Theorem 0.1 (The nth Term Test) If a_{n} fails to exist or is different from zero, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
Theorem 0.2 (The Integral Test) Let $\left\{a_{n}\right\}$ be a sequence of positive terms. Suppose that $a_{n}=f(n)$, where $f(x)$ is a continuous, positive, decreasing function of x for all $x \geq N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_{n}$ and the integral $\int_{N}^{\infty} f(x) d x$ both converge or both diverge.

Theorem 0.3 (The Direct Comparison Test) Let a_{n} be a series with no negative terms.
a. $\sum a_{n}$ converges if there is a convergent series $\sum c_{n}$ with $a_{n} \leq c_{n}$ for all $n>N$, for some integer N.
b. $\sum a_{n}$ diverges if there is a divergent series $\sum d_{n}$ with $a_{n} \geq d_{n}$ for all $n>N$, for some integer N.

Theorem 0.4 (The Limit Comparison Test) Suppose that $a_{n}>0$ and $b_{n}>0$ for all $n \geq N$ (N an integer).
a. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0$, then $\sum a_{n}$ and $\sum b_{n}$ both converge or both diverge.
b. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
c. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Theorem 0.5 (The Ratio Test) Let $\sum a_{n}$ be a series with positive terms and suppose that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho
$$

Then
a. the series converges if $\rho<1$,
b. the series diverges if $\rho>1$ or ρ is infinite,
c. the test is inconclusive if $\rho=1$.

Theorem 0.6 (The Root Test) Let $\sum a_{n}$ be a series with $a_{n} \geq 0$ for $n \geq N$, and suppose that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho
$$

Then
a. the series converges if $\rho<1$,
b. the series diverges if $\rho>1$,
c. the test is inconclusive if $\rho=1$.

Which of the series in the following converge, and which diverge?

1. $\sum_{n=1}^{\infty} \frac{1}{10^{n}}$
2. $\sum_{n=0}^{\infty} \frac{-2}{n+1}$
sol) $\sum_{n=0}^{\infty} \frac{-2}{n+1}=-\sum_{n=0}^{\infty} \frac{2}{n+1}$. Use the Integral Test. Let $f(x)=\frac{2}{x+1}$ and choose $N=0$. The function $f(x)=\frac{2}{x+1}$ is continuous, positive, and decreasing. Thus $\int_{0}^{\infty} \frac{2}{x+1} d x=\lim _{b \rightarrow \infty} 2[\ln |x+1|]_{0}^{b}=\infty-2=\infty$. By the Integral Test, $\sum_{n=0}^{\infty} \frac{2}{n+1}$ diverges. $\Rightarrow \sum_{n=0}^{\infty} \frac{-2}{n+1}$ diverges.
3. $\sum_{n=3}^{\infty} \frac{\frac{1}{n}}{(\ln n) \sqrt{(\ln n)^{2}-1}}$
4. $\sum_{n=1}^{\infty} \frac{8 \tan ^{-1} n}{1+n^{2}}$
sol) Use the Integral Test. Let $f(x)=\frac{8 \tan ^{-1} x}{1+x^{2}}$, which is a continuous, positive, and decreasing function for $x \geq 1$ and $N=1$. Use the substitution $x=\tan u$ to get $\int_{1}^{\infty} \frac{8 \tan ^{-1} x}{1+x^{2}} d x=\int_{\pi / 4}^{\pi / 2} \frac{8 u}{\sec ^{2} u} \sec ^{2} u d u=$ $\left.4 u^{2}\right|_{\pi / 4} ^{\pi / 2}=4\left(\pi^{2} / 4-\pi^{2} / 16\right)=\frac{3 \pi^{2}}{4}$. Therefore by the Integral Test, $\sum_{n=1}^{\infty} \frac{8 \tan ^{-1} n}{1+n^{2}}$ converges.
5. $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}+\sqrt[3]{n}}$
6. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+2}}$
sol) Use the Limit Comparison Test. Let $a_{n}=\frac{1}{\sqrt{n^{3}+2}}$ and $b_{n}=\frac{1}{n^{3 / 2}} . \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{3 / 2}}{\left(n^{3}+2\right)^{3 / 2}}=$ $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{2}{n^{3}}}}=1$. Since $\sum \frac{1}{n^{3 / 2}}$ converges, $\sum \frac{1}{\sqrt{n^{3}+2}}$ also converges by the Limit Comparison Test (Part a).
7. $\sum_{n=3}^{\infty} \frac{1}{\ln (\ln n)}$
8. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$
sol) Use the Limit Comparison Test. Let $a_{n}=\frac{1}{n \sqrt{n^{2}-1}}$ and $b_{n}=\frac{1}{n^{2}}$. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n \sqrt{n^{2}-1}}=$ $\lim _{n \rightarrow \infty} \sqrt{\frac{n^{4}}{n^{4}-n^{2}}}=\lim _{n \rightarrow \infty} \sqrt{\frac{1}{1-\frac{1}{n^{2}}}}=1$. Since $\sum \frac{1}{n^{2}}$ converges, $\sum \frac{1}{n \sqrt{n^{2}-1}}$ also converges by the Limit Comparison Test (Part a).
9. $\sum_{n=1}^{\infty} \frac{1-n}{n \cdot 2^{n}}$
10. $\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^{n}}$
sol) By the Ration Test, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{\sqrt{2}}}{2^{n+1}} \cdot \frac{2^{n}}{n^{\sqrt{2}}}=\frac{1}{2}<1$ converges.
11. $\sum_{n=1}^{\infty} n!e^{-n}$
12. $\sum_{n=1}^{\infty}\left(1-\frac{3}{n}\right)^{n}$
sol) By the nth Term Test, $\lim _{n \rightarrow \infty}\left(1-\frac{3}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(1-\frac{3}{n}\right)}=\lim _{n \rightarrow \infty} e^{\frac{\ln \left(1-\frac{3}{n}\right)}{\frac{1}{n}}}=\lim _{n \rightarrow \infty} e^{\frac{\frac{3}{n^{2}}}{-\frac{3-3}{n}}} \frac{n^{n}}{n^{2}} . ~=$ $e^{-3} \neq 0$. Hence $\sum_{n=1}^{\infty}\left(1-\frac{3}{n}\right)^{n}$ diverges.
13. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)^{n}$
14. $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^{n}}$
