1. Find the area of the region between the curve $y=2^{1-x}$ and the interval $-1 \leq x \leq 1$.
2. Find the global maximum of $f(x)=x^{1 / x}$ in the domain $x>0$.
3. A colony of bacteria is grown under ideal conditions in a laboratory so that the population increases exponentially with time. At the end of 2 hours there are 10, 000 bacteria. At the end of 5 hours there are 70,000 . How many bacteria were present initially?
4. Suppose the rate at which a rumor spreads - that is, the number of people who have heard the rumor over a period of time - increases with the number of people who have heard it. If y is the number of people who have heard the rumor, then

$$
\frac{d y}{d t}=k y
$$

where t is the time in days.
a. If y is 1 when $t=0$ and y is 5 when $t=2$, find k.
b. Using the value of k from (a), find y when $t=3$.
5. Prove or disprove:
a. $x^{-2} 3^{x}$ grows slower than $x 2^{x}$.
b. $\log _{2} 3 x^{2}$ grows at the same rate as $(x+7)^{2}$.

