THE COMPLEX OF FREE FACTORS OF A
FREE GROUP

By ALLEN HATCHER† and KAREN VOGTMANN‡

[Received 25 January 1997]

1. Introduction

An important tool in the study of the group $GL(n, \mathbb{Z})$ is provided by the geometric realization of the partially ordered set (poset) of proper direct summands of \mathbb{Z}^n. The natural inclusion $\mathbb{Z}^n \to \mathbb{Q}^n$ gives a one-to-one correspondence between proper direct summands of \mathbb{Z}^n and proper subspaces of \mathbb{Q}^n, so that this poset is isomorphic to the spherical building X_n for $GL(n, \mathbb{Q})$. The term “spherical” comes from the Solomon-Tits theorem [8], which says that X_n has the homotopy type of a bouquet of spheres:

Solomon-Tits Theorem. The geometric realization of the poset of proper subspaces of an n-dimensional vector space has the homotopy type of a bouquet of spheres of dimension $n - 2$.

The building X_n encodes the structure of parabolic subgroups of $GL(n, \mathbb{Q})$: they are the stabilizers of simplices. X_n also parametrizes the Borel-Serre boundary of the homogeneous space for $GL(n, \mathbb{R})$. The top-dimensional homology $H_{n-2}(X_n)$ is the Steinberg module I_n for $GL(n, \mathbb{Q})$, and is a dualizing module for the homology of $GL(n, \mathbb{Z})$, i.e. for all coefficient modules M there are isomorphisms

$$H^i(GL(n, \mathbb{Z}); M) \to H_{d-i}(GL(n, \mathbb{Z}); M \otimes I_n),$$

where $d = n(n - 1)/2$ is the virtual cohomological dimension of $GL(n, \mathbb{Z})$.

If one replaces $GL(n, \mathbb{Z})$ by the group $Aut(F_n)$ of automorphisms of the free group of rank n, the natural analog FC_n of X_n is the geometric realization of the poset of proper free factors of F_n. The abelianization map $F_n \to \mathbb{Z}^n$ induces a map from FC_n to the poset of summands of \mathbb{Z}^n. In this paper we prove the analog of the Solomon-Tits theorem for FC_n:

Theorem 1.1. The geometric realization of the poset of proper free factors of F_n has the homotopy type of a bouquet of spheres of dimension $n - 2$.

By analogy, we call the top homology $H_{n-2}(FC_n)$ the Steinberg module for $Aut(F_n)$. This leaves open some intriguing questions. It has recently been shown that $Aut(F_n)$ is a virtual duality group [1]; does the Steinberg module act as a

† Partially supported by NSF grant DMS-9307313

dualizing module? There is an analog, called Autre space, of the homogeneous space for $GL(n, \mathbb{Z})$ and the Borel-Serre boundary; what is the relation between this and the “building” of free factors?

In [7], Quillen developed tools for studying the homotopy type of the geometric realization $|X|$ of a poset X. Given an order-preserving map $f : X \to Y$ (a “poset map”), there is a spectral sequence relating the homology of $|X|$, the homology of $|Y|$, and the homology of the “fibers” $|f/y|$, where

$$f/y = \{ x \in X / f(x) \leq y \}$$

with the induced poset structure.

To understand FC_n then, one might try to apply Quillen’s theory using the poset map $FC_n \to X_n$. However, it seems to be difficult to understand the fibers of this map. Instead, we proceed by modelling the poset of free factors topologically, as the poset B_n of simplices of a certain subcomplex of the “sphere complex” $S(M)$ studied in [2]. There is a natural poset map from B_n to FC_n; we compute the homotopy type of B_n and of the Quillen fibers of the poset map, and apply Quillen’s spectral sequence to obtain the result.

2. Sphere systems

Let M be the compact 3-manifold obtained by taking a connected sum of n copies of $S^1 \times S^2$ and removing a small open ball. A sphere system in M is a non-empty finite set of disjointly embedded 2-spheres in the interior of M, no two of which are isotopic, and none of which bounds a ball or is isotopic to the boundary sphere of M. The complex $S(M)$ of sphere systems in M is defined to be the simplicial complex whose k-simplices are isotopy class of sphere systems with $k + 1$ spheres.

Fix a basepoint p on ∂M. The fundamental group $\pi_1(M, p)$ is isomorphic to F_n. Any automorphism of F_n can be realized by a homeomorphism of M fixing ∂M. A theorem of Laudenbach [4] implies that such a homeomorphism inducing the identity on $\pi_1(M, p)$ acts trivially on isotopy classes of sphere systems, so that in fact $Aut(F_n)$ acts on $S(M)$.

For H a subset of $\pi_1(M, p)$, define S_H to be the subcomplex of $S(M)$ consisting of isotopy classes of sphere systems S such that $\pi_1(M - S, p) \supsetneq H$. Define Y_H to be the subcomplex of S_H consisting of isotopy classes of sphere systems S such that $M - S$ is connected. For H trivial, $S_H = S(M)$, and Y_H is the complex Y of [2].

The following theorems determine the homotopy types of S_H and Y_H. The proofs rely upon the proofs for $S(M)$ and Y given in [2].

THEOREM 2.1. S_H is contractible.

Proof. We claim that the contraction of $S(M)$ in [2] restricts to a contraction of the subcomplex S_H. To show this, the key point is the following:
Lemma 2.2. Any two simplices in S_H can be represented by sphere systems Σ and S such that every element of H is representable by a loop disjoint from both Σ and S.

Proof. Enlarge Σ to a maximal sphere system Σ', so the components of $M - \Sigma'$ are three-punctured spheres. By Proposition 1.1 of [2] we may isotope S to be in normal form with respect to Σ'; this means that S intersects each component of $M - \Sigma'$ in a collection of surfaces, each having at most one boundary circle on each of the three punctures.

We can represent a given element of H by a loop γ_0 based at p, such that γ_0 is disjoint from S and transverse to Σ'. The points of intersection of γ_0 with Σ' divide γ_0 into a finite set of arcs, each entirely contained in one component of $M - \Sigma'$. Suppose one of these arcs α_0, in a component P of $M - \Sigma'$, has both endpoints on the same boundary sphere σ of P. Since the map $\pi_0(\sigma - (S \cap \sigma)) \to \pi_0(P - (S \cap P))$ is injective (an easy consequence of normal form), there is an arc α' in $\sigma - (S \cap \sigma)$ with $\partial \alpha' = \partial \alpha$. Since P is simply-connected, α is homotopic to α' fixing endpoints. This homotopy gives a homotopy of γ_0 eliminating the two points of $\partial \alpha'$ from $\gamma_0 \cap \Sigma'$, without introducing any intersection points with S. After repeating this operation a finite number of times, we may assume there are no remaining arcs of $\gamma_0 - (\gamma_0 \cap \Sigma')$ of the specified sort.

Now consider a homotopy $F : I \times I \to M$ of γ_0 to a loop γ_1 disjoint from Σ. Make F transverse to Σ' and look at $F^{-1}(\Sigma')$. This consists of a collection of disjoint arcs and circles. These do not meet the left and right edges of $I \times I$ since these edges map to the basepoint p.

We claim that every arc component of $F^{-1}(\Sigma')$ with one endpoint on $I \times \{0\}$ must have its other endpoint on $I \times \{1\}$. If not, choose an “edgmost” arc with both endpoints on $I \times \{0\}$, i.e. an arc such that the interval of $I \times \{0\}$ bounded by the endpoints contains no other point of $F^{-1}(\Sigma')$. Then γ_0 maps this interval to an arc α in $M - S$ which is entirely contained in one component P of $M - \Sigma'$ and has both endpoints on the same boundary sphere of P, contradicting our assumption that all such arcs have been eliminated.

Since the loop γ_1 is disjoint from Σ, it follows that γ_0 must be disjoint from Σ, and by construction γ_0 was disjoint from S.

Since elements of H are representable by loops disjoint from Σ and S, these loops remain disjoint from sphere systems obtained by surgering S along Σ, because such surgery produces spheres lying in a neighbourhood of $S \cup \Sigma$. This means that the contraction of $S(M)$ constructed in [2] restricts to a contraction of the subcomplex S_H. (Alternatively, we could use the simpler contraction technique of [3], which reverses the roles of S and Σ.)

Definition. A simplicial complex K is k-spherical if it is k-dimensional and $(k - 1)$-connected. By convention, a (-1)-spherical complex is a single point. A complex is spherical if it is k-spherical for some k.

Now that we have \(S_H \) contractible, we use it to show that \(Y_H \) is spherical. In the course of the proof, we will need to consider complexes analogous to \(Y_H \) for manifolds with more than one boundary sphere. The next lemma shows that these have the same homotopy type as \(Y_H \).

Let \(M_k \) be the manifold obtained from the connected sum of \(n \) copies of \(S^1 \times S^2 \) by deleting \(k \) disjoint open balls rather than just a single ball. Choose the basepoint \(p \) on one of the spheres in \(\partial M \). For \(H \subseteq \pi_1(M_k, p) \), define \(Y_H(M_k) \) to be the complex of isotopy classes of sphere systems \(S \) in \(M_k \) with connected complement such that \(\pi_1(M - S, p) \supseteq H \).

Lemma 2.3. For \(k \geq 1 \), \(Y_H(M_k+1) \) deformation retracts onto a subcomplex isomorphic to \(Y_H(M_k) \).

Proof. Let \(\partial_0 \) and \(\partial_1 \) be two components of \(\partial M \), with \(p \in \partial_0 \). Fix a sphere \(\sigma \) in the interior of \(M_{k+1} \) which separates \(M_{k+1} \) into two components, one of which is a three-punctured sphere \(P \) containing \(\partial_0 \) and \(\partial_1 \), and the other of which is homeomorphic to \(M_k \).

Let \(S \) be a sphere system representing a simplex of \(Y_H(M_{k+1}) \). We may assume that \(S \) is in normal form with respect to \(\sigma \). This means that \(S \) intersects \(P \) in a collection of disjoint disks, each of which has boundary on \(\sigma \) and separates \(\partial_0 \) from \(\partial_1 \). Perform a sequence of modifications of \(S \) by transferring, one at a time, each disk of \(S \cap P \) to the other side of \(\partial_1 \). This has no effect on \(\pi_1(M - S, p) \), so the sphere systems which arise during this modification are still in \(Y_H(M_{k+1}) \). The final system resulting from transferring all the disks of \(S \cap P \) to the other side of \(\partial_1 \) can be isotoped to be disjoint from \(\sigma \).

This sequence of modifications can also be described as a sequence of surgeries on \(S \) using the disks in \(\sigma \) on the side away from \(\partial_0 \). As explained on pp. 48–49 of [2], such a surgery process defines a piecewise linear flow on the sphere complex. In the present case this flow gives a deformation retraction of \(Y_H(M_{k+1}) \) onto the subcomplex of sphere systems in \(M - \sigma \). This subcomplex can be identified with \(Y_H(M_k) \) by choosing the basepoint for \(M_k \) to be in \(\sigma \).

Theorem 2.4. Let \(H \) be a free factor of \(F_n = \pi_1(M, p) \). Then \(Y_H \) is \((n - rk(H) - 1) \)-spherical.

Proof. Let \(i \leq n - rk(H) - 2 \). Any map \(g : S^i \to Y_H \) can be extended to a map \(\hat{g} : D^{i+1} \to S_H \) since \(S_H \) is contractible. We can assume \(\hat{g} \) is a simplicial map with respect to some triangulation of \(D^{i+1} \) compatible with its standard piecewise linear structure. We will redefine \(\hat{g} \) on the stars of certain simplices in the interior of \(D^{i+1} \) to make the image of \(\hat{g} \) lie in \(Y_H \).

To each sphere system \(S \) we associate a dual graph \(\Gamma(S) \), with one vertex for each component of \(M - S \) and one edge for each sphere in \(S \). The endpoints of the edge corresponding to \(s \in S \) are the vertices corresponding to the component or components adjacent to \(s \). We say a sphere system \(S \) is purely separating if \(\Gamma(S) \) has no edges which begin and end at the same vertex. Each sphere system \(S \)
has a purely separating core, consisting of those spheres in S which correspond to the core of $\Gamma(S)$, i.e. the subgraph spanned by edges with distinct vertices. The purely separating core of $S \in S_H$ is empty if and only if S is in Y_H.

Let σ be a simplex of D^{i+1} of maximal dimension among the simplices τ with $\hat{g}(\tau)$ purely separating. Note that all such simplices τ lie in the interior of D^{i+1}, since the boundary of D^{i+1} maps to Y_H. Let $S = \hat{g}(\sigma)$, and let $N_0, \ldots, N_r (r \geq 1)$ be the connected components of $M - S$, with $p \in N_0$. A simplex τ in the link $lk(\sigma)$ maps to a system T in the link of S, so that each $T_j = T \cap N_j$ is a sphere system in N_j and $H \leq \pi_1(N_0 - T_0, p)$. Furthermore $N_j - T_j$ must be connected for all j since otherwise the core of $\Gamma(S \cup T)$ would have more edges than $\Gamma(S)$, contradicting the maximality of σ. Thus \hat{g} maps $lk(\sigma)$ into a subcomplex of S_H which can be identified with $Y_H(N_0) \ast Y(N_1) \ast \cdots \ast Y(N_r)$.

Since σ is a simplex in the interior of D^{i+1}, $lk(\sigma)$ is a sphere of dimension $i - \dim(\sigma)$. Each N_j has fundamental group of rank $n_j < n$, so by Lemma 2.3 and induction, $Y_H(N_0)$ is $(n_0 - rk(H) - 1)$-spherical and, for $j \geq 1$, $Y(N_j)$ is $(n_j - 1)$-spherical. Hence $Y_H(N_0) \ast Y(N_1) \ast \cdots \ast Y(N_r)$ is spherical of dimension $(\sum_{j=0}^r n_j) - rk(H) - 1$.

Now $n = (\sum_{j} n_j) + rk(\pi_1(\Gamma(S))) = (\sum_{j} n_j) + m - r$ where m is the number of spheres in S, i.e., edges in $\Gamma(S)$. Since a simplicial map cannot increase dimension, we have $\dim(\sigma) \geq m - 1$. Since $i \leq n - rk(H) - 2$, we have

$$i - \dim(\sigma) \leq n - rk(H) - 2 - \dim(\sigma)$$

$$\leq n - rk(H) - m - 1$$

$$= \left(\sum_{j} n_j\right) - rk(H) - 1 - r$$

$$< \left(\sum_{j} n_j\right) - rk(H) - 1.$$

Hence the map $\hat{g} : lk(\sigma) \rightarrow Y_H(N_0) \ast Y(N_1) \ast \cdots \ast Y(N_r)$ can be extended to a map of a disk D^k into $Y_H(N_0) \ast Y(N_1) \ast \cdots \ast Y(N_r)$, where $k = i + 1 - \dim(\sigma)$. The system S is compatible with every system in the image of D^k, so this map can be extended to a map $\sigma \ast D^k \rightarrow S_H$. We replace the star of σ in D^{i+1} by the disk $\partial(\sigma) \ast D^k$, and define \hat{g} on $\partial(\sigma) \ast D^k$ using this map.

What have we improved? The new simplices in the disk $\partial(\sigma) \ast D^k$ are of the form $\sigma' \ast \tau$, where σ' is a face of σ and $\hat{g}(\tau) \subset Y_H(N_0)\ast Y(N_1)\ast \cdots \ast Y(N_r)$. The image of such a simplex $\sigma' \ast \tau$ is a system $S' \cup T$ such that in $\Gamma(S' \cup T)$ the edges corresponding to T are all loops. Therefore any simplex in the disk $\partial(\sigma) \ast D^k$ with purely separating image must lie in the boundary of this disk, where we have not modified \hat{g}.

We continue this process, eliminating purely separating simplices until there is none in the image of \hat{g}. Since every system in $S_H - Y_H$ has a non-trivial purely separating core, in fact the whole disk maps into Y_H, and we are done.
3. Free factors

We now turn to the poset FC_n of proper free factors of the free group F_n, partially ordered by inclusion. A k-simplex in the geometric realization $|FC_n|$ is a flag $H_0 < H_1 < \ldots < H_k$ of proper free factors of F_n, each properly included in the next. Each H_i is also a free factor of H_{i+1} (see [6, p. 117]), so that a maximal simplex of $|FC_n|$ has dimension $n - 2$.

We want to model free factors of F_n by sphere systems in $Y = Y(M)$, by taking the fundamental group of the (connected) complement. A sphere system with n spheres and connected complement, corresponding to an $(n - 1)$-dimensional simplex of Y, in fact has simply-connected complement. But we want to consider proper free factors, so instead we consider the $(n - 2)$-skeleton $Y^{(n-2)}$. Since Y is $(n - 2)$-connected by Theorem 2.4, $Y^{(n-2)}$ is $(n - 2)$-spherical.

In order to relate $Y^{(n-2)}$ to FC_n, we take the barycentric subdivision B_n of $Y^{(n-2)}$. Then B_n is the geometric realization of a poset of isotopy classes of sphere systems, partially ordered by inclusion. If $S \subseteq S'$ are sphere systems, we have $\pi_1(M - S, p) \geq \pi_1(M - S', p)$, reversing the partial ordering. Taking fundamental group of the complement thus gives a poset map $f : B_n \to (FC_n)^{op}$, where $(FC_n)^{op}$ denotes FC_n with the opposite partial ordering.

Proposition 3.1. $f : B_n \to (FC_n)^{op}$ is surjective.

Proof. Every simplex of FC_n is contained in a simplex of dimension $n - 2$ so it suffices to show f maps onto all $(n - 2)$-simplices. The group $\text{Aut}(F_n)$ acts transitively on $(n - 2)$-simplices of FC_n, and all elements of $\text{Aut}(F_n)$ are realized by homeomorphisms of M, so f will be surjective if its image contains a single $(n - 2)$-simplex, which it obviously does.

Corollary 3.2. FC_n is connected if $n \geq 3$.

Proof. Theorem 2.4 implies that B_n is connected for $n \geq 3$. So, given any two vertices of FC_n, lift them to vertices of B_n by Proposition 3.1, connect the lifted vertices by a path, then project the path back down to FC_n.

For any proper free factor H, let $B_{\geq H}$ denote the fiber f/H, consisting of isotopy classes of sphere systems S in B_n with $\pi_1(M - S, p) \geq H$.

Proposition 3.3. Let H be a proper free factor of F_n. Then $B_{\geq H}$ is $(n - \text{rk}(H) - 1)$-spherical. If $\text{rk}(H) = n - 1$ then $B_{\geq H}$ is a single point.

Proof. The fiber $B_{\geq H}$ is the barycentric subdivision of Y_H, so is $(n - \text{rk}(H) - 1)$-spherical by Theorem 2.4.

Suppose $\text{rk}(H) = n - 1$, so that $\pi_1(M, p) = H \ast \langle x \rangle$ for some x. An element of $B_{\geq H}$ is represented by a sphere system containing exactly one sphere s, which is non-separating with $\pi_1(M - s, p) = H$. Suppose s and s' are two such spheres. Since s and s' are both non-separating, there is a homeomorphism h of M taking s
to \(s' \). Since automorphisms of \(H \) can be realized by homeomorphisms of \(M \) fixing \(s \), we may assume that the induced map on \(\pi_1(M, p) \) is the identity on \(H \).

Claim. The induced map \(h_\ast : \pi_1(M, p) \to \pi_1(M, p) \) must send \(x \) to an element of the form \(Ux^\pm V \), with \(U, V \in H \).

Proof. Let \(\{x_1, ..., x_{n-1}\} \) be a basis for \(H \), and let \(W \) be the reduced word representing \(h_\ast(x) \) in the basis \(\{x_1, ..., x_{n-1}, x\} \) for \(\pi_1(M, p) \). By looking at the map induced by \(h \) on homology, we see that the exponent sum of \(x \) in \(W \) must be \(\pm 1 \). Since \(h_\ast \) fixes \(H \), \(\{x_1, ..., x_{n-1}, W\} \) is a basis for \(\pi_1(M, p) \). If \(W \) contained both \(x \) and \(x^{-1} \), we could apply Nielsen automorphisms to the set \(\{x_1, ..., x_{n-1}, W\} \) until \(W \) was of the form \(x^\pm W_0x^\pm \). But \(\{x_1, ..., x_{n-1}, x^\pm W_0x^\pm \} \) is not a basis, since it is Nielsen reduced and not of the form \(\{x_1^\pm, ..., x_{n-1}^\pm, x^\pm\} \) (see [5], Prop. 2.8)

The automorphism fixing \(H \) and sending \(x \mapsto Ux^\pm V \) can be realized by a homeomorphism \(h' \) of \(M \) which takes \(s \) to itself (see [4], Lemma 4.3.1). The composition \(h'h^{-1} \) sends \(s' \) to \(s \) and induces the identity on \(\pi_1 \), hence acts trivially on the sphere complex. Thus \(s \) and \(s' \) are isotopic.

Corollary 3.4. \(FC_n \) is simply connected for \(n \geq 4 \).

Proof. Let \(e_0, e_1, ..., e_k \) be the edges of an edge-path loop in \(FC_n \), and choose lifts \(\tilde{e}_i \) of these edges to \(B_n \). Let \(e_{i-1}e_i \) or \(e_ie_0 \) be two adjacent edges of the path, meeting at the vertex \(H \). The lifts \(\tilde{e}_{i-1} \) and \(\tilde{e}_i \) may not be connected, i.e. \(\tilde{e}_{i-1} \) may terminate at a sphere system \(S' \) and \(\tilde{e}_i \) may begin at a different sphere system \(S \). However, both \(S \) and \(S' \) are in the fiber \(B_{\geq H} \), which is connected by Proposition 3.3, so we may connect \(S \) and \(S' \) by a path in \(B_{\geq H} \). Connecting the endpoints of each lifted edge in this way, we obtain a loop in \(B_n \), which may be filled in by a disk if \(n \geq 4 \), by Proposition 3.3. The projection of this loop to \(FC_n \) is homotopic to the original loop, since each extra edge-path segment we added projects to a loop in the star of some vertex \(H \), which is contractible. Therefore the projection of the disk kills our original loop in the fundamental group.

Remark. It is possible to describe the complex \(Y_H \) purely in terms of \(F_n \). Suppose first that \(H \) is trivial. Define a simplicial complex \(Z \) to have vertices the rank \(n-1 \) free factors of \(F_n \), with a set of \(k \) such factors spanning a simplex in \(Z \) if there is an automorphism of \(F_n \) taking them to the \(k \) factors obtained by deleting the standard basis elements \(x_1, ..., x_k \) of \(F_n \) one at a time. There is a simplicial map \(f : Y \to Z \) sending a system of \(k \) spheres to the set of \(k \) fundamental groups of the complements of these spheres. These fundamental groups are equivalent to the standard set of \(k \) rank \(n-1 \) factors under an automorphism of \(F_n \) since the homeomorphism group of \(M \) acts transitively on simplices of \(Y \) of a given dimension, and the standard \(k \) factors are the fundamental groups of the complements of the spheres in a standard system in \(Y \). The last statement of Proposition 3.3 says that \(f \) is a bijection on vertices, so \(f \) embeds \(Y \) as a subcomplex of \(Z \). The maximal simplices in \(Y \) and \(Z \) have dimension \(n-1 \) and the groups \(Homeo(M) \)
and $\text{Aut}(F_n)$ act transitively on these simplices, so f must be surjective, hence an isomorphism. When H is nontrivial, f restricts to an isomorphism from Y_H onto the subcomplex Z_H spanned by the vertices which are free factors containing H.

We are now ready to apply Quillen's spectral sequence to compute the homology of B_n and thus prove the main theorem.

Theorem 3.5. FC_n is $(n - 2)$-spherical.

Proof. We prove the theorem by induction on n. If $n \leq 4$, the theorem follows from Corollaries 3.2 and 3.4.

Quillen's spectral sequence [7, 7.7] applied to $f : B_n \to (FC_n)^{op}$ becomes

$$E^2_{p,q} = H_p(FC_n; H \mapsto H_q(B_{\geq H})) \Rightarrow H_{p+q}(B_n),$$

where the E^2-term is computed using homology with coefficients in the functor $H \mapsto H_q(B_{\geq H})$.

For $q = 0$, Corollary 3.2 gives $H_0(B_{\geq H}) = \mathbb{Z}$ for all H, so $E^2_{p,0} = H_p(FC_n, \mathbb{Z})$.

For $q > 0$, we have $E^2_{p,q} = H_p(FC_n; H \mapsto \tilde{H}_q(B_{\geq H}))$, and we follow Quillen ([7], proof of Theorem 9.1) to compute this.

For a subposet A of FC_n, let L_A denote the functor sending H to a fixed abelian group L if $H \in A$ and to 0 otherwise. Set $U = FC_{\leq H} = \{H' \in FC_n | H' \leq H\}$ and $V = FC_{< H} = \{H' \in FC_n | H' < H\}$. Then

$$H_i(FC_n; L_V) = H_i(V; L),$$

and

$$H_i(FC_n; L_U) = H_i(U; L) = \begin{cases} L & \text{if } i = 0 \text{ and } \\ 0 & \text{otherwise,} \end{cases}$$

since $|U|$ is contractible. The short exact sequence of functors

$$1 \to L_V \to L_U \to L_{\{H\}} \to 1$$

gives a long exact homology sequence, from which we compute

$$H_i(FC_n; L_{\{H\}}) = \tilde{H}_{i-1}(FC_{< H}; L).$$

Now, $H \mapsto \tilde{H}_q(B_{\geq H})$ is equal to the functor

$$\bigoplus_{rk(H) = n-q-1} \tilde{H}_q(B_{\geq H})_{\{H\}}$$

since $B_{\geq H}$ is $(n - rk(H) - 1)$-spherical by Proposition 3.3. Thus

$$E^2_{p,q} = H_p(FC_n; H \mapsto \tilde{H}_q(B_{\geq H})) = \bigoplus_{rk(H) = n-q-1} H_p(FC_n; \tilde{H}_q(B_{\geq H})_{\{H\}})$$

$$= \bigoplus_{rk(H) = n-q-1} \tilde{H}_{p-1}(FC_{< H}; \tilde{H}_q(B_{\geq H})).$$
Free factors of F_n contained in H are also free factors of H. Since H has rank $< n$, $FC_{< H}$ is $(rk(H) - 2)$-spherical by induction. Therefore $E^2_{p,q} = 0$ unless $p - 1 = (n - q - 1) - 2$, i.e. $p + q = n - 2$. Since all terms in the E^2-term of the spectral sequence are zero except the bottom row for $p \leq n - 2$ and the diagonal $p + q = n - 2$, all differentials are zero and we have $E^2 = E^\infty$ as in the following diagram:

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & \\
E^2_{0,n-2} & 0 & 0 & 0 & 0 & \\
0 & E^2_{1,n-3} & 0 & 0 & 0 & \\
0 & 0 & E^2_{2,n-4} & 0 & 0 & \\
0 & 0 & 0 & E^2_{3,n-5} & 0 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
H_0(FC_n) & H_1(FC_n) & H_2(FC_n) & H_3(FC_n) & \ldots & H_{n-2}(FC_n) & 0
\end{array}
\]

Since FC_n is connected and the spectral sequence converges to $H_*(B_n)$, which is $(n - 3)$-connected, we must have $\tilde{H}_i(FC_n) = 0$ for $i \neq n - 2$. Since FC_n is simply-connected by Corollary 3.4, this implies that FC_n is $(n - 3)$-connected by the Hurewicz theorem. The theorem follows since FC_n is $(n - 2)$-dimensional.

4. The Cohen-Macaulay Property

In a PL triangulation of an n-dimensional sphere, the link of every k-simplex is an $(n - k - 1)$-sphere. A poset is said to be Cohen-Macaulay of dimension n if its geometric realization is n-spherical and the link of every k-simplex is $(n - k - 1)$-spherical (see [7]). Spherical buildings are Cohen-Macaulay, and we remark that FC_n also has this nice local property.

To see this, let $\sigma = H_0 < H_1 < \ldots < H_k$ be a k-simplex of FC_n. The link of σ is the join of subcomplexes $FC_{H_i,H_{i+1}}$ of FC_n spanned by free factors H with $H_i < H < H_{i+1}$ ($-1 \leq i \leq k$, with the conventions $H_{-1} = 1$ and $H_{k+1} = F_n$). Counting dimensions, we see that it suffices to show that for each r and s with $0 \leq s < r$, the poset $FC_{r,s}$ of proper free factors H of F_r which properly contain F_s is $(r - s - 2)$-spherical. The proof of this is identical to the proof that FC_n is $(n - 2)$-spherical, after setting $n = r$ and replacing the complex Y by Y_{F_r}.

5. The map to the building

As mentioned in the introduction, the abelianization map $F_n \to \mathbb{Z}^n$ induces a map from the free factor complex FC_n to the building X_n, since summands of \mathbb{Z}^n correspond to subspaces of Q^n. Since the map $Aut(F_n) \to GL(n, \mathbb{Z})$ is surjective, every basis for \mathbb{Z}^n lifts to a basis for F_n, and hence every flag of summands of \mathbb{Z}^n lifts to a flag of free factors of F_n, i.e. the map $FC_n \to X_n$ is surjective.

Given a basis $\{v_1, \ldots, v_n\}$ for Q^n, consider the subcomplex of X_n consisting of
all flags of subspaces of the form \(\langle v_{i_1} \rangle \subset \langle v_{i_1}, v_{i_2} \rangle \subset \ldots \subset \langle v_{i_1}, \ldots, v_{i_n} \rangle \). This subcomplex can be identified with the barycentric subdivision of the boundary of an \((n - 1)\)-dimensional simplex, so forms an \((n - 2)\)-dimensional sphere in \(X_n\), called an apartment.

The construction above applied to a basis of \(F_n \) instead of \(\mathbb{Q}^n \) yields an \((n - 2)\)-dimensional sphere in \(FC_n \). In particular, \(H_{n-2}(FC_n) \) is non-trivial. This sphere maps to an apartment in \(X_n \) showing that the induced map \(H_{n-2}(FC_n) \to H_{n-2}(X_n) \) is also non-trivial.

The property of buildings which is missing in \(FC_n \) is that given any two maximal simplices there is an apartment which contains both of them. For example, for \(n = 3 \) and \(F_3 \) free on \(\{x, y, z\} \) there is no "apartment" which contains both the one-cells corresponding to \(\langle x \rangle \subset \langle x, y \rangle \) and \(\langle yxy^{-1} \rangle \subset \langle x, y \rangle \), since \(x \) and \(yxy^{-1} \) do not form part of a basis of \(F_3 \).

REFERENCES

Department of Mathematics,
Cornell University,
White Hall,
Ithaca,
N.Y. 14853-7901,
USA