No calculators, notes or books allowed.
To improve the chance for partial credit and also generally ease the work of grading, please:

- write clearly and be well organized;
- use the page backs for ungraded scrap work and for checking your answers;
- box in your answers; and
- reduce your answers as much as possible. None of the calculations are long and none of the answers are long.

1. Evaluate the following expressions:
a) $\int \sec ^{2}(x) d x$
b) $\frac{d}{d t} \int_{t^{3}}^{1} \cos ^{4}(x) d x$
c) $\int_{-2}^{2} \frac{x^{3}}{1+x^{6}} d x$
2. Consider the region bounded on the left by the y-axis and on the right by the curves $y=\sin (x)$ and $y=\cos (x)$. Find the area of the region.
3. a) Express the area under the curve $y=\sin (x)$ between $x=0$ and $x=\frac{\pi}{6}$ as a limit of Riemann sums. (Use uniform partitions and the right hand rule.)
b) Find

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k^{7}}{n^{8}}
$$

4. Evaluate
a) $\int \frac{x}{\sqrt{1-x^{2}}} d x$
b) $\int x^{2} \sqrt{2-x} d x$
c) $\int_{0}^{1} \sqrt{1-\sin (y)} \sqrt{1-\sin ^{2}(y)} d y$.
5. Consider the region in the first quadrant bounded on the left by the y-axis, above by the line $y=2-x$, and below by the line $y=x$.
a) Find the volume of the solid generated by revolving this region about the y-axis.
b) Find the volume of the solid when rotated about the x-axis.

$$
\begin{aligned}
& \text { Some formulas: } \\
& \qquad \begin{aligned}
\cos (a+b)=\cos a \cos b-\sin a \sin b & \sin (a / 2)= \pm \sqrt{\frac{1-\cos a}{2}} \\
\sin (a+b)=\cos a \sin b+\sin a \cos b & \cos (a / 2)= \pm \sqrt{\frac{1+\cos a}{2}}
\end{aligned}
\end{aligned}
$$

