Practice Prelim 2, Math 191, Fall 2006

- 1. (a) Show that the function $f(x) = x^3 + 3x$ is one-to-one and hence has an inverse $f^{-1}(x)$.
 - (b) What are the domain and the range of $f^{-1}(x)$?
 - (c) Find $\frac{d}{dx}f^{-1}(x)$ at x = 4.
- 2. Find the global maximum of $f(x) = x^{1/x}$ in the domain x > 0. Hint: $x^{1/x} = e^{\frac{1}{x} \ln x}$.
- 3. Let $f(x) = \sin^{-1}(\tan x)$.
 - (a) What is the natural domain for f(x) so that the inverse function $f^{-1}(x)$ exists?
 - (b) Calculate the inverse function $f^{-1}(x)$ and specify its domain.
- 4. Suppose the rate at which a rumor spreads that is, the number of people who have heard the rumor over a period of time increases with the number of people who have heard it. If y is the number of people who have heard the rumor, then

$$\frac{dy}{dt} = ky$$

where t is the time in days.

- (a) If y is 1 when t = 0 and y is 5 when t = 2, find k.
- (b) Using the value of k from (a), find y when t = 3.
- 5. True or false? Give a reason for each answer.
 - a) $e^{\log_2 x} = O(x)$.
 - b) $\tanh x = o(\sqrt{x}).$
 - c) If f = o(g), g = o(h), then fg = o(h).
- 6. Evaluate the following.
 - a) $\sin(\tan^{-1} x)$.
 - b) $\sin(\sec^{-1}(x/6))$.

7. Evaluate the following:

(a)
$$\int \frac{x}{\sqrt{-3+4x^2-x^4}} dx$$
 (b) $\int_0^{\sqrt{2}} \frac{dx}{x^4+3x^2+2}$
(c) $\int \frac{1+\tan^2 x}{1-\tan^2 x} dx$ (d) $\int \frac{dx}{5x\sqrt{\ln(3x)}} dx$

$$\int \frac{1 + \tan^2 x}{1 - \tan^2 x} dx \qquad (d) \quad \int \frac{dx}{5x\sqrt{\ln(3x)}}$$

[28]