Theorem 0.1 (The nth Term Test) If a_{n} fails to exist or is different from zero, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
Theorem 0.2 (The Alternating Series Test) The series

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}=u_{1}-u_{2}+u_{3}-u_{4}+\ldots \tag{1}
\end{equation*}
$$

converges if all three of the following conditions are satisfied:
a. The u_{n} 's are all positive.
b. $u_{n} \geq u_{n+1}$ for all $n \geq N$, for some integer N.
c. $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Definition 0.3 (Absolutely Convergent) A series $\sum a_{n}$ converges absolutely if the corresponding series of absolutel values $\sum\left|a_{n}\right|$ converges.

Definition 0.4 (Conditionally Convergent) A series that converges but does not converge absolutely converges conditionally.
Theorem 0.5 (The Absolute Convergence Test) If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Which of the series in the following converge absolutely, or conditionally, and which diverge?

1. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$
2. $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{\ln n}$
3. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3+n}{5+n}$
4. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\tan ^{-1} n}{n^{2}+1}$
5. $\sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt{n+\sqrt{n}}-\sqrt{n})$
6. In the series $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n} x^{n}$, (a) find the series' radius and interval of convergence. For what values of x does the series converge (b) absolutely, (c) conditionally?

Definition 0.6 (Taylor and Maclaurin series) Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then Taylor series generated by f at $x=a$ is

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \tag{2}
\end{equation*}
$$

The Maclaurin series generated by f is $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}$, the Taylor series generated by f at $x=0$.

Definition 0.7 (Taylor Polynomial of order n) displaystyle $P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
6. Find the Taylor polynomials of orders $0,1,2$ and 3 .
a. $f(x)=\frac{1}{x}, a=2$
b. $f(x)=\sin x, a=\frac{\pi}{4}$
7. Find the Malaurin series for
a. e^{-x}
b. $\sin 3 x$
8. Find the Taylor series
a. $f(x)=\frac{1}{x^{2}}, \quad a=1$
b. $f(x)=\frac{x}{1-x}, a=0$

