Definition 0.1 (Infinite Sequences) An infinite sequence of numbers is a function whose domain is the set of positive integers.

Ex 1. Write out the first few terms of the sequences $a_{1}=1, a_{n+1}=a_{n}+\frac{1}{2^{n}}$.
Ex 2. Find a formula for the nth term of the sequence.
a. The sequence $1,-4,9,-16,25, \ldots$
b. The sequence $1,0,1,0,1, \ldots$

Theorem 0.2 Suppose that $f(x)$ is a function defined for all $x \geq n_{0}$ and that $\left\{a_{n}\right\}$ is a sequence of real numbers such that $a_{n}=f(n)$ for $n \geq n_{0}$. Then

$$
\lim _{x \rightarrow \infty} f(x)=L \Rightarrow \lim _{x \rightarrow \infty} a_{n}=L
$$

The significance of Theorem 0.2 is to enable us to use L'Hôpital's Rule to find the limits of some sequences.
Ex 3. Find $\lim _{n \rightarrow \infty} a_{n}$ when $a_{n}=\frac{1-5 n^{4}}{n^{4}+8 n^{3}}$.
Ex 4. Find $\lim _{n \rightarrow \infty} a_{n}$ when $a_{n}=\frac{(\ln n)^{200}}{n}$.

Definition 0.3 (Geometric Series)
 a. If $|r|<1, \sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$.

b. If $|r| \geq 1, \sum_{n=1}^{\infty} a r^{n-1}=\infty$. Diverges.

Ex 5. Find $\sum_{n=1}^{\infty} \frac{7}{4^{n}}$.
Ex 6. Find $\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{(-1)^{n}}{5^{n}}\right)$.
Theorem 0.4 a. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$. Note that the converse is not true, i.e. $a_{n} \rightarrow 0 \nRightarrow$ $\sum_{n=1}^{\infty} a_{n}$ converges. For example, $a_{n}=\frac{1}{n}$.
b. If a_{n} fails to exist or is difference from zero, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Ex 7. Does $\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}$ converge or diverge? If a series converge, find its sum.
Ex 8. Does $\sum_{n=0}^{\infty}(-1)^{n+1} n$ converge or diverge? If a series converge, find its sum.

