## Practice Prelim 3, Math 191, Fall 2005

No calculators. Clearly mark each answer.

1. Decide, giving reasons, whether the following series converges absolutely, converges conditionally, or diverges?

$$
\begin{aligned}
& \text { a) } \sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n^{3 / 2}} \quad[10 \text { points] } \\
& \text { b) } \sum_{n=2}^{\infty} \frac{1}{n+\sin n} \quad[5 \text { points] } \\
& \text { c) } \sum_{n=2}^{\infty} \frac{n \sqrt{n+1}}{n^{3}+3 n+1} \quad \text { [5 points] } \\
& \text { d) } \sum_{n=1}^{\infty} \frac{(2 n+1)!^{2}}{(3 n)!} \quad[10 \text { points }]
\end{aligned}
$$

2. a) Find the Maclaurin series for the function

$$
f(x)=\frac{x^{2}}{1+x}
$$

For what values of x does the series converge absolutely?
b) Does the series converge at $x=1$ ? Explain.
3. a) Find the sum of the series

$$
\begin{equation*}
1+\frac{2}{10}+\frac{3}{10^{2}}+\frac{2}{10^{4}}+\frac{3}{10^{5}}+\frac{2}{10^{7}}+\frac{3}{10^{8}}+\ldots \tag{10points}
\end{equation*}
$$

b) Does the series

$$
\text { b) } \sum_{n=1}^{\infty}\left(\sin \frac{1}{2 n}-\sin \frac{1}{2 n+1}\right) \quad[10 \text { points }]
$$

converge? Why or why not?
4. Evaluate the integral

$$
-\int_{0}^{1} \ln x d x \quad[10 \text { points }]
$$

5. According to the error-bound formula for Simpson's rule (the formula would be given on the actual exam), how many sub-intervals should you use to be sure of estimating the value of

$$
\ln 3=\int_{1}^{3} \frac{1}{x} d x
$$

by Simpson's rule with an error no more than $10^{-2}$ in absolute value? (Remember that for Simpson's rule, the number of sub-intervals has to be even).
[20 points]

