Theorem 0.1 (The nth Term Test) If a_n fails to exist or is different from zero, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 0.2 (The Alternating Series Test) The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots$$
(1)

converges if all three of the following conditions are satisfied:

- a. The u_n 's are all positive.
- b. $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.

c.
$$u_n \to 0$$
 as $n \to \infty$.

Definition 0.3 (Absolutely Convergent) A series $\sum a_n$ converges absolutely if the corresponding series of absolutel values $\sum |a_n|$ converges.

Definition 0.4 (Conditionally Convergent) A series that converges but does not converge absolutely converges conditionally.

Theorem 0.5 (The Absolute Convergence Test) If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Which of the series in the following converge absolutely, or conditionally, and which diverge?

- 1. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$ 2. $\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{\ln n}$ 3. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3+n}{5+n}$ 4. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\tan^{-1} n}{n^2+1}$ 5. $\sum_{n=1}^{\infty} (-1)^{n+1} (\sqrt{n+\sqrt{n}} - \sqrt{n})$
- 6. In the series $\sum_{n=1}^{\infty} (1+\frac{1}{n})^n x^n$, (a) find the series' radius and interval of convergence. For what values of x does the series converge (b) absolutely, (c) conditionally?

Definition 0.6 (Taylor and Maclaurin series) Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then Taylor series generated by f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$
(2)

The Maclaurin series generated by f is $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$, the Taylor series generated by f at x = 0.

Definition 0.7 (Taylor Polynomial of order n) $displaystyle P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$

- $6. \ Find \ the \ Taylor \ polynomials \ of \ orders \ 0, \ 1, \ 2 \ and \ 3.$
 - a. $f(x) = \frac{1}{x}, \ a = 2$ b. $f(x) = \sin x, \ a = \frac{\pi}{4}$
- 7. Find the Malaurin series for
 - a. e^{-x}

b. $\sin 3x$

8. Find the Taylor series

a.
$$f(x) = \frac{1}{x^2}, a = 1$$

b. $f(x) = \frac{x}{1-x}, a = 0$