- 1. Which of the following functions have inverses?
 - a. $f(x) = (x-1)^3$ with domain $(-\infty, \infty)$. f(x) is invertible because it is a strictly increasing function (that is, f(a) > f(b) whenever a > b).
 - b. $f(x) = \frac{1}{2+\sin x}$ with domain $[-\pi/2, \pi/2]$. f(x) is invertible as it is one-to-one: if f(a) = f(b) then $\frac{1}{2+\sin a} = \frac{1}{2+\sin b}$ and so $\sin a = \sin b$ and so a = b, as $\sin x$ is one-to-one on the domain $[-\pi/2, \pi/2]$.
 - c. $f(x) = \sec^2 x$ with domain $(-\pi/2, \pi/2)$. f(x) is not invertible as it is not one-to-one: f(x) = f(-x) for all $x \neq 0$.
- 2. a. Show that the function $f(x) = x^3 + 3x$ is one-to-one and hence has an inverse $f^{-1}(x)$.
 - b. What are the domain and the range of $f^{-1}(x)$?
 - c. Find $\frac{d}{dx}f^{-1}(x)$ at x = 4.
- 3. Let $f(x) = \sin^{-1}(\tan x)$.

a. What is the natural domain for f(x) so that the inverse function $f^{-1}(x)$ exists?

- Step 1. The function f(x) must be one-to-one so that the inverse function $f^{-1}(x)$ exists. The function f(x) is one-to-one if and only if the functions $\sin^{-1} x$ and $\tan x$ are one-to-one.
- Step 2. The domain \mathcal{D}_1 of $\tan x$ is $(-\infty, \infty)$. The range \mathcal{R}_1 is $(-\infty, \infty)$. However we must restrict the function to be one-to-one so that the inverse will exist. Thus, we set the domain to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and the range to $(-\infty, \infty)$. Similarly, the domain \mathcal{D}_2 of $\sin^{-1} x$ is [-1, 1]. The range \mathcal{R}_2 is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The function $\sin^{-1} x$ is one-to-one in the domain \mathcal{D}_2 and the range \mathcal{R}_2 , and so the inverse exists.
- Step 3. The range \mathcal{R}_1 of $\tan x$ must agree with the domain \mathcal{D}_2 of $\sin^{-1} x$, i.e., $\mathcal{R}_1 = \mathcal{D}_2 = [-1, 1]$. To achieve this we will restrict the domain \mathcal{D}_1 of $\tan x$ to $[-\frac{\pi}{4}, \frac{\pi}{4}]$. Thus, the domain of f(x) is $[-\frac{\pi}{4}, \frac{\pi}{4}]$ and the range is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.
- b. Calculate the inverse function $f^{-1}(x)$ and specify its domain. The inverse function $f^{-1}(x) = \tan^{-1}(\sin x)$. Pulling directly from the range above, the domain is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 4. Evaluate $\int \frac{dx}{5x\sqrt{\ln(3x)}}$.
- 5. Evaluate $\frac{\ln x}{x(1+\ln x)}dx$.
- 6. Evaluate $\int_0^{\sqrt{\ln \pi}} 2x e^{x^2} \cos(e^{x^2}) dx$.