved by noniterative (label-setting)
methods. We then introduced new fast iterative methods, suitable for problems on
graphs as well as for continuous deterministic budget reset problems. Throughout,
we utilized the causal properties of the value function to make sure that dynamic pro-
gramming equations are solved efficiently on the new extended domain. Connections
to stochastic shortest path problems on graphs are also highlighted in the expanded
version of this manuscript [37].

We presented empirical evidence of convergence and illustrated other properties
of our methods on several examples, including path-planning under constraints on
“prolonged exposure” to an enemy observer. Even though all selected examples are
isotropic in cost and dynamics, only minor modifications (with no performance penal-
ties) are needed to treat anisotropy in secondary cost K̂. Anisotropies in primary cost
and/or dynamics can also be easily treated by switching to a different (noniterative
or fast iterative) method on the safe set S. Several other natural extensions are likely
to be more computationally expensive, but can be handled in the same framework:

• In some applications the resource restoration is more realistically modeled not
as an instantaneous reset, but as a continuous process on S. Alternatively,
resets might be also modeled as conscious/optional control decisions available
on S, with an instantaneous penalty in primary cost.

• Differential games can be similarly modified to account for limited (and pos-
sibly renewable) resource budgets.

• More generally, both the dynamics and the budget changes might be affected
by some random events, leading to stochastic trajectories in the extended
domain.

• It would be interesting to extend the method to problems with constraints
on multiple reset-renewable resources.

For problems with a fixed starting position, significant computational savings could
be attained by adopting A*-type domain restriction algorithms [14]. All of these

OPTIMAL CONTROL WITH BUDGET CONSTRAINTS AND RESETS 743

extensions are of obvious practical importance in realistic applications, and we hope
to address them in the future. Finally, more work is clearly needed to provide proofs of
convergence of semi-Lagrangian schemes to discontinuous viscosity solutions of hybrid
systems.

Acknowledgments. The authors would like to thank Professor R. Tsai and Dr.
Y. Landa, whose work on visibility and surveillance-evasion problems (joint with Ryo
Takei) served as a starting point for this paper. The authors are grateful to them for
helping to formulate the problem in section 5.4 and for many motivating discussions.
The authors are also grateful to Ajeet Kumar, whose source code developed in [27]
served as a starting point for our implementation described in section 3. RT would
also like to thank Professors S. Osher and C. Tomlin for their encouragement and
hospitality during the course of this work.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Theory, Algorithms, and
Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] K. Alton and I. M. Mitchell, An ordered upwind method with precomputed stencil and
monotone node acceptance for solving static convex Hamilton-Jacobi equations, J. Sci.
Comput., 51 (2012), pp. 313–348.

[3] M. Bardi and M. Falcone, An approximation scheme for the minimum time function, SIAM
J. Control Optim., 28 (1990), pp. 950–965.

[4] M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser Boston, Boston, 1997.

[5] M. Bardi, M. Falcone, and P. Soravia, Fully discrete schemes for the value function of
pursuit-evasion games, Advances in Dynamic Games and Applications, T. Basar and
A. Haurie, eds., Birkhäuser Boston, Boston, 1994, pp. 89–105.

[6] M. Bardi, M. Falcone, and P. Soravia, Numerical methods for pursuit-evasion games via
viscosity solutions, Stochastic and Differential Games, M. Bardi, T. E. S. Raghavan, and
T. Parthasarathy, eds., Birkhäuser Boston, Boston, 1999, pp. 105–175.

[7] R. Bellman, On the theory of dynamic programming, Proc. Natl. Acad. Sci. USA, 38 (1952),
pp. 716–719.

[8] D. P. Bertsekas, Network Optimization: Continuous & Discrete Models, Athena Scientific,
Boston, 1998.

[9] M. Boué and P. Dupuis, Markov chain approximations for deterministic control problems
with affine dynamics and quadratic cost in the control, SIAM J. Numer. Anal., 36 (1999),
pp. 667–695.

[10] S. Cacace, E. Cristiani, and M. Falcone, A local ordered upwind method for Hamilton-
Jacobi and Isaacs equations, in Proceedings of the 18th IFAC World Congress, 2011, pp.
6800–6805.

[11] E. Carlini, M. Falcone, and R. Ferretti, A time-adaptive semi-Lagrangian approxima-
tion to mean curvature motion, Numerical Mathematics Advanced Applications- ENU-
MATH2005, Springer, Berlin, 2006, pp. 732–739.

[12] E. Carlini, M. Falcone, N. Forcadel, and R. Monneau, Convergence of a generalized fast-
marching method for an eikonal equation with a velocity-changing sign, SIAM J. Numer.
Anal., 46 (2008), pp. 2920–2952.

[13] A. Chacon and A. Vladimirsky, Fast two-scale methods for eikonal equations, SIAM J. Sci.
Comput., 34 (2012), pp. A547–A578.

[14] Z. Clawson, A. Chacon, and A. Vladimirsky, Causal domain restriction for eikonal equa-
tions, SIAM J. Sci. Comput., 36 (2014), pp. A2478–A2505.

[15] M. G. Crandall and P.-L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations, Trans.
Amer. Math. Soc., 277 (1983), pp. 1–42.

[16] E. Cristiani and M. Falcone, A Fast Marching Method for Pursuit-Evasion Games, pub-
lished electronically in “Communications to SIMAI Congress”, SIMAI 2006 (Baia Samuele,
Ragusa, Italy, 2006), Vol. 1, 2006.

[17] R. Dial, Algorithm 360: Shortest path forest with topological ordering, Comm. ACM, 12 (1969),
pp. 632–633.

744 TAKEI, CHEN, CLAWSON, KIROV, AND VLADIMIRSKY

[18] E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[19] M. Falcone, The minimum time problem and its applications to front propagation, in Motion
by Mean Curvature and Related Topics, Proceedings of the International Conference at
Trento, 1992, de Gruyter, Berlin, 1994, pp. 70–88.

[20] M. Falcone, A numerical approach to the infinite horizon problem of deterministic control
theory, Appl. Math. Optim., 15 (1987), pp. 1–13; corrigenda 23 (1991), pp. 213–214.

[21] M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of
Hamilton-Jacobi-Bellman equations, Numer. Math., 67 (1994), pp. 315–344.

[22] S. Fomel, S. Luo, and H. Zhao, Fast sweeping method for the factored eikonal equation, J.
Comput. Phys. 228 (2009), pp. 6440–6455.

[23] R. Gonzalez and E. Rofman, On deterministic control problems: An approximate proce-
dure for the optimal cost I. The stationary problem, SIAM J. Control Optim., 23 (1985),
pp. 242–266.

[24] P. Hansen, Bicriterion path problems, in Multiple Criteria Decision Making: Theory and
Applications, G. Fandel and T. Gal, eds., Springer, Berlin, New York, 1980, pp. 109–127.

[25] J. M. Jaffe, Algorithms for finding paths with multiple constraints, Networks, 14 (1984),
pp. 95–116.

[26] C. Y. Kao, S. Osher, and J. Qian, Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi
equations, J. Comput. Phys., 196 (2004), pp. 367–391.

[27] A. Kumar and A. Vladimirsky, An efficient method for multiobjective optimal control and
optimal control subject to integral constraints, J. Comput. Math., 28 (2010), pp. 517–551.

[28] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in
Continuous Time, Springer-Verlag, New York, 1992.

[29] E. Q. V. Martins, On a multicriteria shortest path problem, European J. Oper. Res., 16
(1984), pp. 236–245.

[30] M. Motta and F. Rampazzo, Multivalued dynamics on a closed domain with absorbing bound-
ary. Applications to optimal control problems with integral constraints, Nonlinear Anal.,
41 (2000), pp. 631–647.

[31] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc.
Natl. Acad. Sci. USA, 93 (1996), pp. 1591–1595.

[32] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Compu-
tational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences, Cambridge
University Press, Cambridge, UK, 1996.

[33] J. A. Sethian, Fast marching methods, SIAM Rev., 41 (1999), pp. 199–235.
[34] J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi

equations, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 11069–11074.
[35] J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton–Jacobi

equations: Theory and algorithms, SIAM J. Numer. Anal., 41 (2003), pp. 325–363.
[36] P. Soravia, Viscosity solutions and optimal control problems with integral constraints, Systems

Control Lett., 40 (2000), pp. 325–335.
[37] R. Takei, W. Chen, Z. Clawson, S. Kirov, and A. Vladimirsky, Optimal

control with reset-renewable resources, Technical report; preprint available from
http://arxiv.org/abs/1110.6221.

[38] Y.-H. R. Tsai L.-T. Cheng, S. Osher, P. Burchard, and G. Sapiro, Visibility and its
dynamics in a PDE based implicit framework, J. Comput. Phys., 199 (2004), pp. 260–290.

[39] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping algorithms for a class
of Hamilton–Jacobi equations, SIAM J. Numer. Anal., 41 (2003), pp. 673–694.

[40] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat.
Control, 40 (1995), pp. 1528–1538.

[41] A. Vladimirsky, Label-setting methods for multimode stochastic shortest path problems on
graphs, Math. Oper. Res., 33 (2008), pp. 821–838.

[42] H. K. Zhao, Fast sweeping method for eikonal equations, Math. Comp., 74 (2005), pp. 603–627.

http://arxiv.org/abs/1110.6221

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

