Practice Prelim 2, Math 191, Fall 2006

1. (a) Show that the function $f(x)=x^{3}+3 x$ is one-to-one and hence has an inveerse $f^{-1}(x)$.
(b) What are the domain and the range of $f^{-1}(x)$?
(c) Find $\frac{d}{d x} f^{-1}(x)$ at $x=4$.
2. Find the global maximum of $f(x)=x^{1 / x}$ in the domain $x>0$. Hint: $x^{1 / x}=e^{\frac{1}{x} \ln x}$.
3. Let $f(x)=\sin ^{-1}(\tan x)$.
(a) What is the natural domain for $f(x)$ so that the inverse function $f^{-1}(x)$ exists?
(b) Calculate the inverse function $f^{-1}(x)$ and specify its domain.
4. Suppose the rate at which a rumor spreads - that is, the number of people who have heard the rumor over a period of time - increases with the number of people who have heard it. If y is the number of people who have heard the rumor, then

$$
\frac{d y}{d t}=k y
$$

where t is the time in days.
(a) If y is 1 when $t=0$ and y is 5 when $t=2$, find k.
(b) Using the value of k from (a), find y when $t=3$.
5. True or false? Give a reason for each answer.
a) $e^{\log _{2} x}=O(x)$.
b) $\tanh x=o(\sqrt{x})$.
c) If $f=o(g), g=o(h)$, then $f g=o(h)$.
6. Evaluate the following.
a) $\sin \left(\tan ^{-1} x\right)$.
b) $\sin \left(\sec ^{-1}(x / 6)\right.$.
7. Evaluate the following:
(a) $\int \frac{x}{\sqrt{-3+4 x^{2}-x^{4}}} d x$
(b) $\int_{0}^{\sqrt{2}} \frac{d x}{x^{4}+3 x^{2}+2}$
(c) $\int \frac{1+\tan ^{2} x}{1-\tan ^{2} x} d x$
(d) $\int \frac{d x}{5 x \sqrt{\ln (3 x)}} d x$

