1. Which of the following functions have inverses?
a. $f(x)=(x-1)^{3}$ with domain $(-\infty, \infty)$.
$f(x)$ is invertible because it is a strictly increasing function (that is, $f(a)>f(b)$ whenever $a>b$).
b. $f(x)=\frac{1}{2+\sin x}$ with domain $[-\pi / 2, \pi / 2]$.
$f(x)$ is invertible as it is one-to-one: if $f(a)=f(b)$ then $\frac{1}{2+\sin a}=\frac{1}{2+\sin b}$ and so $\sin a=\sin b$ and so $a=b$, as $\sin x$ is one-to-one on the domain $[-\pi / 2, \pi / 2]$.
c. $f(x)=\sec ^{2} x$ with domain $(-\pi / 2, \pi / 2)$.
$f(x)$ is not invertible as it is not one-to-one: $f(x)=f(-x)$ for all $x \neq 0$.
2. a. Show that the function $f(x)=x^{3}+3 x$ is one-to-one and hence has an inverse $f^{-1}(x)$.
b. What are the domain and the range of $f^{-1}(x)$?
c. Find $\frac{d}{d x} f^{-1}(x)$ at $x=4$.
3. Let $f(x)=\sin ^{-1}(\tan x)$.
a. What is the natural domain for $f(x)$ so that the inverse function $f^{-1}(x)$ exists?

Step 1. The function $f(x)$ must be one-to-one so that the inverse function $f^{-1}(x)$ exists. The function $f(x)$ is one-to-one if and only if the functions $\sin ^{-1} x$ and $\tan x$ are one-to-one.
Step 2. The domain \mathcal{D}_{1} of $\tan x$ is $(-\infty, \infty)$. The range \mathcal{R}_{1} is $(-\infty, \infty)$. However we must restrict the function to be one-to-one so that the inverse will exist. Thus, we set the domain to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and the range to $(-\infty, \infty)$. Similarly, the domain \mathcal{D}_{2} of $\sin ^{-1} x$ is $[-1,1]$. The range \mathcal{R}_{2} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The function $\sin ^{-1} x$ is one-to-one in the domain \mathcal{D}_{2} and the range \mathcal{R}_{2}, and so the inverse exists.
Step 3. The range \mathcal{R}_{1} of $\tan x$ must agree with the domain \mathcal{D}_{2} of $\sin ^{-1} x$, i.e., $\mathcal{R}_{1}=\mathcal{D}_{2}=[-1,1]$. To achieve this we will restrict the domain \mathcal{D}_{1} of $\tan x$ to $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. Thus, the domain of $f(x)$ is $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
b. Calculate the inverse function $f^{-1}(x)$ and specify its domain.

The inverse function $f^{-1}(x)=\tan ^{-1}(\sin x)$. Pulling directly from the range above, the domain is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
4. Evaluate $\int \frac{d x}{5 x \sqrt{\ln (3 x)}}$.
5. Evaluate $\frac{\ln x}{x(1+\ln x)} d x$.
6. Evaluate $\int_{0}^{\sqrt{\ln \pi}} 2 x e^{x^{2}} \cos \left(e^{x^{2}}\right) d x$.

