Math 191

Definition 0.1 (Infinite Sequences) An infinite sequence of numbers is a function whose domain is the set of positive integers.

Ex 1. Write out the first few terms of the sequences $a_1 = 1$, $a_{n+1} = a_n + \frac{1}{2^n}$.

Ex 2. Find a formula for the nth term of the sequence.

- a. The sequence $1, -4, 9, -16, 25, \dots$
- b. The sequence 1, 0, 1, 0, 1, ...

Theorem 0.2 Suppose that f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x \to \infty} f(x) = L \Rightarrow \lim_{x \to \infty} a_n = L$$

The significance of Theorem 0.2 is to enable us to use L'Hôpital's Rule to find the limits of some sequences.

Ex 3. Find $\lim_{n \to \infty} a_n$ when $a_n = \frac{1-5n^4}{n^4+8n^3}$.

Ex 4. Find $\lim_{n \to \infty} a_n$ when $a_n = \frac{(\ln n)^{200}}{n}$.

Definition 0.3 (Geometric Series) a. If |r| < 1, $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$.

b. If
$$|r| \ge 1$$
, $\sum_{n=1}^{\infty} ar^{n-1} = \infty$. Diverges.

Ex 5. Find $\sum_{n=1}^{\infty} \frac{7}{4^n}$.

Ex 6. Find
$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{(-1)^n}{5^n} \right)$$
.

Theorem 0.4 a. If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$. Note that the converse is not true, i.e. $a_n \to 0 \Rightarrow \sum_{n=1}^{\infty} a_n$ converges. For example, $a_n = \frac{1}{n}$.

b. If a_n fails to exist or is difference from zero, then $\sum_{n=1}^{\infty} a_n$ diverges.

Ex 7. Does $\sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^n$ converge or diverge? If a series converge, find its sum.

Ex 8. Does $\sum_{n=0}^{\infty} (-1)^{n+1}n$ converge or diverge? If a series converge, find its sum.