Let $f(x)$ be a continuous function on $[a, b]$. Then by the fundamental theorem of calculus, $F(x)=$ $\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$, is differentiable on $[a, b]$, and

$$
\begin{equation*}
F^{\prime}(x)=\frac{d F(x)}{d x}=\frac{d \int_{a}^{x} f(t) d t}{d x}=f(x) \tag{1}
\end{equation*}
$$

Now consider $g(x)$ instead of x as an upper bound of the integral above. Then to find $F^{\prime}(g(x))$, we need to use the chain rule to get

$$
\begin{align*}
F^{\prime}(g(x)) & =\frac{d F(g(x))}{d x} \tag{2}\\
& =\frac{d F(g(x))}{d g(x)} \cdot \frac{d g(x)}{d x} \tag{3}\\
& =\frac{d \int_{a}^{g(x)} f(t) d t}{d g(x)} \cdot g^{\prime}(x) \tag{4}\\
& =f(g(x)) \cdot g^{\prime}(x) \tag{5}
\end{align*}
$$

where (3) is from the chain rule for the mapping $x \rightarrow g(x) \rightarrow F(g(x))$, and (5) from (1) with $g(x)$ instead of x, i.e. the fundamental theorem of calculus.

1 Find the derivative $\frac{d}{d t} \int_{0}^{t^{4}} \sqrt{u} d u$ by evaluating the integral and differentiating the result, $\frac{d}{d t} \int_{0}^{t^{4}} \sqrt{u} d u=\frac{d}{d t}\left(\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{t^{4}}\right)=\frac{d}{d t}\left(\frac{2}{3} t^{6}\right)=4 t^{5}$

2 Find the derivative $\frac{d}{d t} \int_{0}^{t^{4}} \sqrt{u} d u$ by differentiating the integral directly.
Since the upper bound is not simply x, We use the fundamental theorem of calculus combining with the chain rule above. Let $f(u)=\sqrt{u}$ and $g(t)=t^{4}$. Then

$$
\begin{align*}
\frac{d}{d t} \int_{0}^{t^{4}} \sqrt{u} d u & =\frac{d}{d t} \int_{0}^{g(t)} f(u) d u \tag{6}\\
& =f(g(t)) \cdot g^{\prime}(t) \tag{7}\\
& =\sqrt{t^{4}} \cdot \frac{d\left(t^{4}\right)}{d t} \tag{8}\\
& =t^{2} \cdot 4 t^{3} \tag{9}\\
& =4 t^{5} \tag{10}
\end{align*}
$$

