Theorem 0.1 (The nth Term Test) If a_n fails to exist or is different from zero, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 0.2 (The Integral Test) Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f(x) is a continuous, positive, decreasing function of x for all $x \ge N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_N^{\infty} f(x) dx$ both converge or both diverge.

Theorem 0.3 (The Direct Comparison Test) Let a_n be a series with no negative terms.

- a. $\sum a_n$ converges if there is a convergent series $\sum c_n$ with $a_n \leq c_n$ for all n > N, for some integer N.
- b. $\sum a_n$ diverges if there is a divergent series $\sum d_n$ with $a_n \ge d_n$ for all n > N, for some integer N.

Theorem 0.4 (The Limit Comparison Test) Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).

a. If lim_{n→∞} a_n/b_n = c > 0, then ∑ a_n and ∑ b_n both converge or both diverge.
b. If lim_{n→∞} a_n/b_n = 0 and ∑ b_n converges, then ∑ a_n converges.
c. If lim_{n→∞} a_n/b_n = ∞ and ∑ b_n diverges, then ∑ a_n diverges.

Theorem 0.5 (The Ratio Test) Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho$$

Then

- a. the series converges if $\rho < 1$,
- b. the series diverges if $\rho > 1$ or ρ is infinite,
- c. the test is inconclusive if $\rho = 1$.

Theorem 0.6 (The Root Test) Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$, and suppose that

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \rho$$

Then

- a. the series converges if $\rho < 1$,
- b. the series diverges if $\rho > 1$,
- c. the test is inconclusive if $\rho = 1$.

Which of the series in the following converge, and which diverge?

$$1. \sum_{n=1}^{\infty} \frac{1}{10^n}$$

- 2. $\sum_{n=0}^{\infty} \frac{-2}{n+1}$ sol) $\sum_{n=0}^{\infty} \frac{-2}{n+1} = -\sum_{n=0}^{\infty} \frac{2}{n+1}$. Use the Integral Test. Let $f(x) = \frac{2}{x+1}$ and choose N = 0. The function $f(x) = \frac{2}{x+1}$ is continuous, positive, and decreasing. Thus $\int_{0}^{\infty} \frac{2}{x+1} dx = \lim_{b \to \infty} 2[\ln |x+1|]_{0}^{b} = \infty 2 = \infty$. By the Integral Test, $\sum_{n=0}^{\infty} \frac{2}{n+1}$ diverges. $\Rightarrow \sum_{n=0}^{\infty} \frac{-2}{n+1}$ diverges. 3. $\sum_{n=3}^{\infty} \frac{\frac{1}{(\ln n)\sqrt{(\ln n)^{2} - 1}}$
- 4. $\sum_{n=1}^{\infty} \frac{8 \tan^{-1} n}{1+n^2}$

sol) Use the Integral Test. Let $f(x) = \frac{8 \tan^{-1} x}{1+x^2}$, which is a continuous, positive, and decreasing function for $x \ge 1$ and N = 1. Use the substitution $x = \tan u$ to get $\int_{1}^{\infty} \frac{8 \tan^{-1} x}{1+x^2} dx = \int_{\pi/4}^{\pi/2} \frac{8u}{\sec^2 u} \sec^2 u du = 4u^2 |_{\pi/4}^{\pi/2} = 4(\pi^2/4 - \pi^2/16) = \frac{3\pi^2}{4}$. Therefore by the Integral Test, $\sum_{n=1}^{\infty} \frac{8 \tan^{-1} n}{1+n^2}$ converges.

5. $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n} + \sqrt[3]{n}}$ 6. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 2}}$

sol) Use the Limit Comparison Test. Let $a_n = \frac{1}{\sqrt{n^3+2}}$ and $b_n = \frac{1}{n^{3/2}}$. $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^{3/2}}{(n^3+2)^{3/2}} = \lim_{n \to \infty} \frac{1}{\sqrt{1+\frac{2}{n^3}}} = 1$. Since $\sum \frac{1}{n^{3/2}}$ converges, $\sum \frac{1}{\sqrt{n^3+2}}$ also converges by the Limit Comparison Test (Part a).

7. $\sum_{n=3}^{\infty} \frac{1}{\ln(\ln n)}$ 8. $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2 - 1}}$

sol) Use the Limit Comparison Test. Let $a_n = \frac{1}{n\sqrt{n^2-1}}$ and $b_n = \frac{1}{n^2}$. $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{n\sqrt{n^2-1}} = \lim_{n \to \infty} \sqrt{\frac{1}{1-\frac{1}{n^2}}} = 1$. Since $\sum \frac{1}{n^2}$ converges, $\sum \frac{1}{n\sqrt{n^2-1}}$ also converges by the Limit Comparison Test (Part a).

9.
$$\sum_{n=1}^{\infty} \frac{1-n}{n \cdot 2^n}$$

$$10. \quad \sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^n}$$

sol) By the Ration Test, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^{\sqrt{2}}}{2^{n+1}} \cdot \frac{2^n}{n^{\sqrt{2}}} = \frac{1}{2} < 1 \text{ converges.}$

11.
$$\sum_{n=1}^{\infty} n! e^{-n}$$

12.
$$\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^n$$

sol) By the nth Term Test, $\lim_{n \to \infty} \left(1 - \frac{3}{n}\right)^n = \lim_{n \to \infty} e^{n \ln\left(1 - \frac{3}{n}\right)} = \lim_{n \to \infty} e^{\frac{\ln\left(1 - \frac{3}{n}\right)}{\frac{1}{n}}} = \lim_{n \to \infty} e^{\frac{3}{\frac{n^2}{1 - \frac{3}{n}}}{\frac{1 - \frac{3}{n}}{\frac{1}{n^2}}} = e^{-3} \neq 0.$ Hence $\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^n$ diverges. 13. $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2}\right)^n$ 14. $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^n}$