Definition 0.1 (Infinite Sequences) An infinite sequence of numbers is a function whose domain is the set of positive integers.
Ex 1. Write out the first few terms of the sequences $a_{1}=1, a_{n+1}=a_{n}+\frac{1}{2^{n}}$.
sol) $a_{1}=1, a_{2}=a_{1}+\frac{1}{2}=\frac{3}{2}, a_{3}=a_{2}+\frac{1}{4}=\frac{6+1}{4}=\frac{7}{4}$
Ex 2. Find a formula for the nth term of the sequence.
a. The sequence $1,-4,9,-16,25, \ldots$
sol) $a_{n}=(-1)^{1+n} n^{2}$
b. The sequence $1,0,1,0,1, \ldots$
sol) $a_{n}=\frac{1+(-1)^{1+n}}{2}$
Theorem 0.2 Suppose that $f(x)$ is a function defined for all $x \geq n_{0}$ and that $\left\{a_{n}\right\}$ is a sequence of real numbers such that $a_{n}=f(n)$ for $n \geq n_{0}$. Then

$$
\lim _{x \rightarrow \infty} f(x)=L \Rightarrow \lim _{x \rightarrow \infty} a_{n}=L
$$

The significance of Theorem 0.2 is to enable us to use L'Hôpital's Rule to find the limits of some sequences.
Ex 3. Find $\lim _{n \rightarrow \infty} a_{n}$ when $a_{n}=\frac{1-5 n^{4}}{n^{4}+8 n^{3}}$.
sol) Let $f(n)=a_{n}$ for $n \geq 1$. Then

$$
\begin{align*}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{1-5 x^{4}}{x^{4}+8 x^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{-20 x^{3}}{4 x^{3}+24 x^{2}} \tag{1}\\
& =\lim _{x \rightarrow \infty} \frac{-60 x^{2}}{12 x^{2}+48 x} \tag{2}\\
& =\lim _{x \rightarrow \infty} \frac{-120 x}{24 x+48} \tag{3}\\
& =\lim _{x \rightarrow \infty} \frac{-120}{24} \tag{4}\\
& =-5 \tag{5}
\end{align*}
$$

where (1), (2), (3), and (4) are from L'Hôpital's Rule. By Theorem 0.2, (5) implies $\lim _{n \rightarrow \infty} a_{n}=-5$.
Ex 4. Find $\lim _{n \rightarrow \infty} a_{n}$ when $a_{n}=\frac{(\ln n)^{200}}{n}$.
sol) Let $f(n)=a_{n}$ for $n \geq 1$. Then

$$
\begin{align*}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{(\ln x)^{200}}{x} \\
& =\lim _{x \rightarrow \infty} \frac{200(\ln x)^{199} \frac{1}{x}}{1} \tag{6}\\
& =\lim _{x \rightarrow \infty} \frac{200(\ln x)^{199}}{x} \\
& =\cdots \tag{7}\\
& =\lim _{x \rightarrow \infty} \frac{200!(\ln x)}{x} \tag{8}\\
& =0, \tag{9}
\end{align*}
$$

where (6), (7), and (8) are from L'Hôpital's Rule. By Theorem 0.2, (5) implies $\lim _{n \rightarrow \infty} a_{n}=0$.

Definition 0.3 (Geometric Series)
 a. If $|r|<1, \sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$.

b. If $|r| \geq 1, \quad \sum_{n=1}^{\infty} a r^{n-1}=\infty$. Diverges.

Ex 5. Find $\sum_{n=1}^{\infty} \frac{7}{4^{n}}$.
sol) Let $r=\frac{1}{4}$. Since this is a sum of the geometric series with $r=\frac{1}{4}, \sum_{n=1}^{\infty} \frac{7}{4^{n}}=\frac{\frac{7}{4}}{1-\frac{1}{4}}=\frac{7}{3}$.
Ex 6. Find $\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{(-1)^{n}}{5^{n}}\right)$.
sol) Let $r_{1}=\frac{1}{2}$ and $r_{2}=-\frac{1}{5}$. Then this is a sum of two geometric series with $r_{1}=\frac{1}{2}$ and $r_{2}=-\frac{1}{5}$, $\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{(-1)^{n}}{5^{n}}\right)=\frac{1}{1-\frac{1}{2}}+\frac{1}{1-\left(-\frac{1}{5}\right)}=2+\frac{5}{6}=\frac{17}{6}$.

Theorem 0.4 a. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$. Note that the converse is not true, i.e. $a_{n} \rightarrow 0 \nRightarrow$ $\sum_{n=1}^{\infty} a_{n}$ converges. For example, $a_{n}=\frac{1}{n}$.
b. If a_{n} fails to exist or is difference from zero, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Ex 7. Does $\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}$ converge or diverge? If a series converge, find its sum.
sol) Let $a_{n}=\left(\frac{1}{\sqrt{2}}\right)^{n}$. Notice that $\left(\frac{1}{\sqrt{2}}\right)^{n} \rightarrow 0$, and Theorem 0.4 doesn't tell us if $\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}$ converges. However, this is a geometric series with $r=\frac{1}{\sqrt{2}}$. Therefore $\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}=\frac{1}{1-\frac{1}{\sqrt{2}}}=$ $\frac{\sqrt{2}}{\sqrt{2}-1}=\sqrt{2}(\sqrt{2}+1)=2+\sqrt{2}$.
Ex 8. Does $\sum_{n=0}^{\infty}(-1)^{n+1} n$ converge or diverge? If a series converge, find its sum.
sol) $\lim _{n \rightarrow \infty}(-1)^{n+1} n$ fails to exist because it oscillates. By Theorem $0.4, \sum_{n=0}^{\infty}(-1)^{n+1} n$ diverges.

